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Morse-Tompkins [1] and Shiffman [1] by a less direct, topological reasoning.
However, since this material has been covered very extensively elsewhere (see
Struwe [18]), here we will confine ourselves to the above remarks.

For an introduction to Plateau’s problem and minimal surfaces, see for
instance, Osserman [1], or consult the encyclopedic book by Nitsche [2].

A truely remarkable – popular and profound – book on the subject is
available by Hildebrandt-Tromba [1].

3. Compensated Compactness

As noted in Remark 1.8, it is conceivable that in the vector-valued case lower
semi-continuity results may hold true under a weaker convexity assumption
than in Theorem 1.6, provided suitable structure conditions are satisfied by
the functional in variation. Weakening the convexity hypothesis is necessary,
for instance, in dealing with problems arising in 3-dimensional elasticity, where
we encounter energy functionals



Ω

W (∇u) dx with a stored energy function
W depending on the determinant, the minors and the eigenvalues of the de-
formation gradient ∇u. Since infinite volume distortion for elastic materials
will afford an infinite amount of energy, it is natural to suppose that W → ∞
if either det(∇u) → 0 or det(∇u) → ∞; hence W cannot be convex in ∇u.
However, there is a large class of materials that can be described by polyconvex
stored energy functions, which are of the form

W (∇u) = f(subdeterminants of ∇u),

where f is convex in each of its variables. John Ball [1] was the first to see
that lower semi-continuity results will hold for such functionals. The difficulty,
of course, lies in proving, for instance, weak convergence det(∇um) � det(∇u)
for a sequence um � u weakly in H1,3(Ω, IR3). Questions of this type had been
investigated by Reshetnyak [1], [2]. A general frame for studying such problems
is provided by the compensated compactness scheme of Murat and Tartar.

The basic principle of the compensated compactness method is given in
the following lemma; see Tartar [2; p. 270 f.].

3.1 The compensated compactness lemma. Let Ω be a domain in IRn and
suppose that
(1◦) um =

�
u1

m, . . . , uN
m

�
� u weakly in L2(Ω; IRN ).

(2◦) The set
��

j,k ajk
∂uj

m

∂xk
; m ∈ IN

�
is relatively compact in H−1

loc (Ω; IRL) for

a set of vectors ajk ∈ IRL; 1 ≤ j ≤ N, 1 ≤ k ≤ n. Let

Λ =
�
λ ∈ IRN ;

�

j,k

ajkλjξk = 0 for some ξ ∈ IRn \ {0}
�
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and let Q be a (real) quadratic form such that Q(λ) ≥ 0 for all λ ∈ Λ. Regarding
Q(um) ∈ L1(Ω) as Radon measures Q(um)dx ∈

�
C0(Ω�)

�∗, we may assume
that

�
Q(um)

�
converges weak∗, locally.

Then on any Ω� ⊂⊂ Ω we have

weak∗ − lim
m→∞

Q
�
um

�
≥ Q(u)

in the sense of measures. In particular, if Q(λ) = 0 for all λ ∈ Λ, then

weak∗ − lim
m→∞

Q
�
um

�
= Q(u)

locally, in the sense of measures.

Proof. Choose ϕ ∈ C0(Ω) with compact support and such that 0 ≤ ϕ ≤ 1. We
must show that

lim inf
m→∞

�

Ω

Q
�
um

�
ϕ2 dx ≥

�

Ω

Q(u)ϕ2 dx .

By translation we may assume that u = 0. Moreover, upon replacing um by
umϕ we may assume that the supports of um lie in a fixed cube K ⊂⊂ Ω
and that ϕ ≡ 1 on K. By translation and scaling, moreover, we can obtain
K = [0, 2π]n. Let

um(x) =
�

α∈ZZn

μm,αeiα·x , μm,α =
�
μ1

m,α, . . . , μN
m,α

�
∈ CN ,

be the Fourier expansion for um. Since um is real, we have μm,α = μm,−α. The
assertion then is equivalent to showing that

lim inf
m→∞

1
(2π)n

�

K

Q
�
um

�
dx = lim inf

m→∞

�

α∈ZZn

�
Q

�
Re μm,α

�
+ Q

�
Im μm,α

��
≥ 0 .

