
Chapter 14

Semigroups of operators

14.1 Evolution equations

The investigations in Chapter 13 are designed particularly for the concretiza-
tion of elliptic operators, in terms of boundary conditions. But they have a
wider applicability. In fact, operators with suitable semiboundedness proper-
ties are useful also in the concretization of parabolic or hyperbolic problems,
where there is a first- or second-order time derivative in addition to the ellip-
tic operator. We present in the following a basic method for the discussion of
such time-dependent problems. More refined methods, building on microlo-
cal techniques (using not only pseudodifferential operators but also Fourier
integral operators and wave front sets), have been introduced since the time
this method was worked out, but we still think that it can have an interest
as a first introduction to time-dependent equations.

The Laplace operator ∆ = ∂2
x1

+ · · · + ∂2
xn

is used in physics, e.g., in the
equation for a potential field u in an open subset of R3

∆u(x) = 0 for x ∈ Ω . (14.1)

It enters together with a time parameter t, e.g., in the heat equation

∂tu(x, t) − ∆xu(x, t) = 0 for x ∈ Ω and t ≥ 0 , (14.2)

the Schrödinger equation

1

i
∂tu(x, t) − ∆xu(x, t) = 0 for x ∈ Ω and t ∈ R , (14.3)

and the wave equation

∂2
t u(x, t) − ∆xu(x, t) = 0 for x ∈ Ω and t ∈ R . (14.4)
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406 14 Semigroups of operators

The last three equations have the common property that they can formally
be considered as equations of the form

∂tu(t) = Bu(t) , (14.5)

where t 7→ u(t) is a function from the time axis into a space of functions of
x, where B operates. For (14.2), B acts like ∆, for (14.3) like i∆. For (14.4)
we obtain the form (14.5) by introducing the vector

v(t) =

(
u(t)
∂tu(t)

)
,

which must satisfy

∂tv(t) = Bv(t) , with B =

(
0 I
∆ 0

)
. (14.6)

The equation (14.5) is called an evolution equation. We get a very simple
version in the case where u takes its values in C, and B is just multiplication
by the constant λ ∈ C

∂tu(t) = λu(t) .

It is well-known that the solutions of this equation are

u(t) = etλc , c ∈ C. (14.7)

We shall show in the following how the abstract functional analysis allows
us to define similar solutions exp(tB)u0, when λ is replaced by an operator
B in a Banach space X , under suitable hypotheses.

In preparation for this, we need to consider Banach space valued functions
v(t). Let v : I → X , where I is an interval of R and X is Banach space. The
function v(t) is said to be continuous at t0 ∈ I, when v(t) → v(t0) in X for
t → t0 in I. In details, this means: For any ε > 0 there is a δ > 0 such that
|t − t0| < δ implies ‖v(t) − v(t0)‖ < ε. When continuity holds for all t0 ∈ I,
v is said to be continuous on I.

The function v : I → X is said to be differentiable at t, if
limh→0

1
h (v(t + h) − v(t)) exists in X (for t and t + h ∈ I); the limit is

denoted v′(t) (or ∂tv or dv
dt ). More precisely, one says here that v(t) is norm

differentiable or strongly differentiable, to distinguish this property from the
property of being weakly differentiable. The latter means that for any contin-
uous linear functional x∗ ∈ X∗, the function

fx∗(t) = x∗(v(t))

is differentiable, in such a way that there exists a v′(t) ∈ X so that
∂tfx∗(t) = x∗(v′(t)) for all x∗. A norm differentiable function is clearly weakly
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differentiable, with the same derivative v′(t), but there exist weakly differen-
tiable functions that are not norm differentiable.

The integral of a continuous vector function v : I → X is defined by the
help of middlesums precisely as for real or complex functions (here R or C
is replaced by X , the modulus is replaced by the norm). One has the usual
rules (where the proofs are straightforward generalizations of the proofs for
real functions):

∫ b

a

(αv(t) + βw(t)) dt = α

∫ b

a

v(t) dt + β

∫ b

a

w(t) dt ,

∫ b

a

v(t) dt+

∫ c

b

v(t) dt =

∫ c

a

v(t) dt ,

for arbitrary points a, b and c in I, and

‖
∫ b

a

v(t) dt‖X ≤
∫ b

a

‖v(t)‖X dt when a ≤ b . (14.8)

Moreover,
∫ t
a v(s) ds is differentiable, with

d

dt

∫ t

a

v(s) ds = v(t). (14.9)

Like for integrals of complex functions there is not a genuine mean value
theorem, but one does have that

1

h

∫ c+h

c

v(t) dt → v(c) in X for h→ 0 . (14.10)

When the vector function v : I → X is differentiable with a continuous
derivative v′(t), one has the identity

∫ b

a

v′(t) dt = v(b) − v(a) (14.11)

(since the corresponding identity holds for all functions fx∗(t) = x∗(v(t))).

