Perturbations of Self-adjoint Operators

Kim Petersen

Department of Mathematical Sciences

Introduction

Let $(\mathcal{H},\langle\cdot, \cdot\rangle)$ be a Hilbert space and consider linear operators $A: \mathcal{D}(A) \rightarrow \mathcal{H}$ and $B: \mathcal{D}(B) \rightarrow \mathcal{H}$.

Introduction

Let $(\mathcal{H},\langle\cdot, \cdot\rangle)$ be a Hilbert space and consider linear operators $A: \mathcal{D}(A) \rightarrow \mathcal{H}$ and $B: \mathcal{D}(B) \rightarrow \mathcal{H}$.

The sum $A+B$ is the operator that acts according to the identity

$$
(A+B) \varphi=A \varphi+B \varphi
$$

for vectors φ in the domain $\mathcal{D}(A+B)=\mathcal{D}(A) \cap \mathcal{D}(B)$.

Introduction

Let $(\mathcal{H},\langle\cdot, \cdot\rangle)$ be a Hilbert space and consider linear operators $A: \mathcal{D}(A) \rightarrow \mathcal{H}$ and $B: \mathcal{D}(B) \rightarrow \mathcal{H}$.

The sum $A+B$ is the operator that acts according to the identity

$$
(A+B) \varphi=A \varphi+B \varphi
$$

for vectors φ in the domain $\mathcal{D}(A+B)=\mathcal{D}(A) \cap \mathcal{D}(B)$.

Philosophy: If ' B is small compared to A ', then A and the perturbed operator $A+B$ should have similar properties.

Introduction

Let $(\mathcal{H},\langle\cdot, \cdot\rangle)$ be a Hilbert space and consider linear operators
$A: \mathcal{D}(A) \rightarrow \mathcal{H}$ and $B: \mathcal{D}(B) \rightarrow \mathcal{H}$.

The sum $A+B$ is the operator that acts according to the identity

$$
(A+B) \varphi=A \varphi+B \varphi
$$

for vectors φ in the domain $\mathcal{D}(A+B)=\mathcal{D}(A) \cap \mathcal{D}(B)$.

Philosophy: If ' B is small compared to A ', then A and the perturbed operator $A+B$ should have similar properties.

Focus: Preservation of self-adjointness

Introduction

Let $(\mathcal{H},\langle\cdot, \cdot\rangle)$ be a Hilbert space and consider linear operators
$A: \mathcal{D}(A) \rightarrow \mathcal{H}$ and $B: \mathcal{D}(B) \rightarrow \mathcal{H}$.

The sum $A+B$ is the operator that acts according to the identity

$$
(A+B) \varphi=A \varphi+B \varphi
$$

for vectors φ in the domain $\mathcal{D}(A+B)=\mathcal{D}(A) \cap \mathcal{D}(B)$.

Philosophy: If ' B is small compared to A ', then A and the perturbed operator $A+B$ should have similar properties.

Rigorous meaning?

' B is small compared to A '

Definition

Assume that A and B are densely defined and suppose that

' B is small compared to A '

Definition

Assume that A and B are densely defined and suppose that
(1) $\mathcal{D}(B) \supset \mathcal{D}(A)$,

' B is small compared to A '

Definition

Assume that A and B are densely defined and suppose that
(1) $\mathcal{D}(B) \supset \mathcal{D}(A)$,
(2) For some $a, b \geq 0$ and all $\varphi \in \mathcal{D}(A)$ we have

$$
\begin{equation*}
\|B \varphi\| \leq a\|A \varphi\|+b\|\varphi\| . \tag{1}
\end{equation*}
$$

' B is small compared to A '

Definition

Assume that A and B are densely defined and suppose that
(1) $\mathcal{D}(B) \supset \mathcal{D}(A)$,
(2) For some $a, b \geq 0$ and all $\varphi \in \mathcal{D}(A)$ we have

$$
\begin{equation*}
\|B \varphi\| \leq a\|A \varphi\|+b\|\varphi\| . \tag{1}
\end{equation*}
$$

Then B is said to be (a, b)-bounded with respect to A.

' B is small compared to A '

Definition

Assume that A and B are densely defined and suppose that
(1) $\mathcal{D}(B) \supset \mathcal{D}(A)$,
(2) For some $a, b \geq 0$ and all $\varphi \in \mathcal{D}(A)$ we have

$$
\begin{equation*}
\|B \varphi\| \leq a\|A \varphi\|+b\|\varphi\| . \tag{1}
\end{equation*}
$$

Then B is said to be (a, b)-bounded with respect to A.

Note that the inequality (1) implies

$$
\begin{equation*}
\|B \varphi\|^{2} \leq a^{\prime}\|A \varphi\|^{2}+b^{\prime}\|\varphi\|^{2} . \tag{2}
\end{equation*}
$$

with $a^{\prime}=2 a^{2}$ and $b^{\prime}=2 b^{2}$.

' B is small compared to A '

Definition

Assume that A and B are densely defined and suppose that
(1) $\mathcal{D}(B) \supset \mathcal{D}(A)$,
(2) For some $a, b \geq 0$ and all $\varphi \in \mathcal{D}(A)$ we have

$$
\begin{equation*}
\|B \varphi\| \leq a\|A \varphi\|+b\|\varphi\| . \tag{1}
\end{equation*}
$$

Then B is said to be (a, b)-bounded with respect to A.
Note that the inequality (1) implies

$$
\begin{equation*}
\|B \varphi\|^{2} \leq a^{\prime}\|A \varphi\|^{2}+b^{\prime}\|\varphi\|^{2} . \tag{2}
\end{equation*}
$$

with $a^{\prime}=2 a^{2}$ and $b^{\prime}=2 b^{2}$.

Conversely, (2) implies (1) with $a=\sqrt{a^{\prime}}$ and $b=\sqrt{b^{\prime}}$.

The Kato-Rellich Theorem

Theorem (Kato-Rellich)

Let A be self-adjoint and consider a symmetric operator B for which there exists $0 \leq a<1$ and $b \geq 0$ such that B is
(a, b)-bounded with respect to A.

The Kato-Rellich Theorem

Theorem (Kato-Rellich)

Let A be self-adjoint and consider a symmetric operator B for which there exists $0 \leq a<1$ and $b \geq 0$ such that B is (a, b)-bounded with respect to A.
Then $A+B$ is self-adjoint on $\mathcal{D}(A)$ and essentially self-adjoint on any core of A.