By weak convergence um � 0 in L2 we infer that
�

α∈ZZn |μm,α|2 ≤ c < ∞ and
μm,α → 0 as m → ∞, uniformly on bounded sets of indices α.

Moreover, by (2◦) the set
⎧
⎨
⎩

�

α∈ZZn

�

j,k

ajkμj
m,α αk ei α·x ; m ∈ IN

⎫
⎬
⎭

is relatively compact in H−1, which implies that

�

α∈ZZn

|α|≥α0

���
�

j,k ajkμj
m,α αk

���
2

1 + |α|2 → 0,
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as α0 → ∞, uniformly in m ∈ IN. But this means that μm,α can be decomposed
μm,α = λm,α + νm,α with Re λm,α, Im λm,α ∈ Λ and

�
|α|≥α0

��νm,α

��2 → 0 as
αo → ∞, uniformly in m ∈ IN.

Indeed, for any α ∈ ZZn, m ∈ IN decompose μm,α = λm,α + νm,α, where
Re λm,α, Im λm,α ∈ Λ and |νm,α|2 is minimal among all decompositions of this
kind. We claim that for any ε > 0 there exist constants C = C(ε), α0 = α0(ε)
such that for |α| ≥ α0 we can bound

(3.1) |νm,α|2 ≤ C

����
�

j,k

ajkμj
m,α

αk�
1 + |α|2

����
2

+ ε
��μm,α

��2

uniformly in m ∈ IN.
Otherwise there exists ε > 0 and a sequence α = α(l), l ∈ IN, with

|α(l)| ≥ l, and m = m(l) such that for all l there holds

(3.2) |μm,α|2 ≥ |νm,α|2 ≥ l

����
�

j,k

ajkμj
m,α

αk�
1 + |α|2

����
2

+ ε |μm,α|2 .

(The first inequality follows from the choice of νm,α above.) Let ξ(l), η(l) be
the unit vectors

ξ(l) =
α(l)�

1 + |α(l)|2
∈ Sn−1, η(l) =

μm(l),α(l)��μm(l),α(l)

�� ∈ SN−1 ,

and denote by A(l): IRN → IRL the linear map

η �→
�

j,k

ajkηjξk(l) .

We may assume that ξ(l) → ξ and A(l) → A as l → ∞. Likewise, we may
suppose that η(l) → η. Passing to the limit in (3.2) it follows that η ∈ ker A;
that is, η ∈ Λ. Projecting μm,α onto ker A for all α = α(l), m = m(l) we
hence obtain a decomposition μm,α = λ̃m,α + ν̃m,α with Re λ̃m,α, Im λ̃m,α ∈
ker A ⊂ Λ and

��ν̃m,α

��2 ≤ C
��Aμm,α

��2 ≤ C
��A(l)μm,α

��2 + o(1)
��μm,α

��2

= C

������
�

j,k

ajkμj
m,α

αk�
1 + |α|2

������

2

+ o(1)
��μm,α

��2 ,

where o(1) → 0 (l → ∞). But by defintion
��νm,α

��2 ≤
��ν̃m,α

��2, and we obtain the
desired contradiction to assumption (3.2). Hence for any ε > 0, any α0 ≥ α0(ε):
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lim inf
m→∞

�

α∈ZZn

�
Q

�
Re μm,α

�
+ Q

�
Im μm,α

��

= lim inf
m→∞

�

|α|≥α0

�
Q

�
Re μm,α

�
+ Q

�
Im μm,α

��

≥ lim inf
m→∞

�

|α|≥α0

�
Q

�
Re λm,α

�
+ Q

�
Im λm,α

�
− cε

��μm,α

��2
�

+ o(1)

≥ o(1) − cε ,

where o(1) → 0 as α0 → ∞. Thus, the assertion of the lemma follows as we
first let α0 → ∞ and then ε → 0.

