3 General results concerning variational inequalities
Let V' be a real Hilbert space with the inner product (-,-) and the associated norm || - ||.
Let Vx denote the dual of V. Moreover, we assume

L. a(-,-) : V. xV = R is a continuous, V-elliptic bilinear form, i. e. Ja >0 Vv € V :
a(v,v) > allv|?

2. L:V — R is a continuous linear functional.

3. K # 0 is a closed convex subset of V.

Then the variational inequality reads
Find u € K, such that

alu,v—u) > Lv—u)WweK (P1)

Theorem 3.1. Lions,Stampacchia(Eristence and Uniqueness)
Problem (P1) possesses exactly one solution.

Proof. Uniqueness: Let uj,up € K be solutions of (P1):
= (a(ug,v—u) > Llv—u) e K (3.1)
(a(ug, v —u9) > L(v —ug) Vv € K
Set v = up in (3.1) and v = u; in (3.2) and add them up. Applying (3.1)-(3.2) gives
aflur — us|* < aluy —uz,u1 —up) <0
= U] = u2
Existence: The Riesz representation theorem teaches us, that 34 € L(V,V), | € V mit
(Au,v) = a(u,v) Yu,v eV

3.3
Liv)=(Lv)YveV 8:5)

(P1) is equivalent to: Find u € V, such that
(u=p(Au—1)—u,v—u) <0V € K,p>0 (3.4)

Remember: (3.4) is equivalent to:

Find v € Vi v = Pg(u — p(Au — 1)) for some ¢ > 0, where Px : V — K is a projection
with respect to || - ||.

Let us study the mapping W, : V. — V defined via W,(v) := Px(v — p(4v — 1)) and take
v1,v9 € V. It holds

[We(v1) = Wo(v2)[I? = | Px(v1 — 0(Avy = 1)) — Py (va — o(Avg — 1)) ||?
< (w1 = v2) — 0A(v1 — v2)]| (*) 7 See naxt G2

= [jvg — v1]|* + 0%|| A(ve — 1) |12 —20a(vy — v1,v2 — 1)

-

—o(A(v1—v2),(v1—v2))—(v1i—v2,04(v1 —v2))

and therefore
= [[Wy(v1) = Wo(va) [l < (1 - 200+ 0| A|*)[[v1 — vy?
2
= Wyis a real contraction for 0 < p < ﬁ.
Thus there exists exactly one solution of the fixed point problem (Banach) W,(v) = v and
we have exactly one solution for problem (P1) O
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For (x) on the previous page, we use the Lemma below.

Let K C V be a closed convex subset. For x € V, denote by Pxx the point
closest to x in K:
|z — Pxzlly = min ||z —yllv .
yeK

Note that according to the Lax-Milgram Theorem for closed convex subsets,
there exists a unique such point Pxx. By the Characterization Theorem, it is
determined by the variational inequality

(Pxx,y — Pgx)y > (x,y — Pxx)y Yy e K . (1)
Lemma 1. Pyx is a contraction: For u,v € V: ||Pxu — Prv|ly < |lu—v|y.
Proof. The function
d(t) = ||(1—t) Pxuttu—((1—t) Pxv+tv)||} = || Pxu—Prv+t(u—v—Pygu+Pro)|}
satisfies
d'(t) = 2(Pxu — Pgv,u — v — Pgu+ Pgv)y + 2t|ju — v — Pgu + Prol|3 .
From (1) with = w and y = Pgv, (Pxu — u, Pkv — Pgu)y > 0. Similarly,

with 2 = v and y = Pxu, (Pxv — v, Pku — Pgv)y > 0. Therefore d'(t) > 0 for
t >0, and ||Pgu— Prol|} = d(0) < d(1) = |ju—v|3. O



3.1 The approximation problem

Approximation of V and K.

Assumption 1. Given a parameter k — 0 and a family {Vi}n of closed subspaces of V.
Moreover we denote by {Kp}y, a family of closed convex non empty subspaces of V', such
that Ky C Vi Vh (in general it is does not hold, that K, C K ), where

‘1};, —V i
1. If {vn}n, is bounded in I{ and vy € KpVh= v, 2 veK

2.3x CV withy = K and 3ry, : x — Kp, such that limy_orpv = v strongly in
V Vv ey

Approximation of (P1):

Find up € Ky, @ alup, vy — up) > L(vy, — up) Yoy, € K, (P1h)
Theorem 3.2. (P1h) possesses exactly one solution.

