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1 Introduction

Consider a differential boundary problem (A,B) of order m > 0 on the L2–
sections of a vector bundle E over a manifold with boundary X, and let AB

the realization of A on L2(X, E) with domain D(AB) = {u ∈ Hm(X, E) :
Bu = 0}. We assume that (A − λ,B) is parameter–elliptic for λ in two sec-
tors around R+eiϑ resp. R+eiϕ and that the spectrum is disjoint from these
rays. Then ‖(λ − AB)−1‖ . |λ|−1 along these rays, and we may consider
the zeta functions ζϑ(z, A, B) = Tr (AB)−z

ϑ , ζϕ(z, A, B) = Tr (AB)−z
ϕ as-

sociated with the spectral cuts ϑ, ϕ. They extend to meromorphic func-
tions on C and are regular in z = 0. If AB is selfadjoint, the eta function
η(z, A, B) = Tr AB|AB|−z−1 similarly admits a meromorphic continuation.
Both Resz=0η(z, A,B) and ζϑ(0, A, B) − ζϕ(0, A,B) for ϑ 6= ϕ are given as
an explicit integral involving the symbols of A and B, but even on closed man-
ifolds their vanishing is a subtle topological theorem of Atiyah/Patodi/Singer
[1], Gilkey [6] and Wodzicki [11]. In particular, the eta invariant η(0) of an
operator on a closed manifold, which appears as a spectral boundary term in
topological index formulas, is finite. Here we establish the corresponding result
for manifolds with boundary:

Theorem 1.1. Under the above assumptions, ζϑ(0, A,B) = ζϕ(0, A,B).

Theorem 1.2. If AB is selfadjoint, the eta function η(z, A,B) is regular in
z = 0.

For the proof, we construct a “minimal” Fréchet algebra A of general 0–order
boundary problems not necessarily satisfying the transmission condition. It is
inspired by and a subalgebra of Rempel–Schulze’s LF algebra [8], but admits
a symbol calculus very similar to Boutet de Monvel’s algebra B [2] including a
normal trace trn and a noncommutative residue res. The key observation is that
A contains the sectorial projections Πϑϕ(A,B) associated to AB. In particular,
Πϑϕ(A,B) belongs to Rempel–Schulze’s algebra, verifying a conjecture of Ivrii
and, independently, by Gaarde and Grubb.
As Resz=0 η(z, A, B) = i

π

(
ζπ

2
(0, A,B)− ζ−π

2
(0, A,B)

)
and

ζϑ(0, A, B)− ζϕ(0, A,B) =
2πi

m
res(Πϑϕ(A,B)),

our results follow from an analogue of Wodzicki’s [11] vanishing theorem:

Theorem 1.3. res vanishes on projections in A.
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2 An algebra of boundary problems

Let X be a manifold with boundary and n = dimX > 1. For convenience, we
will assume that all changes of coordinates preserve the normal coordinate on
the collar ∂X×[0, 1), and we will write these local coordinates as (y, t). We also
employ the usual notation for operator–valued pseudodifferential operators.

Definition 2.1. Denote by `1∞ the space of all bounded operators T on L2(R+)
such that for all k, l ∈ N0, the operators [t]k(t∂t)lT and T [t]k(t∂t)k are densely
defined and extend to trace class operators on L2(R+). Here, t 7→ [t] denotes a
strictly positive smooth function on R such that [t] = |t| for |t| ≥ 1.

Definition 2.2. (a) R is the space of all operators R on L2(X) that can
be written with a C∞ integral kernel on X◦ × X◦ such that for each
k ∈ N0 and each cut-off function in a neighborhood of the boundary, σ,
the operators σ(t∂t)kR, R(t∂t)kσ, are trace class on L2(X).

(b) G is the span of all operators G of the form G = σ1Hσ2 + R where σ1

and σ2 are cut-off functions in a neighborhood of the boundary, H is a
pseudodifferential operator in Ψ0

cl(∂X; `1∞), and R ∈ R.

Lemma 2.3. For every G ∈ G, the L2–trace trn G in the normal direction
defines an element of Ψ0

cl(∂X).

Definition 2.4. (a) The Mellin transform Mu of a function u ∈ C∞
c (R+) is

given by

(Mu)(z) =
∫ ∞

0
tz−1u(t) dt.

M extends to an isomorphism M : L2(R+) → L2({z ∈ C : <z = 1
2}).

(b) T is the space of all functions in L2(R+) whose Mellin transform belongs
to the Schwartz space S({<z = 1

2}).
Definition 2.5. (a) Given a cut-off function ω, we define the Mellin operator

Mω,µ with Mellin symbol µ ∈ C∞
b (Rq, T ) and cut-off function ω on S(Rq×

R+) by

Mω,µu(y, t) =
∫ ∫ ∞

0
eiyηω(t[η])µ(y, t/s)(Fy→ηu)(η, s)

ds

s
dη.

Here Fy→η denotes the partial Fourier transform with respect to the y-
variables.