As an application we mention the following well-known result.

3.2 The Div-Curl Lemma. Suppose um � u, vm � v weakly in L2(Ω; IR3) on
a domain Ω ⊂ IR3 while the sequences (div um) and (curl vm) are relatively
compact in H−1(Ω). Then for any ϕ ∈ C∞

0 (Ω) we have
�

Ω

um · vmϕ dx →
�

Ω

u · vϕ dx

as m → ∞.

Proof. Let wm = (um, vm) ∈ L2(Ω; IR6), and determine coefficients ajk ∈ IR4

such that
�

jk ajk
∂wj

m

∂xk
= (div um, curl vm). Let Q be the quadratic form

Q(u, v) = u·v, acting on vectors w = (u, v) ∈ IR6. Note ajk =
�
δjk, (εijk)1≤i≤3

�

where δjk = 1 if j = k, and δjk = 0 else, ε123 = 1 and εijk = −εjik = εjki.
Hence

Λ =
�
λ = (μ, ν) ∈ IR6 ; ∃ξ ∈ IR3 \ {0} : (ξ · μ , ξ ∧ ν) = 0

�

=
�
λ = (μ, ν) ∈ IR6 ; μ · ν = 0

�
,

and Q ≡ 0 on Λ. Thus the assertion follows from Lemma 3.1.

The div-curl Lemma 3.2 shows how additional bounds on some derivatives
allow one to prove continuity of nonlinear expressions (bi-linear in the above
example) under weak convergence.

Phrased somewhat differently, the reason for the convergence result stated
in the div-curl lemma to hold is an implicit divergence structure. This stucture
can be brought out more clearly in the language of differential forms. For
simplicity, we assume that all functions involved are periodic of period 1 in each
variable. In this case, we may regard Ω = [0, 1]n as a fundamental domain for
the flat n-dimensional torus T n = IRn/ZZn. Let d, d∗ be the exterior differential
and co-differential, respectively. We consider 1-forms um � u in L2, vm � v
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in L2 weakly as m → ∞ with (d∗um), (dvm) relatively compact in H−1. We
may assume u = 0, v = 0. By Hodge decomposition we have

um = dam + d∗bm + cm,

vm = dfm + d∗gm + hm,

where cm, hm are harmonic 1-forms, dbm = dgm = 0, and with am � 0, bm �
0, fm � 0, gm � 0 weakly in H1,2(Tn), cm � 0, hm � 0 weakly in L2(Tn).
Since the space of harmonic 1-forms on T n is compact, in fact, cm → 0 and
hm → 0 smoothly as m → ∞. Moreover, since the sequences

Δam = d∗um, Δgm = dvm

are relatively compact in H−1, it follows that (dam), (d∗gm) are precompact in
L2, and we conclude that

um = d∗bm + o(1), vm = dfm + o(1),

where o(1) → 0 in L2 as m → ∞. Moreover, using the Hodge ∗-operator and
denoting by “.” contraction of forms, we have

um · vm dx + o(1) = ∗(d∗bm · dfm) = (d ∗ bm) ∧ dfm = d
�
(∗bm) ∧ dfm

�
,

thus exhibiting the asserted divergence structure. Since by Rellich’s compact-
ness result bm → 0 strongly in L2 as m → ∞, it is now trivial to pass to the
limit in the expression

�

T n

um · vmϕ dx =
�

T n

d
�
(∗bm ∧ dfm

�
ϕ + o(1)

= (−1)n

�

T n

(∗bm) ∧ dfm ∧ dϕ + o(1) = o(1),

where o(1) → 0 as m → ∞.
A divergence structure is also the crucial ingredient in the applications

that follow.