The Kato-Rellich Theorem

Theorem (Kato-Rellich)

Let A be self-adjoint and consider a symmetric operator B for which there exists $0 \leq a<1$ and $b \geq 0$ such that B is (a, b)-bounded with respect to A.
Then $A+B$ is self-adjoint on $\mathcal{D}(A)$ and essentially self-adjoint on any core of A.
Moreover, if A is bounded below by M, then $A+B$ is bounded below by $M-\max \left\{\frac{b}{1-a}, a|M|+b\right\}$.

Proof of the Kato-Rellich Theorem

Self-adjointness of $A+B$ on $\mathcal{D}(A)$:

Proof of the Kato-Rellich Theorem

Self-adjointness of $A+B$ on $\mathcal{D}(A)$:

$A+B$ is symmetric on the dense domain $\mathcal{D}(A)$ so the self-adjointness of $A+B$ will by [GG,Thm 12.10 and (12.13)] follow if

$$
\operatorname{Ran}(A+B \pm i \mu)=\mathcal{H} \quad \text { for some } \mu>0 .
$$

Proof of the Kato-Rellich Theorem

Self-adjointness of $A+B$ on $\mathcal{D}(A)$:

$A+B$ is symmetric on the dense domain $\mathcal{D}(A)$ so the self-adjointness of $A+B$ will by [GG,Thm 12.10 and (12.13)] follow if

$$
\operatorname{Ran}(A+B \pm i \mu)=\mathcal{H} \quad \text { for some } \mu>0 .
$$

For the case with ' + ' note that

$$
(A+B+i \mu) \varphi=\left(1+B(A+i \mu)^{-1}\right)(A+i \mu) \varphi \quad \text { for } \varphi \in \mathcal{D}(A) .
$$

Proof of the Kato-Rellich Theorem

Self-adjointness of $A+B$ on $\mathcal{D}(A)$:

$A+B$ is symmetric on the dense domain $\mathcal{D}(A)$ so the self-adjointness of $A+B$ will by [GG,Thm 12.10 and (12.13)] follow if

$$
\operatorname{Ran}(A+B \pm i \mu)=\mathcal{H} \quad \text { for some } \mu>0 .
$$

For the case with ' + ' note that

$$
(A+B+i \mu) \varphi=\left(1+B(A+i \mu)^{-1}\right)(A+i \mu) \varphi \quad \text { for } \varphi \in \mathcal{D}(A) .
$$

[GG,Thm 12.10]: $\quad-i \mu \notin \sigma(A) \quad$ for all $\mu>0$.

Proof of the Kato-Rellich Theorem

Self-adjointness of $A+B$ on $\mathcal{D}(A)$:

$A+B$ is symmetric on the dense domain $\mathcal{D}(A)$ so the self-adjointness of $A+B$ will by [GG,Thm 12.10 and (12.13)] follow if

$$
\operatorname{Ran}(A+B \pm i \mu)=\mathcal{H} \quad \text { for some } \mu>0 .
$$

For the case with '+' note that

$$
(A+B+i \mu) \varphi=\left(1+B(A+i \mu)^{-1}\right)(A+i \mu) \varphi \quad \text { for } \varphi \in \mathcal{D}(A) .
$$

[GG,Thm 12.10]: $\operatorname{Ran}(A+i \mu)=\mathcal{H}$ for all $\mu>0$.

Proof of the Kato-Rellich Theorem

Self-adjointness of $A+B$ on $\mathcal{D}(A)$:

$A+B$ is symmetric on the dense domain $\mathcal{D}(A)$ so the self-adjointness of $A+B$ will by [GG,Thm 12.10 and (12.13)] follow if

$$
\operatorname{Ran}(A+B \pm i \mu)=\mathcal{H} \quad \text { for some } \mu>0 .
$$

For the case with '+' note that

$$
(A+B+i \mu) \varphi=\left(1+B(A+i \mu)^{-1}\right)(A+i \mu) \varphi \quad \text { for } \varphi \in \mathcal{D}(A) .
$$

Show: $1+B(A+i \mu)^{-1}$ is invertible $\mathcal{H} \rightarrow \mathcal{H}$ for some $\mu>0$.

Proof of the Kato-Rellich Theorem

$1+B(A+i \mu)^{-1}$ is invertible $\mathcal{H} \rightarrow \mathcal{H}$ for some $\mu>0$:

Proof of the Kato-Rellich Theorem

$1+B(A+i \mu)^{-1}$ is invertible $\mathcal{H} \rightarrow \mathcal{H}$ for some $\mu>0$:

For all $\varphi \in \mathcal{D}(A)$

$$
\|(A+i \mu) \quad \varphi \quad\|^{2}=\|A \quad \varphi \quad\|^{2}+\mu^{2}\|\quad \varphi \quad\|^{2}
$$

Proof of the Kato-Rellich Theorem

$1+B(A+i \mu)^{-1}$ is invertible $\mathcal{H} \rightarrow \mathcal{H}$ for some $\mu>0$:

For all $\varphi \in \mathcal{D}(A)$
$\|(A+i \mu)$
$\left\|^{2}=\right\| A$
$\left\|^{2}+\mu^{2}\right\|$
$\|^{2}$

Set $\varphi=(A+i \mu)^{-1} \psi$ for $\psi \in \mathcal{H}$

Proof of the Kato-Rellich Theorem

$1+B(A+i \mu)^{-1}$ is invertible $\mathcal{H} \rightarrow \mathcal{H}$ for some $\mu>0$:

For all $\psi \in \mathcal{H}$

$$
\left\|(A+i \mu)(A+i \mu)^{-1} \psi\right\|^{2}=\left\|A(A+i \mu)^{-1} \psi\right\|^{2}+\mu^{2}\left\|(A+i \mu)^{-1} \psi\right\|^{2}
$$

Proof of the Kato-Rellich Theorem

$1+B(A+i \mu)^{-1}$ is invertible $\mathcal{H} \rightarrow \mathcal{H}$ for some $\mu>0$:

For all $\psi \in \mathcal{H}$

$$
\left\|(A+i \mu)(A+i \mu)^{-1} \psi\right\|^{2}=\left\|A(A+i \mu)^{-1} \psi\right\|^{2}+\mu^{2}\left\|(A+i \mu)^{-1} \psi\right\|^{2}
$$