We now return to the possible generalizations of (14.7) to functions valued
in a Banach space X . The easiest case is where B is a bounded operator on
X . Here we can simply put

exp(tB) =
∑

n∈N0

1

n!
(tB)n (14.12)

for all t ∈ R, since the series converges (absolutely) in the operator norm to
a bounded operator; this is seen e.g. by noting that
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‖
∑

N≤n<N ′

1

n!
(tB)n‖ ≤

∑

N≤n<N ′

1

n!
|t|n‖B‖n ,

where the right-hand side is a partial sum in the convergent series

exp(|t|‖B‖) =
∑

n∈N0

1

n!
(|t|‖B‖)n.

It follows in particular that ‖ exp(tB)‖ ≤ exp(|t|‖B‖).
The operator family satisfies, for s, t ∈ R,

exp(sB) exp(tB) =
∞∑

n=0

(sB)n

n!

∞∑

m=0

(tB)m

m!
=

∞∑

l=0

∑

n+m=l

sntm

n!m!
Bl (14.13)

=

∞∑

l=0

(s+ t)l

l!
Bl = exp((s+ t)B) ,

where we have used the corresponding identity for the exponential series;
the reorganization is allowed since the norms of the terms form a convergent
series. Moreover, we have for C ≥ s ≥ t ≥ 0 that

‖ exp(sB) − exp(tB)‖ = ‖
∞∑

n=0

sn − tn

n!
Bn‖ ≤

∞∑

n=0

sn − tn

n!
‖B‖n

= exp(s‖B‖) − exp(t‖B‖) → 0 for s− t→ 0 ,

‖ exp(−sB) − exp(−tB)‖ = ‖ exp(−tB)(exp(tB) − exp(sB)) exp(−sB)‖
≤ exp(|t|‖B‖) exp(|s|‖B‖)‖ exp(tB) − exp(sB)‖
→ 0 for (−s) − (−t) → 0 ,

which shows that the operator family is continuous in t with respect to the
operator norm.

That the operator function exp(tB) is differentiable with derivativeB exp(tB)
can for example be seen as follows. Integration of the continuous function
exp(tB) and composition with B gives

B

∫ t

0

exp(sB) ds = B

∫ t

0

∑

n∈N0

1

n!
(sB)n ds =

∑

n∈N0

1

n!
Bn+1

∫ t

0

sn ds

=
∑

n∈N0

1

(n+ 1)!
tn+1Bn+1 = exp(tB) − I,

from which it follows by differentiation of both sides that

B exp(tB) =
d

dt
exp(tB). (14.14)
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(We could interchange integration and summation in view of the majorized
convergence.)

Exponential functions can also be set up for suitable unbounded operators
B in X , more on this below. If X is in particular a Hilbert space, one can
define the exponential function via spectral theory if B is a selfadjoint or
normal operator. This is used e.g. in the following cases (that we mention
without proof to begin with):

1◦ When B is selfadjoint and upper semibounded, exp(tB) is well-defined
for t ≥ 0.

2◦ When B is skew-selfadjoint, i.e., B∗ = −B, exp(tB) is well-defined for
t ∈ R.

The case 1◦ is relevant for the heat equation on Rn, since −∆ can be
given a sense as a selfadjoint unbounded operator −B ≥ 0 in L2(Rn). The
case 2◦ then pertains to the Schrödinger equation, since i∆ hereby becomes
skew-selfadjoint in L2(Rn).

For the wave equation in the form (14.6), the skew-selfadjointness can be
obtained by use of some other particular Hilbert spaces. If one wants to work
with the wave equation in L2(Rn), one can instead interpret the solutions of
the abstract equation

∂2
t u = −Au (14.15)

as combinations of the solutions cos(tA
1
2 )u0 and A− 1

2 sin(tA
1
2 )u1 (where A =

−∆ is ≥ 0); also this can be achieved by use of spectral theory.
The spectral theory that is needed here is an extension of the standard

theory to unbounded operators.

We now turn to a more general definition of the exponential function, not
requiring selfadjointness or normality of the operator B, namely, the theory
of semigroups of operators. It also covers the cases 1◦ and 2◦.

14.2 Contraction semigroups in Banach spaces

The following account builds on Appendix 1 in the book of Lax and Phillips
[LP67].

A semigroup of operators in a Banach space X is a family of operators
G(t) ∈ B(X), parametrized by t ∈ R+ and satisfying

(a) G(0) = I , and G(s+ t) = G(s)G(t) for all s and t ≥ 0 .

A group of operators is a family of operators G(t) ∈ B(X) parametrized
by t ∈ R and such that (a) holds for all s and t ∈ R. Here all the operators
are invertible, since the second condition implies G(t)−1 = G(−t). Note that
both G(t) and G(−t) are semigroups for t ≥ 0.
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Note that we have both for semigroups and groups that G(s)G(t) =
G(t)G(s).