Applications in Elasticity

The most important applications of the compensated compactness method
so far are in elasticity and hyperbolic systems, see Ball [1], [2], DiPerna [1].
DiPerna-Majda have applied compensated compactness methods to obtain the
existence of weak solutions to the Euler equations for incompressible fluids, see
for instance DiPerna-Majda [1]. Our interest lies with the extensions of the di-
rect methods that compensated compactness implies. Thus we will concentrate
on Ball’s lower semi-continuity results for polyconvex materials in elasticity.
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3.3 Theorem. Suppose W is a function on (3 × 3)-matrices Φ, given by

W (Φ) = g(Φ, adj Φ, det Φ)

where g is a convex non-negative function in the sub-determinants of Φ. Let Ω
be a domain in IR3 and let um, u ∈ H1,3

loc (Ω; IR3). Suppose that um � u weakly
in H1,3(Ω�; IR3) while det(∇um) � h weakly in L1(Ω�) for all Ω� ⊂⊂ Ω, where
h ∈ L1

loc(Ω). Then
�

Ω

W (∇u) dx ≤ lim inf
m→∞

�

Ω

W (∇um) dx .

Proof. The proof of Theorem 1.6 can be carried over once we show that under
the hypotheses made

adj(∇um) � adj(∇u)
det(∇um) � det(∇u)

weakly in L1(Ω�) for all Ω� ⊂⊂ Ω. The first assertion is a consequence of the
divergence structure of the adjoint matrix Am = adj (∇um). Indeed, if indices
i, j are counted modulo 3 we have

Aij
m =

∂ui+1
m

∂xj+1

∂ui+2
m

∂xj+2
− ∂ui+2

m

∂xj+1

∂ui+1
m

∂xj+2

=
∂

∂xj+1

�
ui+1

m

∂ui+2
m

∂xj+2

�
− ∂

∂xj+2

�
ui+1

m

∂ui+2
m

∂xj+1

�
.

Fix Ω� ⊂⊂ Ω. Note that
�
Aij

m

�
is bounded in L3/2(Ω�). Hence we may as-

sume that Aij
m � Aij weakly in L3/2(Ω�). Moreover, by Rellich’s theorem

um → u in L3(Ω�), whence um∇um � u∇u weakly in L3/2(Ω�). By continu-
ity of the distributional derivative with respect to weak convergence therefore
Aij

m �
�
adj(∇u)

�ij in the sense of distributions. Finally, by uniqueness of the
distributional limit, Aij =

�
adj(∇u)

�ij , and adj(∇um) � adj(∇u) weakly in
L3/2(Ω�), in particular weakly in L1(Ω�), as claimed.

Similarly, expanding the determinant along the first row, we have

det(∇um) =
∂u1

m

∂x1

#
∂u2

m

∂x2

∂u3
m

∂x3
− ∂u2

m

∂x3

∂u3
m

∂x2

$

− ∂u1
m

∂x2

#
∂u2

m

∂x1

∂u3
m

∂x3
− ∂u2

m

∂x3

∂u3
m

∂x1

$

+
∂u1

m

∂x3

#
∂u2

m

∂x1

∂u3
m

∂x2
− ∂u2

m

∂x2

∂u3
m

∂x1

$
.
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Again, a divergence structure emerges, if we rewrite this as

det(∇um) =
∂

∂x1

�
u1

m

#
∂u2

m

∂x2

∂u3
m

∂x3
− ∂u2

m

∂x3

∂u3
m

∂x2

$�

− ∂

∂x2

�
u1

m

#
∂u2

m

∂x1

∂u3
m

∂x3
− ∂u2

m

∂x3

∂u3
m

∂x1

$�

+
∂

∂x3

�
u1

m

#
∂u2

m

∂x1

∂u3
m

∂x2
− ∂u2

m

∂x2

∂u3
m

∂x1

$�
.

Thus convergence det(∇um) → det(∇u) in the sense of distributions follows
by weak convergence in L3/2(Ω�) of the terms in brackets [- -], proved above,
strong convergence um → u in L3(Ω�), and weak continuity of the distributional
derivative. Finally, by uniqueness of the weak limit in the distribution sense, it
follows that det(∇u) = h and det(∇um) � det(∇u) weakly in L1

loc, as claimed.

