3 General results concerning variational inequalities

Let V be a real Hilbert space with the inner product (\cdot, \cdot) and the associated norm $\|\cdot\|$. Let V* denote the dual of V. Moreover, we assume

- 1. $a(\cdot,\cdot):V\times V\to\mathbb{R}$ is a continuous, V-elliptic bilinear form, i. e. $\exists \alpha>0\ \forall v\in V: a(v,v)\geq \alpha\|v\|^2$.
- 2. $L: V \to \mathbb{R}$ is a continuous linear functional.
- 3. $K \neq \emptyset$ is a closed convex subset of V.

Then the variational inequality reads

Find $u \in K$, such that

$$a(u, v - u) \ge L(v - u) \ \forall v \in K$$
 (P1)

Theorem 3.1. Lions, Stampacchia (Existence and Uniqueness)

Problem (P1) possesses exactly one solution.

Proof. Uniqueness: Let $u_1, u_2 \in K$ be solutions of (P1):

$$\Rightarrow (a(u_1, v - u_1) \ge L(v - u_1) \ \forall v \in K$$
(3.1)

$$(a(u_2, v - u_2) \ge L(v - u_2) \ \forall v \in K$$
 (3.2)

Set $v = u_2$ in (3.1) and $v = u_1$ in (3.2) and add them up. Applying (3.1)-(3.2) gives

$$\alpha ||u_1 - u_2||^2 \le a(u_1 - u_2, u_1 - u_2) \le 0$$

 $\Rightarrow u_1 \equiv u_2$

Existence: The Riesz representation theorem teaches us, that $\exists A \in \mathcal{L}(V,V), \ l \in V$ mit

$$(Au, v) = a(u, v) \ \forall u, v \in V$$

$$L(v) = (l, v) \ \forall v \in V$$
 (3.3)

(P1) is equivalent to: Find $u \in V$, such that

$$(u - \varrho(Au - l) - u, v - u) \le 0 \ \forall v \in K, \varrho > 0$$
(3.4)

Remember: (3.4) is equivalent to:

Find $u \in V$: $u = P_K(u - \varrho(Au - l))$ for some $\varrho > 0$, where $P_K : V \to K$ is a projection with respect to $\|\cdot\|$.

Let us study the mapping $W_{\varrho}: V \to V$ defined via $W_{\varrho}(v) := P_K(v - \varrho(Av - l))$ and take $v_1, v_2 \in V$. It holds

$$\begin{split} \|W_{\varrho}(v_1) - W_{\varrho}(v_2)\|^2 &= \|P_K(v_1 - \varrho(Av_1 - l)) - P_K(v_2 - \varrho(Av_2 - l))\|^2 \\ &\leq \|(v_1 - v_2) - \varrho A(v_1 - v_2)\| & \text{(**)} \quad \text{See next page} \\ &= \|v_2 - v_1\|^2 + \varrho^2 \|A(v_2 - v_1)\|^2 & \underbrace{-2\varrho a(v_2 - v_1, v_2 - v_1)}_{-\varrho(A(v_1 - v_2), (v_1 - v_2)) - (v_1 - v_2, \varrho A(v_1 - v_2))} \end{split}$$

and therefore

$$\Rightarrow \|W_{\varrho}(v_1) - W_{\varrho}(v_2)\|^2 \le (1 - 2\varrho\alpha + \varrho^2 \|A\|^2) \|v_1 - v_2\|^2$$

$$\Rightarrow W_{\varrho} \text{is a } \underline{\text{real}} \text{ contraction for } 0 < \varrho < \frac{2\alpha}{\|A\|^2}.$$

Thus there exists exactly one solution of the fixed point problem (Banach) $W_{\varrho}(v) = v$ and we have exactly one solution for problem (P1)

For (*) on the previous page, we use the Lemma below.

Let $K \subset V$ be a closed convex subset. For $x \in V$, denote by $P_K x$ the point closest to x in K:

$$||x - P_K x||_V = \min_{y \in K} ||x - y||_V$$
.