The semigroups and groups we consider will furthermore be required to
satisfy the following condition:

(b) G(t)x→ x for t→ 0+ , for all x ∈ X .

There are other special conditions imposed, that lead to various classes of
semigroups, see the comprehensive treatise of Hille and Phillips [HP57]. For
the present purposes it will suffice to consider semigroups (and groups) of
contractions; they are the ones that in addition satisfy

(c) ‖G(t)‖ ≤ 1 for all t .

Lemma 14.1. When G(t) satisfies (a)–(c), the map t 7→ G(t)x is for any
x ∈ X a continuous function from R+ to X (resp. from R to X in case of a
group).

Proof. By (a) and (c) we have for t1 ≤ t2 that

‖G(t2)x−G(t1)x‖ = ‖G(t1)(G(t2 − t1)x− x)‖ ≤ ‖G(t2 − t1)x− x‖ .

If we let t1 and t2 converge to t0 ∈ [t1, t2], the expression goes to 0 according
to (b). ut

The property in Lemma 14.1 is called strong continuity. We can hereafter
call the (semi)groups which satisfy (a), (b) and (c) the strongly continuous
contraction (semi)groups. (For strongly continuous semigroups in general one
requires (a) and strong continuity, then (b) follows.)

The infinitesimal generator B is now introduced as the operator defined
by

Bx = lim
h→0

1

h
(G(h) − I)x , (14.16)

with D(B) consisting of those x for which the limit exists.
The following theorem shows that the vector function u(t) = G(t)x satisfies

the differential equation (14.5) when x ∈ D(B).

Theorem 14.2. For x ∈ D(B), the function G(t)x : R+ → X is differen-
tiable, and takes its values in D(B):

lim
h→0

1

h
(G(t+ h)x−G(t)x) = G(t)Bx = BG(t)x for all t ≥ 0 . (14.17)

Proof. When h > 0,

1

h
(G(t+ h)x−G(t)x) = G(t)

G(h) − I

h
x =

G(h) − I

h
G(t)x .
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When x ∈ D(B), the expression in the middle converges to G(t)Bx for h →
0+. This shows that G(t)D(B) ⊂ D(B), and that (14.17) holds, when h→ 0
is replaced by h → 0+. If t > 0, we must also investigate the passage to the
limit through negative h; here we use that

1

h
(G(t+ h)x−G(t)x) −G(t)Bx = G(t+ h)

G(−h) − I

−h x−G(t)Bx

= G(t+ h)

(
G(−h) − I

−h x−Bx

)
+ (G(t+ h) −G(t))Bx .

For a given ε we first choose δ > 0 such that ‖ 1
−h (G(−h) − I)x − Bx‖ <

ε for − δ ≤ h < 0. Then the first term is < ε because of (c); next we can
choose 0 < δ′ ≤ min{δ, t} so that the second term is < ε for −δ′ ≤ h < 0, in
view of Lemma 14.1. ut

Corollary 14.3. For x ∈ D(B),

G(t)x− x =

∫ t

0

G(s)Bxds . (14.18)

This follows from the general property (14.11). We can also show:

Lemma 14.4. For all x ∈ X, t > 0,
∫ t
0
G(s)xds belongs to D(B) and

G(t)x − x = B

∫ t

0

G(s)xds . (14.19)

Proof. It follows from the continuity and the semigroup property (a) that for
h > 0:

G(h) − I

h

∫ t

0

G(s)xdx =
1

h

∫ t

0

(G(s+ h) −G(s))xds

=
1

h

∫ t+h

h

G(s)xds − 1

h

∫ t

0

G(s)xds

=
1

h

∫ t+h

t

G(s)xds − 1

h

∫ h

0

G(s)xds,

which converges to G(t)x − x for h→ 0, by (14.10). ut

Lemma 14.5. B is closed and densely defined.

Proof. According to Lemma 14.4, 1
h

∫ h
0
G(s)xds ∈ D(B) for all x ∈ X , h > 0,

so since this converges to x for h→ 0, D(B) is dense in X . Now if xn ∈ D(B)
with xn → x and Bxn → y, then G(s)Bxn → G(s)y uniformly in s (by (c)),
such that we have for any h > 0 that
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1

h
(G(h)x − x) = lim

n→∞
1

h
(G(h)xn − xn)

= lim
n→∞

1

h

∫ h

0

G(s)Bxnds =
1

h

∫ h

0

G(s)y ds ,

by Corollary 14.3. However, 1
h

∫ h
0 G(s)y ds → y for h → 0, from which we

conclude that x ∈ D(B) with Bx = y. ut

Lemma 14.6. A contraction semigroup is uniquely determined from its in-
finitesimal generator.

Proof. Assume that G1(t) and G2(t) have the same infinitesimal generator
B. For x ∈ D(B), G2(t)x ∈ D(B), and we have by a generalization of the
Leibniz formula:

d

ds
G1(t− s)G2(s)x = −G1(t− s)BG2(s)x +G1(t− s)G2(s)Bx = 0 .