Observe that in the language of differential forms the divergence structure of a
Jacobian or its minors is even more apparent. In fact, for any smooth function
u = (u1, u2, u3): Ω ⊂ IR3 → IR3 we have

det(∇u) dx = ∗ det(∇u) = du1 ∧ du2 ∧ du3,

where d denotes exterior derivative and where ∗ denotes the Hodge star operator
(which in this case converts a function on Ω into a 3-form). Now dd = 0, and
therefore

du1 ∧ du2 ∧ du3 = d(u1du2 ∧ du3),

which immediately implies the asserted divergence structure. Moreover, this
result (and therefore Theorem 3.3) generalizes to any dimension n, for um � u
weakly in H1,n

loc (Ω; IRn) with det(∇um) � h weakly in L1
loc(Ω) as m → ∞.

The assumption det(∇um) � h ∈ L1
loc(Ω) at first sight may appear

rather awkward. However, examples by Ball-Murat [1] show that weak H1,3-
convergence in general does not imply weak L1-convergence of the Jacobian.
This difficulty does not arise if we assume weak convergence in H1,3+ε for some
ε > 0.

Hence, adding appropriate growth conditions on W to ensure coerciveness
of the functional



Ω

W (∇u) dx on the space H1,3+ε(Ω; IR3) for some ε > 0,
from Theorem 3.3 the reader can derive existence theorems for deformations
of elastic materials involving polyconvex stored energy functions. As a fur-
ther reference for such results, see Ciarlet [1] or Dacorogna [1], [2]. Recently,
more general results on weak continuity of determinants and corresponding
existence theorems in nonlinear elasticity have been obtained by Giaquinta-
Modica-Souček [1] and Müller [1], [2], [3].

The regularity theory for problems in nonlinear elasticity is still evolving.
Some material can be found in the references cited above. In particular, the
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question of cavitation of elastic materials has been studied. See for instance
Giaquinta-Modica-Souček [1].

Convergence Results for Nonlinear Elliptic Equations

We close this section with another simple and useful example of how com-
pensated compactness methods may be applied in a nonlinear situation. The
following result is essentially “Murat’s lemma” from Tartar [2, p. 278]:

3.4 Theorem. Suppose um ∈ H1,2
0 (Ω) is a sequence of solutions to an elliptic

equation
−Δum = fm

um = 0
in Ω

on ∂Ω

in a smooth and bounded domain Ω in IRn. Suppose um � u weakly in H1,2
0 (Ω)

while (fm) is bounded in L1(Ω). Then for a subsequence m → ∞ we have
∇um → ∇u in Lq(Ω) for any q < 2, and ∇um → ∇u pointwise almost every-
where.

Proof. Choose p > n and let ϕm ∈ H1,p
0 (Ω) satisfy

�ϕm�H1,p
0

≤ 1
�

Ω

(∇um −∇u)∇ϕm dx = sup
ϕ∈H1,p

0 (Ω), 
ϕ

H

1,p
0

≤1

�

Ω

(∇um −∇u)∇ϕ dx .

By the Calderón-Zygmund inequality in Lp, see Simader[1], the latter

sup
ϕ∈H1,p

0 (Ω), 
ϕ

H

1,p
0

≤1

�

Ω

(∇um −∇u)∇ϕ dx ≥ c−1�um − u�H1,q
0

where 1
p + 1

q = 1.
On the other hand, by Sobolev’s embedding H1,p

0 (Ω) 
→ C1−n
p (Ω). Hence

by the Arzéla-Ascoli theorem we may assume that ϕm � ϕ weakly in H1,p
0 (Ω)

and uniformly in Ω. (See Theorem A.5.) Thus
�

Ω

(∇um −∇u)∇ϕm dx =
�

Ω

(∇um −∇u)(∇ϕm −∇ϕ) dx + o(1)