Proof of the Kato-Rellich Theorem

$1+B(A+i \mu)^{-1}$ is invertible $\mathcal{H} \rightarrow \mathcal{H}$ for some $\mu>0$:

For all $\psi \in \mathcal{H}$

$$
\|\psi\|^{2}=\left\|A(A+i \mu)^{-1} \psi\right\|^{2}+\mu^{2}\left\|(A+i \mu)^{-1} \psi\right\|^{2}
$$

Proof of the Kato-Rellich Theorem

$1+B(A+i \mu)^{-1}$ is invertible $\mathcal{H} \rightarrow \mathcal{H}$ for some $\mu>0$:

For all $\psi \in \mathcal{H}$

$$
\|\psi\|^{2}=\left\|A(A+i \mu)^{-1} \psi\right\|^{2}+\mu^{2}\left\|(A+i \mu)^{-1} \psi\right\|^{2}
$$

so

$$
\begin{aligned}
\left\|A(A+i \mu)^{-1} \psi\right\|^{2} & =\|\psi\|^{2}-\mu^{2}\left\|(A+i \mu)^{-1} \psi\right\|^{2} \\
\left\|(A+i \mu)^{-1} \psi\right\|^{2} & =\frac{1}{\mu^{2}}\left(\|\psi\|^{2}-\left\|A(A+i \mu)^{-1} \psi\right\|^{2}\right)
\end{aligned}
$$

Proof of the Kato-Rellich Theorem

$1+B(A+i \mu)^{-1}$ is invertible $\mathcal{H} \rightarrow \mathcal{H}$ for some $\mu>0$:

For all $\psi \in \mathcal{H}$

$$
\|\psi\|^{2}=\left\|A(A+i \mu)^{-1} \psi\right\|^{2}+\mu^{2}\left\|(A+i \mu)^{-1} \psi\right\|^{2}
$$

SO

$$
\begin{aligned}
\left\|A(A+i \mu)^{-1} \psi\right\|^{2} & =\|\psi\|^{2}-\mu^{2}\left\|(A+i \mu)^{-1} \psi\right\|^{2} \\
\left\|(A+i \mu)^{-1} \psi\right\|^{2} & =\frac{1}{\mu^{2}}\left(\|\psi\|^{2}-\left\|A(A+i \mu)^{-1} \psi\right\|^{2}\right)
\end{aligned}
$$

Non-negative

Proof of the Kato-Rellich Theorem

$1+B(A+i \mu)^{-1}$ is invertible $\mathcal{H} \rightarrow \mathcal{H}$ for some $\mu>0$:

For all $\psi \in \mathcal{H}$

$$
\|\psi\|^{2}=\left\|A(A+i \mu)^{-1} \psi\right\|^{2}+\mu^{2}\left\|(A+i \mu)^{-1} \psi\right\|^{2}
$$

so

$$
\begin{aligned}
\left\|A(A+i \mu)^{-1} \psi\right\|^{2} & =\|\psi\|^{2}-\mu^{2}\left\|(A+i \mu)^{-1} \psi\right\|^{2} \leq\|\psi\|^{2} \\
\left\|(A+i \mu)^{-1} \psi\right\|^{2} & =\frac{1}{\mu^{2}}\left(\|\psi\|^{2}-\left\|A(A+i \mu)^{-1} \psi\right\|^{2}\right) \leq \frac{1}{\mu^{2}}\|\psi\|^{2}
\end{aligned}
$$

Proof of the Kato-Rellich Theorem

$\mathbf{1 + B}(\boldsymbol{A}+\boldsymbol{i \mu})^{-1}$ is invertible $\mathcal{H} \rightarrow \mathcal{H}$ for some $\mu>\mathbf{0}$:
For all $\psi \in \mathcal{H}$

$$
\|\psi\|^{2}=\left\|A(A+i \mu)^{-1} \psi\right\|^{2}+\mu^{2}\left\|(A+i \mu)^{-1} \psi\right\|^{2}
$$

SO

$$
\begin{aligned}
\left\|A(A+i \mu)^{-1} \psi\right\|^{2} & =\|\psi\|^{2}-\mu^{2}\left\|(A+i \mu)^{-1} \psi\right\|^{2} \leq\|\psi\|^{2} \\
\left\|(A+i \mu)^{-1} \psi\right\|^{2} & =\frac{1}{\mu^{2}}\left(\|\psi\|^{2}-\left\|A(A+i \mu)^{-1} \psi\right\|^{2}\right) \leq \frac{1}{\mu^{2}}\|\psi\|^{2}
\end{aligned}
$$

whereby

$$
\left\|B(A+i \mu)^{-1} \psi\right\| \leq a\left\|A(A+i \mu)^{-1} \psi\right\|+b\left\|(A+i \mu)^{-1} \psi\right\|
$$

Proof of the Kato-Rellich Theorem

$\mathbf{1 + B}(\boldsymbol{A}+\boldsymbol{i} \mu)^{-1}$ is invertible $\mathcal{H} \rightarrow \mathcal{H}$ for some $\mu>\mathbf{0}$:
For all $\psi \in \mathcal{H}$

$$
\|\psi\|^{2}=\left\|A(A+i \mu)^{-1} \psi\right\|^{2}+\mu^{2}\left\|(A+i \mu)^{-1} \psi\right\|^{2}
$$

SO

$$
\begin{aligned}
\left\|A(A+i \mu)^{-1} \psi\right\|^{2} & =\|\psi\|^{2}-\mu^{2}\left\|(A+i \mu)^{-1} \psi\right\|^{2} \leq\|\psi\|^{2} \\
\left\|(A+i \mu)^{-1} \psi\right\|^{2} & =\frac{1}{\mu^{2}}\left(\|\psi\|^{2}-\left\|A(A+i \mu)^{-1} \psi\right\|^{2}\right) \leq \frac{1}{\mu^{2}}\|\psi\|^{2}
\end{aligned}
$$

whereby

$$
\begin{aligned}
\left\|B(A+i \mu)^{-1} \psi\right\| & \leq a\left\|A(A+i \mu)^{-1} \psi\right\|+b\left\|(A+i \mu)^{-1} \psi\right\| \\
& \leq\left(a+\frac{b}{\mu}\right)\|\psi\|
\end{aligned}
$$