(b) We denote by M the set of all operators on ∂X × R+ of the form M =
σ1M̃σ2, where σ1 and σ2 are cut-off functions and, in local coordinates,
M̃ is a Mellin operator with a Mellin symbol µ and a cut-off function σ.

The vector spaces M and G are endowed with the natural Fréchet topologies.
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Definition 2.6. We define

A = {A+ + M + G : A ∈ Ψ0
cl(2X), M ∈ M, G ∈ G}

and endow it with the topology of a non-direct sum of Fréchet spaces.

Theorem 2.7. A is a Fréchet algebra.

Remark 2.8. The construction extends to give a Fréchet algebra of operators,
also denoted by A, acting on the L2–sections of a vector bundle E over X.

The crucial differences between A and related algebras are the following: We
replace the usual LF space of functions with holomorphic Mellin transform
in some strip around {<z = 1

2} by the Fréchet space T , and use `1∞ instead
of Hilbert–Schmidt operators to have a normal trace. This adds a number of
nontrivial computations to the proof that A is an algebra. Furthermore, M

only includes very special conormally smoothing Mellin operators.

3 Properties of A and Wodzicki’s theorem

Theorem 3.1. (Properties of A)

(a) Operators in A have natural mapping properties in a scale of logarithmi-
cally weighted conormal Sobolev spaces modelled on

Hs,k
log(R+) = {u ∈ L2(R+) : t 7→ [log(t)]k(t∂t)ju(t) ∈ L2(R+) ∀j ≤ s}.

(b) As a subalgebra, A inherits interior principal and boundary symbol maps
as well as a notion of ellipticity from Rempel–Schulze’s algebra.

(c) Elliptic operators admit a parametrix. Conversely, the Fredholm property
implies ellipticity.

(d) A is spectrally invariant, the set A−1 of invertible elements is open, and
inversion is continuous on A−1. Therefore K(A) = K(A).

(e) Similar to an argument in Rempel–Schulze’s paper, projections in A may
be deformed to satisfy the transmission condition, whence K(A) = K(B).

Definition 3.2. For P = A+ +M +G ∈ A, define the noncommutative residue

resP =
∫

S∗X◦
Trσ2X(A)−n(x, ξ) d̄σ(ξ)dx+

∫

S∗∂X
Tr σ∂X(trn G)1−n(x′, ξ′) d̄σ(ξ′)dx′.

Here, Tr denotes the pointwise trace in the fibre End(Ex, Ex).

Remark 3.3. The residue is well-defined because M ∩ G ⊂ Ψ0(`1∞) consists of
operators whose normal trace is 0–homogeneous up to a smoothing remainder
and is therefore contained in the kernel of res. This residue extends the residue
from Boutet de Monvel’s algebra to A.

Theorem 3.4. For all P,Q ∈ A, res([P, Q]) = 0.
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The proof is a lengthy computation replacing the complex analytic/Wiener–
Hopf arguments in [3] by distribution theory.

Corollary 3.5. The residue res induces a map res : K(A) → C.

As K(A) = K(A) = K(B) and res is compatible with the residue on B, it is
sufficient to show res = 0 for projections in Boutet de Monvel’s algebra. By
a theorem of Melo, Nest and Schrohe [7], such a K–class decomposes into a
compactly supported class in the interior and the class of an endomorphism
in a neighborhood of the boundary. As the latter is homogeneous of order 0,
its residue vanishes. The compactly supported class, however, extends to 2X
where we may apply Wodzicki’s theorem. In particular, (a stronger variant for
A of) Theorem 1.3 follows.

4 Spectral projections

For a differential boundary problem (A, B) of order m > 0, such that (A−λ,B)
is parameter–elliptic in two sectors around R+eiϑ resp. R+eiϕ and no eigenvalues
lie on these rays, we define the sectorial projection

Πϑϕ(A,B) =
i

2π

∫

Γϑϕ

λ−1AB(λ−AB)−1 dλ,

where Γϑϕ = {reiϕ : r ∈ (r0,∞)} ∪ {r0e
iω : ϕ ≥ ω ≥ ϑ} ∪ {reiϑ : r ∈ (r0,∞)}.

Here, r0 should be smaller than the smallest absolute value of the nonzero
eigenvalues in the sector between ϕ and ϑ.
We note the following consequence of Seeley’s work [9], which is basically con-
tained in Gaarde and Grubb’s analysis [5]:

Proposition 4.1. Πϑϕ(A,B) = Πϑϕ(A)+ + G0
ϑϕ + G̃ϑϕ, where Πϑϕ(A) ∈

Ψ0
cl(2X) and G̃ϑϕ ∈ G admits an expansion into terms whose kernel is quasiho-

mogeneous of order ≤ −1. G0
ϑϕ has a quasihomogeneous kernel of order 0 and is

given by G0
ϑϕ = i

2π

∫
Γϑϕ

G0
λ dλ as an integral over the leading quasihomogeneous

term G0
λ of the singular Green part of (λ−AB)−1.