Integration over intervals [0, t] gives

G1(0)G2(t)x−G1(t)G2(0)x = 0 ,

hence G1(t)x = G2(t)x for x ∈ D(B). Since D(B) is dense in X , and these
operators are bounded, we conclude that G1(t) = G2(t). ut

We can now show an important property of B, namely, that the half-plane
{λ ∈ C | Reλ > 0} lies in the resolvent set. Moreover, the resolvent can
be obtained directly from the semigroup, and it satisfies a convenient norm
estimate.

Theorem 14.7. Let G(t) be a strongly continuous contraction semigroup
with infinitesimal generator B. Any λ with Reλ > 0 belongs to the resol-
vent set ρ(B), and then

(B − λI)−1x = −
∫ ∞

0

e−λtG(t)xdt for x ∈ X , (14.20)

with
‖(B − λI)−1‖ ≤ (Reλ)−1 . (14.21)

Proof. Let Reλ > 0. Note first that e−λtG(t) is a strongly continuous con-
traction semigroup with infinitesimal generator B − λI. An application of
Corollary 14.3 and Lemma 14.4 to this semigroup gives that

e−λsG(s)x − x = (B − λI)

∫ s

0

e−λtG(t)xdt for x ∈ X , (14.22)

e−λsG(s)x − x =

∫ s

0

e−λtG(t)(B − λI)xdt for x ∈ D(B) . (14.23)
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For any y ∈ X we have that ‖e−λtG(t)y‖ ≤ e−Reλt‖y‖; therefore the limit

Ty = lim
s→∞

∫ s

0

e−λtG(t)y dt =

∫ ∞

0

e−λtG(t)y dt

exists, and T is clearly a linear operator on X with norm

‖T ‖ ≤
∫ ∞

0

e−Reλt dt = (Reλ)−1.

In particular, e−λsG(s)x → 0 for s → ∞. Then (14.22) and (14.23) imply
after a passage to the limit:

−x = (B − λI)Tx for x ∈ X, (14.24)

−x = T (B − λI)x for x ∈ D(B), (14.25)

which shows that λ is in the resolvent set, with resolvent equal to −T . ut

We have found some properties of the infinitesimal generator B for a con-
traction semigroup G(t), and now turn to the question (of interest for ap-
plications) of how the operators look that can be infinitesimal generators of
a contraction semigroup. The question was answered by Hille and Yoshida
(around 1945, in noncommunicating ends of the world) by different proofs of
the following theorem.

Theorem 14.8 (Hille-Yoshida). When B is a densely defined, closed op-
erator in X with R+ contained in ρ(B), and

‖(B − λI)−1‖ ≤ λ−1 for λ ∈ R+ , (14.26)

then B is the infinitesimal generator of a strongly continuous contraction
semigroup.

Proof. The operators

Bλ = −λ2(B − λI)−1 − λI,

defined for each λ > 0, are bounded with norm ≤ 2λ, and we can form the
operator families

Gλ(t) = exp(tBλ) for t ∈ R ,

by (14.12)ff.; they are continuous in t with respect to the operator norm.
Now observe that for x ∈ D(B),

λ(B − λI)−1x+ x = (B − λI)−1(λx+ (B − λI)x) = (B − λI)−1Bx ,

so that (14.26) implies that when x ∈ D(B),
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−λ(B − λI)−1x→ x for λ→ ∞ . (14.27)

Since ‖ − λ(B − λI)−1‖ ≤ 1 for all λ > 0 and D(B) is dense in X , (14.27)
extends to all x ∈ X . We then get furthermore:

Bλx = −λ(B − λ)−1Bx→ Bx for x ∈ D(B) , λ→ ∞ , (14.28)

and we want to show that Gλ(t) converges strongly, for each t, toward a
semigroup G(t) with B as generator, for λ→ ∞.

To do this, note first that an application of the product formula, as in
(14.13), gives that Gλ(t) = exp(−λ2(B − λ)−1t) exp(−λt), where

‖ exp(−λ2(B − λ)−1t)‖ ≤
∞∑

n=0

‖ − λ2(B − λ)−1t‖n
n!