Proof of the Kato-Rellich Theorem

$\mathbf{1 + B}(\boldsymbol{A}+\boldsymbol{i} \mu)^{-1}$ is invertible $\mathcal{H} \rightarrow \mathcal{H}$ for some $\mu>\mathbf{0}$:
For all $\psi \in \mathcal{H}$

$$
\|\psi\|^{2}=\left\|A(A+i \mu)^{-1} \psi\right\|^{2}+\mu^{2}\left\|(A+i \mu)^{-1} \psi\right\|^{2}
$$

SO

$$
\begin{aligned}
\left\|A(A+i \mu)^{-1} \psi\right\|^{2} & =\|\psi\|^{2}-\mu^{2}\left\|(A+i \mu)^{-1} \psi\right\|^{2} \leq\|\psi\|^{2} \\
\left\|(A+i \mu)^{-1} \psi\right\|^{2} & =\frac{1}{\mu^{2}}\left(\|\psi\|^{2}-\left\|A(A+i \mu)^{-1} \psi\right\|^{2}\right) \leq \frac{1}{\mu^{2}}\|\psi\|^{2}
\end{aligned}
$$

whereby

$$
\begin{aligned}
\left\|B(A+i \mu)^{-1} \psi\right\| & \leq a\left\|A(A+i \mu)^{-1} \psi\right\|+b\left\|(A+i \mu)^{-1} \psi\right\| \\
& \leq\left(a+\frac{b}{\mu}\right)\|\psi\|
\end{aligned}
$$

Choose $\mu>0$ so that $\left\|B(A+i \mu)^{-1}\right\|<1$.

Proof of the Kato-Rellich Theorem

$A+B$ is essentially self-adjoint on any core of A :

Proof of the Kato-Rellich Theorem

$A+B$ is essentially self-adjoint on any core of A :
Let \mathcal{C} be a core of A that is $\mathcal{C} \subset \mathcal{D}(A)$ and $\overline{\left.A\right|_{\mathcal{C}}}=\bar{A}$

Proof of the Kato-Rellich Theorem

$A+B$ is essentially self-adjoint on any core of A :
Let \mathcal{C} be a core of A that is $\mathcal{C} \subset \mathcal{D}(A)$ and $\overline{\left.A\right|_{\mathcal{C}}}=\bar{A}=A$.

Proof of the Kato-Rellich Theorem

$A+B$ is essentially self-adjoint on any core of A :

Let \mathcal{C} be a core of A that is $\mathcal{C} \subset \mathcal{D}(A)$ and $\overline{\left.A\right|_{\mathcal{C}}}=\bar{A}=A$.
Show: $\overline{(A+B) \mid c}=A+B$.

Proof of the Kato-Rellich Theorem

$A+B$ is essentially self-adjoint on any core of A :

Let \mathcal{C} be a core of A that is $\mathcal{C} \subset \mathcal{D}(A)$ and $\overline{\left.A\right|_{\mathcal{C}}}=\bar{A}=A$.
Show: $\overline{(A+B) \mid c}=A+B$.

- $\left.(A+B)\right|_{\mathcal{C}} \subset A+B$

Proof of the Kato-Rellich Theorem

$A+B$ is essentially self-adjoint on any core of A :

Let \mathcal{C} be a core of A that is $\mathcal{C} \subset \mathcal{D}(A)$ and $\overline{\left.A\right|_{\mathcal{C}}}=\bar{A}=A$.
Show: $\overline{(A+B) \mid c}=A+B$.

- $\left.(A+B)\right|_{\mathcal{C}} \subset A+B$
closed extension

Proof of the Kato-Rellich Theorem

$A+B$ is essentially self-adjoint on any core of A :

Let \mathcal{C} be a core of A that is $\mathcal{C} \subset \mathcal{D}(A)$ and $\overline{\left.A\right|_{\mathcal{C}}}=\bar{A}=A$.
Show: $\overline{(A+B) \mid c}=A+B$.

- $\left.(A+B)\right|_{\mathcal{C}} \subset A+B$ so $\overline{\left.(A+B)\right|_{\mathcal{C}}} \subset A+B$.

Proof of the Kato-Rellich Theorem

$A+B$ is essentially self-adjoint on any core of A :

Let \mathcal{C} be a core of A that is $\mathcal{C} \subset \mathcal{D}(A)$ and $\overline{\left.A\right|_{\mathcal{C}}}=\bar{A}=A$.
Show: $\overline{(A+B) \mid c}=A+B$.

- $\left.(A+B)\right|_{\mathcal{C}} \subset A+B$ so $\overline{\left.(A+B)\right|_{\mathcal{C}}} \subset A+B$.
- For $\psi \in \mathcal{D}(A)$ we have $(\psi, A \psi) \in \overline{\mathcal{G}\left(\left.A\right|_{\mathcal{C}}\right)}$ so we can choose a sequence $\left(\psi_{n}\right)_{n \in \mathbb{N}}$ of \mathcal{C}-vectors such that

$$
\psi_{n} \underset{n \rightarrow \infty}{\longrightarrow} \psi \quad \text { and } \quad A \psi_{n} \underset{n \rightarrow \infty}{\longrightarrow} A \psi
$$

Proof of the Kato-Rellich Theorem

$A+B$ is essentially self-adjoint on any core of A :

Let \mathcal{C} be a core of A that is $\mathcal{C} \subset \mathcal{D}(A)$ and $\overline{\left.A\right|_{\mathcal{C}}}=\bar{A}=A$.
Show: $\overline{(A+B) \mid c}=A+B$.