Our analysis of the leading term G0
ϑϕ implies:

Theorem 4.2. G0
ϑϕ ∈ M + G and Πϑϕ(A,B) ∈ A.

To convey the idea of the proof, we provide the key computation which extracts
the Mellin part from G0

ϑϕ for scalar problems up to an error in Ψ0
cl(∂X, `2(L2(R+))).

This only shows that Πϑϕ(A,B) belongs to Rempel–Schulze’s algebra, but by
investing a bit more and quite similar work to verify its mapping properties,
the Hilbert–Schmidt term `2(L2(R+)) may be improved to `1∞.
For simplicity, we only consider the integral

∫
Γϑϕ

G0
λ dλ along one ray {reiϕ :

r ∈ (r0,∞)} ⊂ Γϑϕ and choose ϕ = 0. The explicit representation for G0
λ, which

we are going to use, is due to Seeley [9]. First note that for fixed η and large
λ, the scalar equation σ(A)(y, 0, η, τ) − λ = 0 for τ has simple roots iκ+

k (η, λ)
resp. −iκ−l (η, λ) in the upper resp. lower half–planes.
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In the following, we are going to keep η fixed. Performing some straight–forward
contour integrals in Seeley’s formulas, for large λ the integral kernel of G0

λ(η, t, s)
in the normal variables s, t ∈ R+ turns out to be a sum of terms of the form

e−κ+
k (η,λ)t−κ−l (η,λ)s

σkl(η, λ)
σ̃kl(η, λ),

where σkl, σ̃kl are homogeneous functions in (η, λ1/m) of degrees m − 1 and 0
(obviously, we might as well set σ̃kl = 1 in our situation). The crucial idea is to
approximate this kernel by its asymptotic behavior for large λ. Homogeneity
gives

κ±k (η, λ) = λ1/mκ±k (0, +1) +O(λ1/m−ε),

σkl(η, λ) = λ(m−1)/mσkl(0,+1) +O(λ(m−1)/m−ε),
σ̃kl(η, λ) = σ̃kl(0, +1) +O(λ−ε)

for some ε > 0. Setting K±
k = κ±k (0,+1), Σkl = σkl(0, 1), and Σ̃kl = σ̃kl(0, 1),

we define

MR
kl(t, s) =

∫ ∞

R

e−λ1/m(K+
k t+K−

l s)

Σkl λ(m−1)/m
Σ̃kl dλ

for sufficiently large R > 0. That MR
kl actually exists, is a consequence of the

ellipticity assumption.
We estimate the Hilbert–Schmidt norm of the error

∥∥∥∥∥∥

∫ ∞

r0

G0
λ(η, t, s) dλ−

∑

k,l

MR
kl(t, s)

∥∥∥∥∥∥
L2(R+×R+)

≤
∥∥∥∥
∫ R

r0

G0
λ(η, t, s) dλ

∥∥∥∥
L2(R+×R+)

+

∑

k,l

∥∥∥∥∥
∫ ∞

R

{
e−κ+

k (η,λ)t−κ−l (η,λ)s

σ(η, λ)
σ̃(η, λ)− e−λ1/m(K+

k t+K−
l s)

Σkl λ(m−1)/m
Σ̃kl

}
dλ

∥∥∥∥∥
L2(R+×R+)

.

Using the triangle inequality, each term in the sum is dominated by

∫ ∞

R




∫ ∞

0

∫ ∞

0

(
e−κ+

k (η,λ)t−κ−l (η,λ)s

σ(η, λ)
σ̃(η, λ)− e−λ1/m(K+

k t+K−
l s)

Σkl λ(m−1)/m
Σ̃kl

)2

dt ds




1/2

dλ,

and a second straight forward computation shows the finiteness of this integral.
Hence,

∫∞
r0

G0
λ(η, t, s) dλ − ∑

k,l M
R
kl(t, s) is the kernel of a Hilbert–Schmidt

operator on L2(R+).
On the other hand, MR

kl may be evaluated explicitly:

MR
kl(t, s) =

mΣ̃kl

Σkl

e−R1/m(K+
k t+K−

l s)

K+
k t + K−

l s
.

Up to another Hilbert–Schmidt operator on L2(R+), MR
kl is thus a Mellin op-

erator with symbol µkl(τ) = meΣkl
Σkl

1
K+

k τ+K−
l

, which is independent of R.
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As mentioned above, investigating the mapping properties of
∫∞
r0

G0
λ(η, t, s) dλ−∑

k,l M
R
kl gives the stronger assertion of Theorem 4.2. The method also extends

to the nonscalar case, where the Mellin symbols turn out to be more complicated
rational functions.
The relation between ζϑ(0, A, B) − ζϕ(0, A, B) and res(Πϑϕ(A, B)) mentioned
in the introduction is now deduced from the explicit formulas in Seeley’s work
[10]. Theorems 1.1 and 1.2 then follow from Theorems 4.2 and 1.3.
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