≤ exp(λt),

by (14.26), so that

‖Gλ(t)‖ ≤ exp(−λt) expλt = 1 (14.29)

for all t ≥ 0 and λ > 0. Since all the bounded operators Bλ, Bµ, Gλ(t), Gµ(s)
for λ and µ > 0, s and t ≥ 0, commute, we find that

Gλ(t) −Gµ(t) =

∫ t

0

d

ds
[Gλ(s)Gµ(t− s)] ds

=

∫ t

0

Gλ(s)Gµ(t− s)(Bλ −Bµ) ds

which implies, using (14.29), that

‖Gλ(t)x−Gµ(t)x‖ ≤ t‖Bλx−Bµx‖ for x ∈ X . (14.30)

When x ∈ D(B), we know that Bµx→ Bx for µ → ∞ according to (14.28);
then we see in particular that the sequence {Gn(t)x}n∈N is a Cauchy sequence
in X . Denoting the limit by G(t)x, we obtain that

‖Gλ(t)x −G(t)x‖ ≤ t‖Bλx−Bx‖ for x ∈ D(B) . (14.31)

This shows that when x ∈ D(B), then Gλ(t)x→ G(t)x for λ→ ∞, uniformly
for t in bounded intervals [0, a] ⊂ R+. Since we also have that ‖Gλ(t)x‖ ≤
‖x‖ for all t and λ (cf. (14.29)), it follows that ‖G(t)x‖ ≤ ‖x‖, so that the
operator x 7→ G(t)x defined for x ∈ D(B) extends by closure to an operator
G(t) ∈ B(X) with norm ‖G(t)‖ ≤ 1. For the extended operator we now also
find that

Gλ(t)x→ G(t)x for each x ∈ X ,

uniformly for t in bounded intervals [0, a], for if we let xk ∈ D(B), xk → x,
we have when t ∈ [0, a],
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‖Gλ(t)x−G(t)x‖
≤ ‖Gλ(t)(x− xk)‖ + ‖Gλ(t)xk −G(t)xk‖ + ‖G(t)(x− xk)‖
≤ 2‖x− xk‖ + a‖Bλxk −Bxk‖ ,

where the last expression is seen to go to 0 for λ → ∞, independently of t,
by choosing first xk close to x and then adapting λ.

The semigroup property (a) carries over to G(t) from the Gλ(t)’s. That
G(t) satisfies (b) is seen from

‖G(t)x− x‖ ≤ ‖G(t)x −Gλ(t)x‖ + ‖Gλ(t)x− x‖ ,

where one first chooses λ so large that ‖G(t)x − Gλ(t)x‖ < ε for t ∈ [0, 1]
and next lets t→ 0.

The semigroup G(t) now has an infinitesimal generator C, and it remains
to show that C = B. For x ∈ D(B) we have

‖Gλ(s)Bλx−G(s)Bx‖ ≤ ‖Gλ(s)‖‖Bλx−Bx‖ + ‖(Gλ(s) −G(s))Bx‖
≤ ‖Bλx−Bx‖ + ‖(Gλ(s) −G(s))Bx‖
→ 0 for λ→ ∞,

uniformly for s in a bounded interval, by (14.28) and the proved convergence
of Gλ(s)y at each y ∈ X . This gives by use of Corollary 14.3 and (14.30),
that for x ∈ D(B),

1

h
(G(h)x − x) = lim

λ→∞

1

h
(Gλ(h)x− x) = lim

λ→∞

1

h

∫ h

0

Gλ(s)Bλxds

=
1

h

∫ h

0

G(s)Bxdx .

If we here let h→ 0, the last expression will converge to G(0)Bx = Bx, from
which we conclude that x ∈ D(C) with Cx = Bx. Since B− 1 and C − 1 are
bijections of D(B) and D(C), respectively, onto X , B must equal C. ut

The operator family G(t) defined from B in this way is also called exp(tB).
The theory can be extended to semigroups which do not necessarily consist

of contractions. For one thing, there is the obvious generalization where we
to the operator B + µI associate the semigroup

exp(t(B + µI)) = exp(tµ) exp(tB) ; (14.32)

this only gives contractions when Reµ ≤ 0. Here ‖ exp(t(B + µI))‖ ≤
| exp(tµ)| = exp(tReµ). More general strongly continuous semigroups can
only be expected to satisfy inequalities of the type ‖G(t)‖ ≤ c1 exp tc2 with
c1 ≥ 1, and need a more general theory — see e.g. the books of E. Hille and
R. Phillips [HP57] and of N. Dunford and J. Schwartz [DS58].
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14.3 Contraction semigroups in Hilbert spaces

We now consider the case where X is a Hilbert space H . Here we shall use
the notation u(T ) for the upper bound of an upper semibounded operator,
cf. (12.21) ff.

Lemma 14.9. When G(t) is a semigroup in H satisfying (a), (b) and (c),
then its infinitesimal generator B is upper semibounded, with upper bound
≤ 0.

Proof. For x ∈ X one has that

Re 1
h(G(h)x − x, x) = 1

h

(
Re(G(h)x, x) − ‖x‖2

)

≤ 1
h

(
‖G(h)x‖ ‖x‖ − ‖x‖2

)
≤ 0

according to (c), from which we conclude for x ∈ D(B) by a passage to the
limit:

Re(Bx, x) ≤ 0 for x ∈ D(B) . (14.33)

Thus u(B) ≤ 0, which shows the lemma. ut

In the Hilbert space case we can also consider the family of adjoint oper-
ators G∗(t).