- $\left.(A+B)\right|_{\mathcal{C}} \subset A+B$ so $\overline{\left.(A+B)\right|_{\mathcal{C}}} \subset A+B$.
- For $\psi \in \mathcal{D}(A)$ we have $(\psi, A \psi) \in \overline{\mathcal{G}\left(\left.A\right|_{\mathcal{C}}\right)}$ so we can choose a sequence $\left(\psi_{n}\right)_{n \in \mathbb{N}}$ of \mathcal{C}-vectors such that

$$
\psi_{n} \underset{n \rightarrow \infty}{\longrightarrow} \psi \quad \text { and } \quad A \psi_{n} \underset{n \rightarrow \infty}{\longrightarrow} A \psi
$$

Then

$$
\begin{aligned}
& \left\|\overline{\left.(A+B)\right|_{\mathcal{C}}} \psi_{n}-(A+B) \psi\right\| \\
& \leq(a+1)\left\|A \psi_{n}-A \psi\right\|+b\left\|\psi_{n}-\psi\right\| \underset{n \rightarrow \infty}{\longrightarrow} 0,
\end{aligned}
$$

Proof of the Kato-Rellich Theorem

$A+B$ is essentially self-adjoint on any core of A :

Let \mathcal{C} be a core of A that is $\mathcal{C} \subset \mathcal{D}(A)$ and $\overline{\left.A\right|_{\mathcal{C}}}=\bar{A}=A$.
Show: $\overline{(A+B) \mid c}=A+B$.

- $\left.(A+B)\right|_{\mathcal{C}} \subset A+B$ so $\overline{\left.(A+B)\right|_{\mathcal{C}}} \subset A+B$.
- For $\psi \in \mathcal{D}(A)$ we have $(\psi, A \psi) \in \overline{\mathcal{G}\left(\left.A\right|_{\mathcal{C}}\right)}$ so we can choose a sequence $\left(\psi_{n}\right)_{n \in \mathbb{N}}$ of \mathcal{C}-vectors such that

$$
\psi_{n} \underset{n \rightarrow \infty}{\longrightarrow} \psi \quad \text { and } \quad A \psi_{n} \underset{n \rightarrow \infty}{\longrightarrow} A \psi
$$

Then

$$
\begin{aligned}
& \left\|\overline{\left.(A+B)\right|_{\mathcal{C}}} \psi_{n}-(A+B) \psi\right\| \\
& \leq(a+1)\left\|A \psi_{n}-A \psi\right\|+b\left\|\psi_{n}-\psi\right\| \underset{n \rightarrow \infty}{\longrightarrow} 0,
\end{aligned}
$$

so $(\psi,(A+B) \psi) \in \mathcal{G}(\overline{(A+B) \mid \mathcal{C}})$.

Proof of the Kato-Rellich Theorem

$A+B$ is essentially self-adjoint on any core of A :

Let \mathcal{C} be a core of A that is $\mathcal{C} \subset \mathcal{D}(A)$ and $\overline{\left.A\right|_{\mathcal{C}}}=\bar{A}=A$.
Show: $\overline{(A+B) \mid c}=A+B$.

- $\left.(A+B)\right|_{\mathcal{C}} \subset A+B$ so $\overline{\left.(A+B)\right|_{\mathcal{C}}} \subset A+B$.
- For $\psi \in \mathcal{D}(A)$ we have $(\psi, A \psi) \in \overline{\mathcal{G}\left(\left.A\right|_{\mathcal{C}}\right)}$ so we can choose a sequence $\left(\psi_{n}\right)_{n \in \mathbb{N}}$ of \mathcal{C}-vectors such that

$$
\psi_{n} \underset{n \rightarrow \infty}{\longrightarrow} \psi \quad \text { and } \quad A \psi_{n} \underset{n \rightarrow \infty}{\longrightarrow} A \psi
$$

Then

$$
\begin{aligned}
& \left\|\overline{\left.(A+B)\right|_{\mathcal{C}}} \psi_{n}-(A+B) \psi\right\| \\
& \leq(a+1)\left\|A \psi_{n}-A \psi\right\|+b\left\|\psi_{n}-\psi\right\| \underset{n \rightarrow \infty}{\longrightarrow} 0,
\end{aligned}
$$

so $(\psi,(A+B) \psi) \in \mathcal{G}\left(\overline{\left.(A+B)\right|_{\mathcal{C}}}\right)$.
Conclusion: $\overline{\left.(A+B)\right|_{C}} \supset A+B$.

Proof of the Kato-Rellich Theorem

If $A \geq M$ then $A+B \geq M-\max \left\{\frac{b}{1-a}, a|M|+b\right\}:$

Proof of the Kato-Rellich Theorem

If $A \geq M$ then $A+B \geq M-\max \left\{\frac{b}{1-a}, a|M|+b\right\}:$
Under the assumption $A \geq M$ we want to show that

$$
\inf _{\substack{\psi \in \mathcal{D}(A) \\\|\psi\|=1}}\langle\psi,(A+B) \psi\rangle \geq M-\max \left\{\frac{b}{1-a}, a|M|+b\right\}
$$

Proof of the Kato-Rellich Theorem

If $A \geq M$ then $A+B \geq M-\max \left\{\frac{b}{1-a}, a|M|+b\right\}:$
Under the assumption $A \geq M$ we want to show that

$$
\inf _{\substack{\psi \in \mathcal{D}(A) \\\|\psi\|=1}}\langle\psi,(A+B) \psi\rangle \geq M-\max \left\{\frac{b}{1-a}, a|M|+b\right\}
$$

$$
\inf _{\substack{\psi \in \mathcal{D}(A) \\\|\psi\|=1}}\langle\psi,(A+B) \psi\rangle=\inf \sigma(A+B)
$$

Proof of the Kato-Rellich Theorem

If $A \geq M$ then $A+B \geq M-\max \left\{\frac{b}{1-a}, a|M|+b\right\}:$
Under the assumption $A \geq M$ we want to show that

$$
\inf \sigma(A+B) \quad \geq M-\max \left\{\frac{b}{1-a}, a|M|+b\right\}
$$

Proof of the Kato-Rellich Theorem

If $A \geq M$ then $A+B \geq M-\max \left\{\frac{b}{1-a}, a|M|+b\right\}:$
Under the assumption $A \geq M$ we want to show that

$$
\inf \sigma(A+B) \quad \geq M-\max \left\{\frac{b}{1-a}, a|M|+b\right\}
$$

i.e. that for any given $t \in \mathbb{R}$ satisfying

$$
-t<M-\max \left\{\frac{b}{1-a}, a|M|+b\right\}
$$

the operator $A+B+t$ has a bounded inverse.