Note that according to the Lax-Milgram Theorem for closed convex subsets, there exists a unique such point $P_K x$. By the Characterization Theorem, it is determined by the variational inequality

$$(P_K x, y - P_K x)_V \ge (x, y - P_K x)_V \quad \forall y \in K . \tag{1}$$

Lemma 1. P_K is a contraction: For $u, v \in V$: $||P_K u - P_K v||_V \le ||u - v||_V$.

Proof. The function

$$d(t) = \|(1-t)P_K u + tu - ((1-t)P_K v + tv)\|_V^2 = \|P_K u - P_K v + t(u - v - P_K u + P_K v)\|_V^2$$
satisfies

$$d'(t) = 2(P_K u - P_K v, u - v - P_K u + P_K v)_V + 2t \|u - v - P_K u + P_K v\|_V^2.$$

From (1) with x = u and $y = P_K v$, $(P_K u - u, P_K v - P_K u)_V \ge 0$. Similarly, with x = v and $y = P_K u$, $(P_K v - v, P_K u - P_K v)_V \ge 0$. Therefore $d'(t) \ge 0$ for $t \ge 0$, and $\|P_K u - P_K v\|_V^2 = d(0) \le d(1) = \|u - v\|_V^2$.

3.1The approximation problem

Approximation of V and K.

Assumption 1. Given a parameter $k \to 0$ and a family $\{V_h\}_h$ of closed subspaces of V. Moreover we denote by $\{K_h\}_h$ a family of closed convex non empty subspaces of V, such that $K_h \subset V_h \ \forall h \ (in \ general \ it \ is \ does \ not \ hold, \ that \ K_h \subset K), \ where$ 1. If $\{v_h\}_h$ is bounded in V_h and $v_h \in K_h \ \forall h \Rightarrow v_h \to v \in K$

- 2. $\exists \chi \subset V \text{ with } \overline{\chi} = K \text{ and } \exists r_h : \chi \to K_h, \text{ such that } \lim_{h \to 0} r_h v = v \text{ strongly in}$ $V \ \forall v \in \chi$

Approximation of (P1):

Find
$$u_h \in K_h : a(u_h, v_h - u_h) \ge L(v_h - u_h) \ \forall v_h \in K_h$$
 (P1h)

Theorem 3.2. (P1h) possesses exactly one solution.

Proof. Apply the same arguments as in Theorem 3.1, just change V_h by V and K_h by K.

Theorem 3.3 (convergence, Glowinski). Using the Assumptions 1 for K and $\{K_h\}_h$ there holds

$$\lim ||u_h - u|| = 0$$
 with u_h solving (P1h) and u solving (P1)

Proof. (in 3 steps)

- 1. a priori error estimator for $\{u_h\}_h$
- 2. weak convergence of $\{u_h\}_h$
- 3. strong convergence
- 1. Estimation of u_h :

Show:
$$\exists c_1, c_2 > 0$$
 independent of $h : ||u_h||^2 \le c_1 ||u_h|| + c_2 \ \forall h$ (3.5)

$$u_h \text{ solves (P1h)} \Rightarrow a(u_h, v_h - u_h) \ge L(v_h - u_h) \ \forall v_h \in K_h$$
 (3.6)

$$\Rightarrow a(u_h, u_h) \le \underbrace{a(u_h, v_h)}_{(Au_h, v_h)} - L(v_h - u_h) \ \forall v_h \in K_h$$
(3.7)

$$\Rightarrow \alpha ||u_h||^2 \le a(u_h, u_h) \le ||A|| ||u_h|| ||v_h|| + ||L|| (||v_h|| + ||u_h||) \ \forall v_h \in K_h$$
(3.8)

Choose some fixed $v_0 \in \chi$ and let $v_h = r_h v_0 \in K_h$. Then using Assumption 1(2.) for K_h , we see, that $r_h v_0 \to v_0$ and thus there exists $m \in \mathbb{R}$ independent of h, such that, $||v_n|| \le m$. Applying (3.8), we have

$$\|u_h\|^2 \leq \frac{1}{\alpha} \{ (m\|A\| + \|L\|) \|u_h\| + \|L\|m\} = c_1 \|u_h\| + c_2 \Rightarrow \|u_h\| \leq c \ \forall u_h$$

and thus we have shown uniform boundedness.