Theorem 14.10. When G(t) is a semigroup in H satisfying (a), (b) and (c),
then G∗(t) is likewise a semigroup in H satisfying (a), (b) and (c); and when
the generator for G(t) is B, then the generator for G∗(t) is precisely B∗.

Proof. It is seen immediately that G∗(t) satisfies (a) and (c). For (b) we
observe that one for x and y ∈ H has:

(G∗(t)x, y) = (x,G(t)y) → (x, y) for t→ 0 .

This implies that

0 ≤ ‖G∗(t)x− x‖2 = (G∗(t)x,G∗(t)x) + ‖x‖2 − (G∗(t)x, x) − (x,G∗(t)x)

≤ ‖x‖2 − (G∗(t)x, x) + ‖x‖2 − (x,G∗(t)x)

→ 0 for t→ 0 ,

from which we conclude that G∗(t)x− x→ 0 for t→ 0.
Now let C be the infinitesimal generator of G∗(t), and let x ∈ D(B),

y ∈ D(C). Then

(Bx, y) = lim
h→0

(
1
h (G(h)x − x), y

)
= lim

h→0

(
x, 1

h (G∗(h)y − y)
)

= (x,Cy) ;

thus C ⊂ B∗. By Theorem 14.7, R(C − I) = H ; and B∗ − I is injective since
Z(B∗−I) = R(B−I)⊥ = {0}. Then C ⊂ B∗ cannot hold unless C = B∗. ut
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Corollary 14.11. An operator B in a Hilbert space H is the infinitesimal
generator of a strongly continuous contraction semigroup if and only if B
is densely defined and closed, has u(B) ≤ 0, and has R+ contained in its
resolvent set.

Proof. The necessity of the conditions follows from what we have just shown,
together with Lemma 14.5 and Theorem 14.7. The sufficiency is seen from
the fact that (14.33) implies that −(B − λI) = −B + λI for λ > 0 has
a bounded inverse with norm ≤ λ−1, by Theorem 12.9 1◦; then the Hille-
Yoshida Theorem (Theorem 14.8) can be applied. ut

Operators satisfying (14.33) are in part of the literature called dissipative
operators. There is a variant of the above theorems:

Corollary 14.12. Let B be a closed, densely defined operator in a Hilbert
space H. Then the following properties are equivalent:

(i) B is the infinitesimal generator of a strongly continuous contraction
semigroup.

(ii) B is dissipative (i.e., u(B) ≤ 0) and R+ ⊂ ρ(B).
(iii) B and B∗ are dissipative.

Proof. The equivalence of (i) and (ii) is shown above. Condition (i) implies
(iii) by Theorem 14.10, and (iii) implies (ii) by Theorem 12.9 3◦. ut

Remark 14.13. It is shown in [P59] that the conditions (i)–(iii) in Corollary
14.12 are equivalent with

(iv) B is maximal dissipative.

Let us here observe that (ii) easily implies (iv), for if B satisfies (ii) and B′ is
a dissipative extension, then B′ − I is injective (by Theorem 12.9 1◦ applied
to −(B′ − I)); hence, since B − I is already bijective from its domain to H ,
B′ must equal B. For the direction from (iv) to (ii), [P59] carries the problem
over to J = (I+B)(I−B)−1; this is a contraction with D(J) = R(I−B) and
D(B) = R(I + J). Here B is maximal dissipative if and only if J is maximal
with respect to being a contraction. Since we take B closed ([P59] considers
more general operators), D(J) = R(I − B) is closed (by Theorem 12.9 2◦);
then there exists a proper contraction extension of J unless D(J) = H . We
see that maximality of B implies surjectiveness of I − B, and similarly of
I − 1

λB for all λ > 0, assuring (ii).

So, the infinitesimal generators of contraction semigroups are the maxi-
mal dissipative operators, as described by (ii), (iii) or (iv). Note that these
operators have

ν(B), ν(B∗), σ(B), σ(B∗) ⊂ {λ ∈ C | Reλ ≤ 0}. (14.34)

We now consider some special cases:
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1◦ B = −A, where A is selfadjoint ≥ 0. Here A and A∗ are ≥ 0, so that
B and B∗ are dissipative.

2◦ B = −A, where A is a variational operator with m(A) ≥ 0 (Section
12.4). Here m(A∗) is likewise ≥ 0, so B and B∗ are dissipative. This case is
more general than 1◦, but less general than the full set of operators satisfying
(14.34), for, as we recall from (12.50) (applied to −B), we here have ν(B),
ν(B∗), σ(B) and σ(B∗) contained in an angular set

M̃ = {λ ∈ C | Reλ ≤ 0, | Imλ| ≤ c(−Reλ+ k)},

for some c ≥ 0, k ∈ R. The semigroups generated by such operators belong to
the so-called holomorphic semigroups (where G(t)x extends holomorphically
to t in a sector around R+); they have particularly convenient properties, for
example that G(t)x ∈ D(B) for t 6= 0, any x ∈ X . (Besides [HP57], they
enter e.g. in Kato [K66], Friedman [F69] and many other works.)