= lim
l→∞

�

Ω

(∇um −∇ul)(∇ϕm −∇ϕ) dx + o(1)

= lim
l→∞

�

Ω

(fm − fl)(ϕm − ϕ) dx + o(1)

≤ 2 sup
l∈IN

�fl�L1�ϕm − ϕ�L∞ + o(1) = o(1),

where o(1) → 0 as m → ∞.
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It follows that ∇um → ∇u in Lq0(Ω) for some q0 ≥ 1. But then, by
Hölder’s inequality, for any q < 2 we have

�∇um −∇u�Lq ≤ �∇um −∇u�γ
L1�∇um −∇u�1−γ

L2 → 0 ,

where 1
q

= γ + 1−γ
2

.

Results like Theorem 3.4 are needed if one wants to solve nonlinear partial
differential equations

(3.3) −Δu = f(x, u,∇u)

with quadratic growth
|f(x, u, p)| ≤ c(1 + |p|2)

by approximation methods. Assuming some uniform control on approximate
solutions um of (3.3) in H1,2, Theorem 3.4 assures that

f(x, um,∇um) → f(x, u,∇u) almost everywhere,

where u is the weak limit of a suitable sequence (um). Given some further
structure conditions on f , then there are various ways of passing to the limit
m → ∞ in Equation (3.3); see, for instance, Frehse [2] or Evans [2].

3.5 Example. As a model problem consider the equation

A(u) = −Δu + u|∇u|2 = h in Ω(3.4)
u = 0 on ∂Ω(3.5)

on a smooth and bounded domain Ω ⊂ IRn, with h ∈ L∞(Ω). This is a special
case of a problem studied by Bensoussan-Boccardo-Murat [1; Theorem 1.1,
p. 350]. Note that the nonlinear term g(u, p) = u|p|2 satisfies the condition

(3.6) g(u, p)u ≥ 0 .

Approximate g by functions

gε(u, p) =
g(u, p)

1 + ε|g(u, p)| , ε > 0 ,

satisfying |gε| ≤ 1
ε

and gε(u, p) · u ≥ 0 for all u, p.
Now, since gε is uniformly bounded, the map H1,2

0 (Ω) � u �→ gε(u,∇u) ∈
H−1(Ω) is compact and bounded for any ε > 0. Denote Aε(u) = −Δu +
gε(u,∇u) the perturbed operator A. By Schauder’s fixed point theorem, see, for
instance, Deimling [1; Theorem 8.8, p. 60], applied to the map u �→ (−Δ)−1

�
h−

gε(u,∇u)
�

on a sufficiently large ball in H1,2
0 (Ω), there is a solution uε ∈

H1,2
0 (Ω) of the equation Aεuε = h for any ε > 0. In addition, since gε(u, p)·u ≥

0 we have
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�uε�2
H1,2

0
≤ �uε, Aεuε� = �uε, h� ≤ �uε�H1,2

0
�h�H−1 ,

and (uε) is uniformly bounded in H1,2
0 (Ω) for ε > 0. Moreover, since the

nonlinear term gε satisfies

gε(u, p) =
u|p|2

1 + ε|u| |p|2 ≤
�
1 + |u|2

�
|p|2

1 + ε|u| |p|2
≤ |p|2 + gε(u, p)u ,

we also deduce the uniform L1-bound

�gε(uε,∇uε)�L1 ≤ �uε�2
H1,2

0
+

�

Ω

uεgε(uε,∇uε) dx

= �uε, Aεuε� ≤ c .

