FINITE ELEMENT METHODS FOR REDUCED LANDAU-DE GENNES MINIMIZATION PROBLEMS OF NEMATIC LIQUID CRYSTALS AND FERRONEMATIC SYSTEMS

RUMA R. MAITY*, APALA MAJUMDAR, NEELA NATARAJ

ABSTRACT

In this talk, we first discuss the finite element approximation of nonlinear elliptic partial differential equations that model the equilibrium configurations of a two-dimensional nematic liquid crystal device. In the second part, we focus on the analysis of a free energy functional, that models a dilute suspension of magnetic nanoparticles in a twodimensional nematic well, referred as ferronematics. We discuss the asymptotic analysis of global energy minimizers in the limit of vanishing elastic constant, where the re-scaled elastic constant is inversely proportional to the domain area. We establish the existence and local uniqueness of the discrete solutions of the associated Euler-Lagrange PDE, error estimates in the energy and L^2 norms with parameter dependency. The theoretical results are complemented by the numerical experiments on the discrete solution profiles, and the numerical convergence rates that corroborates the theoretical estimates.

 \star Department of Mathematics and Systems Analysis, Aalto University, ruma.maity@aalto.fi