3◦ B = iA where A is selfadjoint, i.e., B = −B∗, B is skew-selfadjoint.
Here ν(B) and ν(B∗) are contained in the imaginary axis, so B and B∗ are
dissipative.

In the last case we can introduce

U(t) = exp(tB) for t ≥ 0 , (14.35)

U(t) = exp(−tB∗) = U(t)∗ for t ≤ 0 , (14.36)

writing U(t) = exp(tB) also for t ≤ 0. We shall now show that U(t) is a
strongly continuous group of unitary operators.

That U(t)x is continuous from t ∈ R into H follows from the continuity
for t ≥ 0 and t ≤ 0. Next, we can show that U(t) is an isometry for each
t ∈ R+ or t ∈ R−, since we have for x ∈ D(B):

d

dt
‖U(t)x‖2 = lim

h→0

1

h

[
(U(t+ h)x, U(t+ h)x) − (U(t)x, U(t)x)

]

= lim
h→0

(U(t+ h)x− U(t)x

h
, U(t)x

)
+ lim
h→0

(
U(t)x,

U(t+ h)x− U(t)x

h

)

+ lim
h→0

(U(t+ h)x− U(t)x

h
, U(t+ h)x− U(t)x

)

= (BU(t)x, U(t)x) + (U(t)x,BU(t)x) = 0 ;

where it was used after the second equality sign that there for any ε > 0
exists h0 such that ‖U(t+ h)x − U(t)x‖ < ε for |h| ≤ h0; then we could let
h → 0. Hence ‖U(t)x‖2 is constant in t and thus equal to ‖U(0)x‖2 = ‖x‖2

for all t; the identity extends by continuity to x ∈ H . In a similar way it is
seen that for x ∈ D(B), t ∈ R+ or t ∈ R−,

d

dt
U(t)U(−t)x = U(t)BU(−t)x+ U(t)(−B)U(−t)x = 0 ,
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so that U(t)U(−t)x is constant for t ≥ 0 and for t ≤ 0, and hence equal to
U(0)U(0)x = x. The identity

U(t)U(−t)x = x for t ∈ R

extends by continuity to all x ∈ H , and shows that

U(t)−1 = U(−t) for t ∈ R ;

hence U is unitary. It also implies the group property, since one has e.g. for
s ≥ 0, 0 ≥ t ≥ −s:

U(s)U(t) = U(s+ t)U(−t)U(t) = U(s+ t) .

Let now conversely U(t) be a strongly continuous group of contractions. If
{U(t)}t≥0 and {U(−t)}t≥0 have the infinitesimal generators B resp. C, then
for x ∈ D(B),

lim
h→0+

U(−h) − I

h
x = lim

h→0+
U(−h)I − U(h)

h
x = Bx ,

i.e., −B ⊂ C. Similarly, −C ⊂ B, so B = −C. For B it then holds that
m(−B) = m(B) = 0, and both {λ | Reλ > 0} and {λ | Reλ < 0} are
contained in the resolvent set. This shows that B is skew-selfadjoint, by
Corollary 14.12 (or by Theorem 12.10 applied to iB). It is now seen from the
preceding analysis that the operators U(t) are unitary.

We have hereby obtained the theorem of M. H. Stone:

Theorem 14.14 (Stone). An operator B in H is the infinitesimal gener-
ator of a strongly continuous group of unitary operators if and only if B is
skew-selfadjoint.

14.4 Applications

When B is the infinitesimal generator of a strongly continuous contraction
semigroup (or group) G(t) in a Banach space or Hilbert space X , the vector
function

u(t) = G(t)u0 (14.37)

is, according to Theorem 14.2, a solution of the abstract Cauchy problem
(initial value problem)

{
u′(t) = Bu(t) , t > 0 (t ∈ R) ,

u(0) = u0 ,
(14.38)
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for any given initial value u0 ∈ D(B). (One can furthermore show thatG(t)u0

is the only continuously differentiable solution of (14.38).) If G(t) is a holo-
morphic semigroup, (14.37) solves (14.38) even when u0 ∈ X .

The semigroup theory can in this way be used to get solutions of the
problem (14.38) for various types of operators B.

We have a wealth of examples:
First, we have in Chapter 12 defined the selfadjoint, the semibounded and

the variational operators entering in 1◦, 2◦ and 3◦ above.
Next, we have in Chapter 13 described operators of these types that are

given to act in a particular way, namely, belonging to the set of closed oper-
ators lying between A0 and A1 with given properties.