We may assume that a sequence (uεm
) as εm → 0 weakly converges in H1,2

0 (Ω)
to a limit u ∈ H1,2

0 (Ω). By Theorem 3.4, moreover, we may assume that
um = uεm

converges strongly in H1,q
0 (Ω) and that um and ∇um converge

pointwise almost everywhere. To show that u weakly solves (3.4), (3.5) we
now use the “Fatou lemma technique” of Frehse [2]. As a preliminary step we
establish a uniform L∞-bound for the sequence (um).
Multiply the approximate equations by um to obtain the differential inequality

−Δ
� |um|2

2
�
≤ −Δ

� |um|2
2

�
+ |∇um|2 + umgεm

(um,∇um)

= hum ≤ C(δ) + δ
|um|2

2
,

for any δ > 0. Choosing δ < λ1, the first eigenvalue of −Δ on H1,2
0 (Ω), the

weak maximum principle implies a uniform bound for um in L∞. (See Theorem
B.7 and its application in Appendix B.)

Next, testing the approximate equations Aεm
(um)=h with ϕ = ξ exp(γum),

where ξ ∈ C∞
0 (Ω) is non-negative, upon integrating by parts we obtain

�

Ω

�
γ|∇um|2 + gεm

(um,∇um
)
	
ξ exp(γum) dx

+
�

Ω

�
∇um∇ξ − hξ

�
exp(γum) dx = 0 .

Note that on account of the growth condition

|gεm
(u, p)| ≤ |u| |p|2

and the uniform bound �um�L∞ ≤ C0 derived above, for |γ| ≥ C0 the term

γ|∇um|2 + gεm
(um,∇um)
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has the same sign as γ. Moreover, this term converges pointwise almost ev-
erywhere to the same expression involving u instead of um. Hence, by Fatou’s
lemma, upon passing to the limit m → ∞ we obtain

�ξ exp(γu), A(u)− h� ≤ 0

if γ ≥ C0, respectively ≥ 0, if γ ≤ −C0. This holds for all non-negative
ξ ∈ C∞

0 (Ω) and hence also for ξ ≥ 0 belonging to H1,2
0 ∩ L∞(Ω). Setting

ξ = ξ0 exp(−γu) we obtain

�ξ0, A(u) − h� ≤ 0 and ≥ 0,

for any ξ0 ≥ 0, ξ0 ∈ C∞
0 (Ω). Hence u is a weak solution of (3.4), (3.5), as

desired.
More sophisticated variants and applications of Theorem 3.4 are given by

Bensoussan-Boccardo-Murat [1], Boccardo-Murat-Puel [1], and Frehse [1], [2].

Hardy Space Methods

The Hardy Hp-spaces play an important role in harmonic analysis. In the
theory of partial differential equations, the space H1 is of particular interest.
For instance, the Calderón-Zygmund theorem, asserting that for 1 < p < ∞
any function u ∈ Lp with Δu ∈ Lp belongs to H2,p

loc , ceases to be valid in
the limit case p = 1. However, the theorem remains true if we substitute
L1 by the slightly smaller space H1. While the harmonic analysts’ definition
of H1 is rather unwieldy and hardly lends itself to applications in the theory
of partial differential equations, recently an observation of Müller [2], [3] has
led to the discovery of simple criteria for composite functions to belong to
H1. In particular, it was shown by Coifman-Lions-Meyer-Semmes [1] that the
Jacobian of a function u ∈ H1,n(IRn; IRn) belongs to this space, and similarly
for l × l-sub-determinants of ∇u for u ∈ H1,l(IRn; IRN ), for any l, n, N ∈ IN.

As an application, we derive the assertion of Theorem 3.4 in the case that
for a sequence um � u weakly in H1,2(IRn; IRN ) the sequence −Δum = fm is
bounded in H1. In fact, by the extension of the Calderón-Zygmund theorem to
H1, the sequence (∇2um) is bounded in H1 ⊂ L1, and therefore, by Rellich’s
compactness result, ∇um → ∇u locally in L1 as m → ∞. Boundedness of (fm)
in H1 by the result of Coifman-Lions-Meyer-Semmes [1] is guaranteed if, for
instance, for each m ∈ IN the function fm is a linear combination of 2× 2 sub-
determinants of ∇F (um), where F : IRN→ IRL is a smooth, bounded function
with bounded derivative. For more information about Hardy spaces and their
applications, see, for instance, Torchinsky [1] or Semmes [1].