Proof of the Kato-Rellich Theorem

If $A \geq M$ then $A+B \geq M-\max \left\{\frac{b}{1-a}, a|M|+b\right\}:$
Under the assumption $A \geq M$ we want to show that

$$
\inf \sigma(A+B) \quad \geq M-\max \left\{\frac{b}{1-a}, a|M|+b\right\}
$$

i.e. that for any given $t \in \mathbb{R}$ satisfying

$$
-t<M-\max \left\{\frac{b}{1-a}, a|M|+b\right\}
$$

the operator $A+B+t$ has a bounded inverse. Note that $\inf \sigma(A) \geq M>-t$ so the operator $A+t$ has a bounded inverse

Proof of the Kato-Rellich Theorem

If $A \geq M$ then $A+B \geq M-\max \left\{\frac{b}{1-a}, a|M|+b\right\}:$
Under the assumption $A \geq M$ we want to show that

$$
\inf \sigma(A+B) \quad \geq M-\max \left\{\frac{b}{1-a}, a|M|+b\right\}
$$

i.e. that for any given $t \in \mathbb{R}$ satisfying

$$
-t<M-\max \left\{\frac{b}{1-a}, a|M|+b\right\}
$$

the operator $A+B+t$ has a bounded inverse. Note that $\inf \sigma(A) \geq M>-t$ so the operator $A+t$ has a bounded inverse and thus

$$
(A+B+t) \varphi=\left(1+B(A+t)^{-1}\right)(A+t) \varphi \quad \text { for } \varphi \in \mathcal{D}(A) .
$$

Proof of the Kato-Rellich Theorem

If $A \geq M$ then $A+B \geq M-\max \left\{\frac{b}{1-a}, a|M|+b\right\}:$
Under the assumption $A \geq M$ we want to show that

$$
\inf \sigma(A+B) \quad \geq M-\max \left\{\frac{b}{1-a}, a|M|+b\right\}
$$

i.e. that for any given $t \in \mathbb{R}$ satisfying

$$
-t<M-\max \left\{\frac{b}{1-a}, a|M|+b\right\}
$$

the operator $A+B+t$ has a bounded inverse. Note that $\inf \sigma(A) \geq M>-t$ so the operator $A+t$ has a bounded inverse and thus

$$
(A+B+t) \varphi=\left(1+B(A+t)^{-1}\right)(A+t) \varphi \quad \text { for } \varphi \in \mathcal{D}(A) .
$$

Show: $1+B(A+t)^{-1}$ is invertible $\mathcal{H} \rightarrow \mathcal{H}$.

Proof of the Kato-Rellich Theorem

$1+B(A+t)^{-1}$ is invertible if $-t<M-\max \left\{\frac{b}{1-a}, a|M|+b\right\}:$

Proof of the Kato-Rellich Theorem

$1+B(A+t)^{-1}$ is invertible if $-t<M-\max \left\{\frac{b}{1-a}, a|M|+b\right\}$: An argument as above gives in the case $t>0$ that for $\psi \in \mathcal{H}$

$$
\begin{aligned}
\left\|A(A+t)^{-1} \psi\right\|^{2} & \leq\|\psi\|^{2}-\left(t^{2}+2 t M\right)\left\|(A+t)^{-1} \psi\right\|^{2} \\
& \leq \begin{cases}\frac{M^{2}}{(M+t)^{2}}\|\psi\|^{2} & \text { if } t^{2}+2 t M \leq 0 \\
\|\psi\|^{2} & \text { if } t^{2}+2 t M>0\end{cases}
\end{aligned}
$$

Proof of the Kato-Rellich Theorem

$\mathbf{1}+\boldsymbol{B}(\boldsymbol{A}+\boldsymbol{t})^{-1}$ is invertible if $-\boldsymbol{t}<\boldsymbol{M}-\boldsymbol{\operatorname { m a x }}\left\{\frac{b}{1-a}, a|M|+b\right\}$: An argument as above gives in the case $t>0$ that for $\psi \in \mathcal{H}$

$$
\begin{aligned}
\left\|A(A+t)^{-1} \psi\right\|^{2} & \leq\|\psi\|^{2}-\left(t^{2}+2 t M\right)\left\|(A+t)^{-1} \psi\right\|^{2} \\
& \leq \begin{cases}\frac{M^{2}}{(M+t)^{2}}\|\psi\|^{2} & \text { if } t^{2}+2 t M \leq 0 \\
\|\psi\|^{2} & \text { if } t^{2}+2 t M>0\end{cases}
\end{aligned}
$$

so $\left\|B(A+t)^{-1} \psi\right\|$

$$
\begin{aligned}
& \leq a\left\|A(A+t)^{-1} \psi\right\|+b\left\|(A+t)^{-1} \psi\right\| \\
& \leq \begin{cases}\left(a+\frac{b-a t}{M+t}\right)\|\psi\| & \text { if } t \leq 0 \\
\left(a \frac{|M|}{M+t}+\frac{b}{M+t}\right)\|\psi\| & \text { if } t>0 \text { and } t^{2}+2 t M \leq 0 \\
\left(a+\frac{b}{M+t}\right)\|\psi\| & \text { if } t>0 \text { and } t^{2}+2 t M>0\end{cases}
\end{aligned}
$$

Proof of the Kato-Rellich Theorem

$\mathbf{1}+\boldsymbol{B}(\boldsymbol{A}+\boldsymbol{t})^{-1}$ is invertible if $-\boldsymbol{t}<\boldsymbol{M}-\boldsymbol{\operatorname { m a x }}\left\{\frac{b}{1-a}, a|M|+b\right\}$: An argument as above gives in the case $t>0$ that for $\psi \in \mathcal{H}$

$$
\begin{aligned}
\left\|A(A+t)^{-1} \psi\right\|^{2} & \leq\|\psi\|^{2}-\left(t^{2}+2 t M\right)\left\|(A+t)^{-1} \psi\right\|^{2} \\
& \leq \begin{cases}\frac{M^{2}}{(M+t)^{2}}\|\psi\|^{2} & \text { if } t^{2}+2 t M \leq 0 \\
\|\psi\|^{2} & \text { if } t^{2}+2 t M>0\end{cases}
\end{aligned}
$$

so $\left\|B(A+t)^{-1} \psi\right\|$

$$
\begin{aligned}
& \leq a\left\|A(A+t)^{-1} \psi\right\|+b\left\|(A+t)^{-1} \psi\right\| \\
& \leq \begin{cases}\left(a+\frac{b-a t}{M+t}\right)\|\psi\| & \text { if } t \leq 0 \\
\left(a \frac{|M|}{M+t}+\frac{b}{M+t}\right)\|\psi\| & \text { if } t>0 \text { and } t^{2}+2 t M \leq 0 \\
\left(a+\frac{b}{M+t}\right)\|\psi\| & \text { if } t>0 \text { and } t^{2}+2 t M>0\end{cases}
\end{aligned}
$$

which means that $\left\|B(A+t)^{-1}\right\|<1$.