Concrete interpretations to particular differential operators are given in
Chapter 4, most prominently for the Laplace operator ∆ on bounded sets,
but also including ∆ on Rn, some variable-coefficient cases, and second-order
ordinary differential equations on intervals (considered in some exercises).
Here X = L2(Rn) or L2(Ω) for an open set Ω ⊂ Rn.

For example, if B = −Aγ = the Dirichlet realization of the Laplace oper-
ator (called −T in Theorem 4.27), the problem (14.38) becomes:

∂tu(x, t) = ∆xu(x, t) for x ∈ Ω, t > 0,

γ0u(x, t) = 0 for t > 0,

u(x, 0) = u0(x) for x ∈ Ω,

and the function exp(−tAγ)u0 solves this problem, the heat equation with
homogeneous Dirichlet boundary condition.

An interpretation of the general study (from Chapter 13) of closed exten-
sions of a minimal elliptic realization is given in Chapter 9, with details for an
accessible example and introductory remarks on the general case. The analy-
sis of lower bounded operators in Chapter 13 is particularly suited for ap-
plication to evolution problems using semigroup theory. Variable-coefficient
cases can be studied on the basis of Chapter 11, where the application of
abstract results of Chapter 13 is followed up in Exercises 11.16–11.21 (a full
account is given in [BGW08]). Semiboundedness for general elliptic boundary
value problems is studied systematically in [G70]–[G74].

We can moreover get solutions of the Schrödinger equation with an initial
condition, as mentioned in the beginning of the present chapter, when i∆
is concretized as a skew-selfadjoint operator. Also the wave equation can be
studied using (14.6); here the matrix is taken to act e.g. in H1

0 (Ω) × L2(Ω)
(as defined in Chapter 4).

The solutions defined in this way are of course somewhat abstract and need
further investigation, and one can show much more precisely which spaces
the solutions belong to, and discuss their uniqueness and other properties.
Further questions can be asked in a framework of functional analysis (as in
scattering theory). Parabolic problems generalizing the heat equation have
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been widely studied. Classical references are Ladyzhenskaya, Solonnikov and
Uraltseva [LSU68] and Friedman [F69]; recently there have been studies by
refined methods using pseudodifferential techniques, as in [G95] and its ref-
erences.

For the constructive analysis of solutions of hyperbolic equations, generaliz-
ing the wave equation, the most modern tools come from microlocal analysis
(based on refined Fourier analysis). There are many interesting works on
this; here we shall just point to the four volumes of L. Hörmander (cf. [H83],
[H85]), which form a cornerstone in this development.

Exercises for Chapter 14

14.1. Show that if S is a densely defined and maximal symmetric operator
in a Hilbert space H , then either iS or −iS is the infinitesimal generator of
a strongly continuous contraction semigroup.

14.2. Let B be a closed, densely defined operator in a Hilbert space H ,
and assume that there is a constant α ≥ 0 so that m(B), m(−B), m(B∗)
and m(−B∗) are ≥ −α.

Let G(t) be the family of operators defined by

G(t) = eαt exp(t(B − αI)) for t ≥ 0 , (14.39)

G(t) = e−αt exp(−t(−B − αI)) for t ≤ 0 . (14.40)

Show that G(t) is a strongly continuous group, satisfying ‖G(t)‖ ≤ exp(α|t|)
for all t.

14.3. Let G(t) be a strongly continuous contraction semigroup on a Banach
space X , and let f(t) be a continuous function of t ∈ R+, valued in X . Show
that G(t)f(t) is a continuous function of t ∈ R+.
(Hint. To G(t)f(t)−G(t0)f(t0) one can add and subtract G(t)f(t0) and use
that ‖G(t)‖ ≤ 1 for all t.)

14.4. Consider the nonhomogeneous initial value problem for functions
u(t) taking values in a Banach space X :

u′(t) −Bu(t) = f(t), for t > 0,

u(0) = 0.
(14.41)

It is assumed that B is the infinitesimal generator of a strongly continuous
contraction semigroup G(t).

Let T > 0. Show that if f ∈ C1([0, T ], X), then the function

u(t) =

∫ t

0

G(t− s)f(s) ds (14.42)
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is a solution of (14.41), with u ∈ C1([0, T ], X) ∩C0([0, T ], D(B)).
(Hints. The formula (14.42) can also be written

u(t) =

∫ t

0

G(s′)f(t− s′) ds′,

from which it can be deduced that u ∈ C1([0, T ], X). To verify (14.41), let
h > 0 and write

u(t+ h) − u(t)

h
=

1

h

∫ t+h

t

G(t+ h− s)f(s) ds

+
G(h) − I

h

∫ t

0

G(t− s)f(s) ds = I1 + I2.

Show that I1 → f(t) for h → 0. Use the differentiability of u to show that
u(t) ∈ D(B) and I2 → Bu(t).)

Give an example of an application to a PDE problem, where B is a realization
of an elliptic operator.

(Comment. The use of the semigroup in formula (14.42) is sometimes called
the Duhamel principle.)