2. weak convergence: (3.5) implies, that $\{u_h\}$ is uniformly bounded in V. Therefore, there exists a subsequence $\{u_{h_i}\} \in K_{h_i}$ converging weakly to $u^* \in V$, i. e. $u_{h_i} \rightharpoonup u^* \in V$. Using Assumption 1(1.) for $\{K_h\}_h$, we have $u^* \in K$.

Show: u^* is a solution of (P1).

We know, that

$$a(u_{h_i}, v_{h_i} - u_{h_i}) \ge L(v_{h_i} - u_{h_i}) \ \forall v_{h_i} \in K_{h_i}.$$
 (3.9)

Let $v \in \chi$ and $v_{h_i} = r_{h_i}v$. Using (3.9), we have

$$a(\underbrace{u_{h_i}}_{u^*(h_i \to 0)}, u_{h_i}) \le a(u_{h_i}, v_{h_i}) - L(v_{h_i} - u_{h_i})$$
(3.10)

$$= a(\underbrace{r_{h_i}v}_{i}, u_{h_i}) - L(r_{h_i}v - u_{h_i})$$

$$\Rightarrow \liminf_{h_i \to 0} a(u_{h_i}, u_{h_i}) \le a(u^*, v) - L(v - u^*) \ \forall v \in \chi$$
 (3.11)

$$\Rightarrow 0 \le a(u_{h_i} - u^*, u_{h_i} - u^*) \le a(u_{h_i}, u_{h_i}) - a(u_{h_i}, u^*)$$

$$- a(u^*, u_{h_i}) + a(u^*, u^*),$$
(3.12)

i e.
$$a(u_{h_i}, u^*) + a(u^*, u_{h_i}) - a(u^*, u^*) \le a(u_{h_i}, u_{h_i})$$

$$a(u^*, u^*) + a(u^*, u^*) - a(u^*, u^*) \le \lim_{h_i \to 0} a(u_{h_i}, u_{h_i}),$$
i.e. $a(u^*, u^*) \le \lim_{h_i \to 0} a(u_{h_i}, u_{h_i})$ (3.13)

Using (3.11) and (3.13), we get

$$\Rightarrow a(u^*, u^*) \le \lim_{h_i \to 0} a(u_{h_i}, u_{h_i}) \le a(u^*, v) - L(v - u^*) \ \forall v \in \chi$$
$$\Rightarrow a(u^*, v - u^*) \ge L(v - u^*) \ \forall v \in \chi \ u^* \in K$$
(3.14)

As χ lies dense in K (i. e. $\overline{\chi} = K$) and $a(\cdot, \cdot)$, L are continuous, we get

$$a(u^*, v - u^*) \ge L(v - u^*) \ \forall v \in K(u^* \in K)$$
 (3.15)

i. e. $u^* = u$ is a unique solution. As u is an accumulation point of $\{u_h\}_h$ in the weak topology of V, the sequence $\{u_h\}_h$ converges weakly to u.

3. strong convergence: $a(\cdot, \cdot)$ is V-elliptic (coersive), thus

$$0 \le \alpha ||u_h - u||^2 \le a(u_h - u, u_h - u)$$

= $a(u_h, u_h) - a(u_h, u) - a(u, u_h) + a(u, u),$ (3.16)

where u_h solves (P1h) and u solves (P1).

$$r_n v \in K \ \forall v \in \chi \ \text{and} \ u_h \ \text{solves(P1h)}$$

Then there holds with $r_h \in K_h \ \forall v \in \chi$

$$a(u_h, u_h) \le a(u_h, r_h v) - L(r_h v - u_h) \ \forall v \in \chi$$
(3.17)

It holds $u_h \to u$ in V $(h \to 0)$ and $r_h v \to v$ in V $(h \to 0)$ using Assumption 1(2.). Hence inserting (3.17) in (3.16) and letting $h \to 0$ $(\forall v \in \chi)$ yields

$$0 \le \alpha \lim_{h \to 0} ||u_h - u||^2 \le a(u, v - u) - L(v - u)$$
(3.18)

As $\overline{\chi}=K$ and $a(\cdot,\cdot)$, L are continuous, (3.18) holds for all $v\in K$ Setting v=u in (3.18) gives us $\lim_{h\to 0}\|u_h-u\|^2=0$.