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1 The Lieb-Thirring inequality
We consider the Schrodinger operator
H=-A+V

defined on D(H) = C2(R?), which is dense in L*(R?). Here V € L2 (R%),
such that the operator maps into L?(R%).

Theorem 1 (Lieb-Thirring inequality). If H is as above and the negative
part V. = min{V, 0} of V satisfies V. € LetY(RY) then H is bounded below
and its min-max values i, satisfy the Lieb-Thirring inequality
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From the Lieb-Thirring inequality we see that the bottom of the essential
spectrum of H must satisfy ¥(H) > 0, because otherwise all u, < 3(H) <0
and hence we would have Y 7 [1,]- = —oo. It follows that all negative
min-max values are eigenvalues and hence the Lieb-Thirring inequality is an
estimate on the sum of negative eigenvalues.

Proof of the Lieb-Thirring Inequality.
Step 1: It is enough to show that
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for all finite orthonormal families {¢;}}7, in CF(R?).

Indeed, if (1) holds it is clear that H is bounded below (the case N = 1).
Moreover, it is clear from (1) that ¥(H) > 0. Otherwise, we could find a
subspace M C C2(R?) of arbitrarily large dimension N such that (¢, H¢) <
¥ (H)/2 < 0 for all normalized ¢ € M. Choosing any orthonormal basis in M
the sum on the left side of (1) would be less than —NY(H)/2 contradicting
(1). Since X(H) > 0 all negative min-max values are eigenvalues and we can
therefore choose an orthonormal family in C2(R?) approximating the corre-
sponding eigenvectors such that the left side of (1) approximates arbirarily
well the sum of the negative eigenvalues.
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Step 2: We will use the following convention for the Fourier transform of
fe Lt (Rd) 23.3.2011

Convention
~
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Then the Fourier transform extends to a unitary map on L?*(R9).
For all e > 0 and ¢ € L*(R?) we write

6= 6"+

where
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Then since the Fourier transform is unitary we obtain for ¢ € CZ(R9)
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Step 3: For any family {¢;}}_, in L*(R?) we have using the triangle inequal-
ity in CV
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for all e > 0. Here we have again used ¢, = max{t,0}.
Step 4: For any orthonormal family {¢;}_, we have using Bessel’s inequal-
ity that for all z € R?
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Step 5: Combining (2-4) we obtain for any orthonormal family {¢;}
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Step 6: Using Step 5 and Holder’s inequality we arrive at the final result as

follows
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where we have used the fact that the function Ry > ¢t — At — Btaiz for

A, B > 0 has the minimal value _dl—&-Q (#‘g)d/zfl d2p4? O]

The estimate in the Lieb-Thirring inequality should be compared to the
classical phase space integral

(27r)d//[p2+V(x)]dpdx: - 2d”+2’””d/\v

The celebrated Lieb-Thirring conjecture states that the inequality holds with
the classical constant above, i.e.,
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As we saw the Lieb-Thirring inequality implies that 3(H) > 0. If V tends
to zero at infinity we have ¥(H) < 0.

Theorem 2. If V € L2 _(RY) is such that {z | V(z) > €} is a bounded set

loc

(except for a set of measure zero) for all € > 0 then X(H) < 0.

Proof. Given € > 0 we will show that there exists a subspace M of C3(R?)
of arbitrarily large dimension such that (¢, Hp) < €||¢||? for all p € M. In
order to construct M choose g € C3(R?) with [|g|> = 1. Choose R so large
that

R2/wg|2 < /2.

Given an integer N we may define ¢;(z) = R-¥?g((x —u;)/R),j=1,...,N
where the u; € R? are chosen in such a way that all ¢; have disjoint support
and are supported away from the set {x | V(z) > ¢/2}. Then the ¢; form

an orthonormal family. If ¢ = Zjvzl a;¢; then

N N
0,116 < 3l ([ AV /2 [12) <230l
=1 =1

Hence the space M = span{¢y,...,¢xn} has the desired property. O

2 The CLR bound

We will now prove a bound on the number of negative eigenvalues in dimen-
sion d > 3. The argument is due to Rupert Frank.

STEP 1:
We proceed as in the proof of the Lieb-Thirring inequality, but instead of as-
suming that {¢;}*, is an orthonormal family, we assume that {v/—Ag;}1_,
is an orthonormal family. The calculation of the kinetic energy is unchanged,
but Bessel’s inequality now yields (under the assumption d > 3),
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ipx]_ . 2\|2
< (27T)_d/ le T(]J),|;(p )| dp = (27T)_dl€d6(d_2)/2. (5)
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STEP 2:
Upon inserting (5) in the old Step 5, we get (with p(z) = Zjvzl |p;(x)]?)

2
Z / Vo, (x)|*dz > / / 2)? = (2m) Y22 DM deda
+
> Cd/p(x)H“ dx.

STEP 3:
Let now {t1,...,%y} be linearly independent eigenvectors of H with eigen-
value below 0 (or more generally satisfy 1(_o o (H)v; = 1;). We can now ap-

ply Gram-Schmidt to obtain a collection {¢1, ..., ¢n} with (vV—A¢;, vV—A¢y) =
O k-

Notice that the number N is unchanged because if v/—Ay = 0, then
Ip|(p) = 0 in L? which implies that ¢ = 0 almost everywhere.

We now get that (using Hoélder and STEP 2)

Z b5 (A = V)o;) = N — / 2)da
>N — (/ Vd/2)2/d(/pd/<d—2))(d—2)/d

> N — C(/ Vd/Q)Q/dN(d_Q)/d. (6)
A Holder inequality now gives that

N < é/vd/? (7)