Proof. Apply the same arguments as in Theoerm 3.1, just change Vj, by V and K} by
K. O

Theorem 3.3 (convergence, Glowinski). Using the Assumptions 1 for K and {Kp}h there
holds

lim [Jup, — ul| = 0 with uy solving (P1h) and u solving (P1)
Proof. (in 3 steps)
1. a priori error estimator for {up},
2. weak convergence of {up}n

3. strong convergence

1. Estimation of up:

Show: Jey, e > 0 independent of h : Huth < cy|lup|| + e2 VA (3.5)
up, solves (P1h) = a(up, vp — up) = L(vy — up) Yo, € Ky, (3.6)
= a(up, up) < alup, vp) —L(vy — up) Yo, € K (3.7)
N— —
(Aup,up)
= allunl® < alun, un) < |Alllunllllvnll + 1 ZI(loall + Juall) Yor € K
(3.8)

Choose some fixed vy € x and let v, = 7,19 € K},. Then using Assumption 1(2.) for
K}, we see, that rpvg — vg and thus there exists m € R independent of h, such that,
lon]] < m. Applying (3.8), we have

lenl® < —{(mllAll + I LD llunll + I ZlIm} = esllun]l + c2 = lunll < ¢ Vuy

2=

and thus we have shown uniform boundedness.
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2. weak convergence: (3.5) implies, that {up} is uniformly bounded in V. Therefore,
there exists a subsequence {uy, } € Kj, converging weakly to u* € V', i. e. up, —
u* € V. Using Assumption 1(1.) for {K}},, we have u* € K.

Show: u* is a solution of (P1).

We know, that
a‘(uhi7 Uh; — uhi) 2 L('Uhi - uhi) Vup, € Kb, (3.9)

Let v € x and vy, = rp,v. Using (3.9), we have

a( Up, 5 up;) < a<uhi’vhi) - L(vhi - uhi) (3.10)
—~—
u*(hl—>0)
= a(rp,v,up,) — L(rp,v — up,)
-
—v
= li}{ni%fa(uhi,uhi) <a(u*,v) — L(v—u") Vv € x (3.11)
i
=0 < a(up, —u*,up, —u*) < a(up,, up,) — alup,;, w") (3.12)
—a(u”, up,) + a(u®,u"),
e a(up;,u”) +a(u®,up,) —a(u,u*) < alup,,un,)
a(u*,u) + alu*,u*) —a(u,u*) < lim alup,,un,),
hi—>0
ie. a(u®,u”) < lim a(up,,up,) (3.13)
hi—>0

Using (3.11) and (3.13), we get
= a(u,u") < }}jino a(up,,up;) < a(u*,v) — Llv —u") Yv € x
=alu,v—u*) > Llv—u)Vvex u €K (3.14)
As x lies dense in K (i. e. x = K) and a(-,-), L are continuous, we get

a(u*;v—u*) > Lv —u*) Yo € K(u" € K) (3.15)

i. e. u* = w is a unique solution. As u is an accumulation point of {uy}, in the weak
topology of V', the sequence {up,}, converges weakly to u.

3. strong convergence: a(-,-) is V-elliptic (coersive), thus

0 < allup, —ul* < alup —u,up — v)

= a(up, up) — alup, ) — alu, up) + au, u), (3.16)
where uy, solves (P1h) and wu solves (P1).
rpv € K Vv € x and uy, solves(P1h)
Then there holds with r, € Kp, Yv € x
a(up, up) < a(up, rpv) — L(rpo —up) Yo € x
(3.17)
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It holds up, = win V (h — 0) and r,v — v in V' (h — 0) using Assumption 1(2.).
Hence inserting (3.17) in (3.16) and letting h — 0 (Vo € x) yields

0 < alim |ju, — ul|* < a(u,v — u) — L(v — u) (3.18)
h—0

As ¥ = K and a(-,-) , L are continuous, (3.18) holds for all v € K

Setting v = w in (3.18) gives us limy, o [Jup, — u/|*> = 0.

19