Schrödinger Operators

Remember for $d \in \mathbb{N}$:

Schrödinger Operators

Remember for $d \in \mathbb{N}$:

- $-\Delta$ is a self-adjoint (non-negative) operator on $L^{2}\left(\mathbb{R}^{d}\right)$ with domain $\mathcal{D}(-\Delta)=H^{2}\left(\mathbb{R}^{d}\right)$

Schrödinger Operators

Remember for $d \in \mathbb{N}$:

- $-\Delta$ is a self-adjoint (non-negative) operator on $L^{2}\left(\mathbb{R}^{d}\right)$ with domain $\mathcal{D}(-\Delta)=H^{2}\left(\mathbb{R}^{d}\right)$
- The multiplication operator corresponding to a measurable function $V: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is self-adjoint on $L^{2}\left(\mathbb{R}^{d}\right)$ with domain $\mathcal{D}(V)=\left\{\psi \in L^{2}\left(\mathbb{R}^{d}\right) \mid V \psi \in L^{2}\left(\mathbb{R}^{d}\right)\right\}$.

Schrödinger Operators

Remember for $d \in \mathbb{N}$:

- $-\Delta$ is a self-adjoint (non-negative) operator on $L^{2}\left(\mathbb{R}^{d}\right)$ with domain $\mathcal{D}(-\Delta)=H^{2}\left(\mathbb{R}^{d}\right)$
- The multiplication operator corresponding to a measurable function $V: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is self-adjoint on $L^{2}\left(\mathbb{R}^{d}\right)$ with domain $\mathcal{D}(V)=\left\{\psi \in L^{2}\left(\mathbb{R}^{d}\right) \mid V \psi \in L^{2}\left(\mathbb{R}^{d}\right)\right\}$.

We will consider the case where $d=3$ and V is in the space

$$
L^{2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right)=\left\{V_{2}+V_{\infty} \mid V_{2} \in L^{2}\left(\mathbb{R}^{3}\right) \text { and } V_{\infty} \in L^{\infty}\left(\mathbb{R}^{3}\right)\right\} .
$$

Schrödinger Operators

Remember for $d \in \mathbb{N}$:

- $-\Delta$ is a self-adjoint (non-negative) operator on $L^{2}\left(\mathbb{R}^{d}\right)$ with domain $\mathcal{D}(-\Delta)=H^{2}\left(\mathbb{R}^{d}\right)$
- The multiplication operator corresponding to a measurable function $V: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is self-adjoint on $L^{2}\left(\mathbb{R}^{d}\right)$ with domain $\mathcal{D}(V)=\left\{\psi \in L^{2}\left(\mathbb{R}^{d}\right) \mid V \psi \in L^{2}\left(\mathbb{R}^{d}\right)\right\}$.

We will consider the case where $d=3$ and V is in the space

$$
\begin{aligned}
& L^{2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right)=\left\{V_{2}+V_{\infty} \mid V_{2} \in L^{2}\left(\mathbb{R}^{3}\right) \text { and } V_{\infty} \in L^{\infty}\left(\mathbb{R}^{3}\right)\right\} . \\
& \text { For } V=V_{2}+V_{\infty} \in L^{2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right) \text { and } \psi \in H^{2}\left(\mathbb{R}^{3}\right) \text { we have }
\end{aligned}
$$

$$
\begin{aligned}
\|V \psi\|_{2} & \leq\left\|V_{2} \psi\right\|_{2}+\left\|V_{\infty} \psi\right\|_{2} \\
& \leq\left\|V_{2}\right\|_{2}\|\psi\|_{\infty}+\left\|V_{\infty}\right\|_{\infty}\|\psi\|_{2} \\
& \leq C\left(\left\|V_{2}\right\|_{2}+\left\|V_{\infty}\right\|_{\infty}\right)\|\psi\|_{H^{2}}
\end{aligned}
$$

Schrödinger Operators

Remember for $d \in \mathbb{N}$:

- $-\Delta$ is a self-adjoint (non-negative) operator on $L^{2}\left(\mathbb{R}^{d}\right)$ with domain $\mathcal{D}(-\Delta)=H^{2}\left(\mathbb{R}^{d}\right)$
- The multiplication operator corresponding to a measurable function $V: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is self-adjoint on $L^{2}\left(\mathbb{R}^{d}\right)$ with domain $\mathcal{D}(V)=\left\{\psi \in L^{2}\left(\mathbb{R}^{d}\right) \mid V \psi \in L^{2}\left(\mathbb{R}^{d}\right)\right\}$.

We will consider the case where $d=3$ and V is in the space

$$
L^{2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right)=\left\{V_{2}+V_{\infty} \mid V_{2} \in L^{2}\left(\mathbb{R}^{3}\right) \text { and } V_{\infty} \in L^{\infty}\left(\mathbb{R}^{3}\right)\right\} .
$$

For $V=V_{2}+V_{\infty} \in L^{2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right)$ and $\psi \in H^{2}\left(\mathbb{R}^{3}\right)$ we have

$$
\begin{aligned}
\|V \psi\|_{2} & \leq\left\|V_{2} \psi\right\|_{2}+\left\|V_{\infty} \psi\right\|_{2} \\
& \leq\left\|V_{2}\right\|_{2}\|\psi\|_{\infty}+\left\|V_{\infty}\right\|_{\infty}\|\psi\|_{2} \\
& \leq C\left(\left\|V_{2}\right\|_{2}+\left\|V_{\infty}\right\|_{\infty}\right)\|\psi\|_{H^{2}}
\end{aligned}
$$

so $\mathcal{D}(V) \supset \mathcal{D}(-\Delta)$.

Schrödinger Operators

Remember for $d \in \mathbb{N}$:

- $-\Delta$ is a self-adjoint (non-negative) operator on $L^{2}\left(\mathbb{R}^{d}\right)$ with domain $\mathcal{D}(-\Delta)=H^{2}\left(\mathbb{R}^{d}\right)$
- The multiplication operator corresponding to a measurable function $V: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is self-adjoint on $L^{2}\left(\mathbb{R}^{d}\right)$ with domain $\mathcal{D}(V)=\left\{\psi \in L^{2}\left(\mathbb{R}^{d}\right) \mid V \psi \in L^{2}\left(\mathbb{R}^{d}\right)\right\}$.

We will consider the case where $d=3$ and V is in the space

$$
L^{2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right)=\left\{V_{2}+V_{\infty} \mid V_{2} \in L^{2}\left(\mathbb{R}^{3}\right) \text { and } V_{\infty} \in L^{\infty}\left(\mathbb{R}^{3}\right)\right\} .
$$

For $V=V_{2}+V_{\infty} \in L^{2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right)$ and $\psi \in H^{2}\left(\mathbb{R}^{3}\right)$ we have

$$
\begin{aligned}
\|V \psi\|_{2} & \leq\left\|V_{2} \psi\right\|_{2}+\left\|V_{\infty} \psi\right\|_{2} \\
& \leq\left\|V_{2}\right\|_{2}\|\psi\|_{\infty}+\left\|V_{\infty}\right\|_{\infty}\|\psi\|_{2} \\
& \leq C\left(\left\|V_{2}\right\|_{2}+\left\|V_{\infty}\right\|_{\infty}\right)\|\psi\|_{H^{2}}
\end{aligned}
$$

so $\mathcal{D}(V) \supset \mathcal{D}(-\Delta)$. Thus, the Schrödinger operator $-\Delta+V$ is well defined on the domain $\mathcal{D}(-\Delta)=H^{2}\left(\mathbb{R}^{3}\right)$.

Self-adjointness of Schrödinger Operators

In quantum mechanics the self-adjointness of a given Schrödinger operator is essential

Self-adjointness of Schrödinger Operators

In quantum mechanics the self-adjointness of a given Schrödinger operator is essential - we can apply the Kato-Rellich theorem to $-\Delta+V$ in the case where $V \in L^{2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right)$ is real-valued if we manage to prove the following Lemma.

Lemma

Let $V \in L^{2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right)$. Then for any $a>0$ there exists a
$b \geq 0$ such that

$$
\|V \psi\|_{2} \leq a\|-\Delta \psi\|_{2}+b\|\psi\|_{2} .
$$

Self-adjointness of Schrödinger Operators

In quantum mechanics the self-adjointness of a given Schrödinger operator is essential - we can apply the Kato-Rellich theorem to $-\Delta+V$ in the case where $V \in L^{2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right)$ is real-valued if we manage to prove the following Lemma.

Lemma

Let $V \in L^{2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right)$. Then for any $a>0$ there exists a
$b \geq 0$ such that

$$
\|V \psi\|_{2} \leq a\|-\Delta \psi\|_{2}+b\|\psi\|_{2} .
$$

Hence, for real $V \in L^{2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right)$ the operator $-\Delta+V$ is self-adjoint on the domain $H^{2}\left(\mathbb{R}^{3}\right)$ and essentially self-adjoint on e.g. $C_{c}^{\infty}\left(\mathbb{R}^{3}\right)$.

Proof of Lemma

Note first that for all $\psi \in H^{2}\left(\mathbb{R}^{3}\right)$

$$
\|\psi\|_{\infty}=(2 \pi)^{-3} \sup _{\boldsymbol{x} \in \mathbb{R}^{3}}\left|\int_{\mathbb{R}^{3}} \mathrm{e}^{i \boldsymbol{x} \cdot \boldsymbol{p}} \widehat{\psi}(\boldsymbol{p}) \mathrm{d} \boldsymbol{p}\right|
$$

Proof of Lemma

Note first that for all $\psi \in H^{2}\left(\mathbb{R}^{3}\right)$

$$
\begin{array}{rlr}
\|\psi\|_{\infty} & =(2 \pi)^{-3} \sup _{\boldsymbol{x} \in \mathbb{R}^{3}}\left|\int_{\mathbb{R}^{3}} \mathrm{e}^{i x \cdot p} \widehat{\psi}(\boldsymbol{p}) \mathrm{d} \boldsymbol{p}\right| \\
& \leq(2 \pi)^{-3} \sup _{\boldsymbol{x} \in \mathbb{R}^{3}} \int_{\mathbb{R}^{3}} & |\widehat{\psi}(\boldsymbol{p})| \mathrm{d} \boldsymbol{p}
\end{array}
$$

Proof of Lemma

Note first that for all $\psi \in H^{2}\left(\mathbb{R}^{3}\right)$

$$
\begin{array}{rlr}
\|\psi\|_{\infty} & =(2 \pi)^{-3} \sup _{\boldsymbol{x} \in \mathbb{R}^{3}}\left|\int_{\mathbb{R}^{3}} \mathrm{e}^{i x \cdot \boldsymbol{p}} \widehat{\psi}(\boldsymbol{p}) \mathrm{d} \boldsymbol{p}\right| \\
& \leq(2 \pi)^{-3} \int_{\mathbb{R}^{3}} \quad|\widehat{\psi}(\boldsymbol{p})| \mathrm{d} \boldsymbol{p}
\end{array}
$$

Proof of Lemma

Note first that for all $\psi \in H^{2}\left(\mathbb{R}^{3}\right)$ and all $\varepsilon>0$

$$
\begin{aligned}
\|\psi\|_{\infty} & =(2 \pi)^{-3} \sup _{\boldsymbol{x} \in \mathbb{R}^{3}}\left|\int_{\mathbb{R}^{3}} \mathrm{e}^{i \boldsymbol{x} \cdot \boldsymbol{p}} \widehat{\psi}(\boldsymbol{p}) \mathrm{d} \boldsymbol{p}\right| \\
& \leq(2 \pi)^{-3} \quad \int_{\mathbb{R}^{3}}\left(\varepsilon|\boldsymbol{p}|^{4}+1\right)^{-\frac{1}{2}}\left(\varepsilon|\boldsymbol{p}|^{4}+1\right)^{\frac{1}{2}}|\widehat{\psi}(\boldsymbol{p})| \mathrm{d} \boldsymbol{p}
\end{aligned}
$$

Proof of Lemma

Note first that for all $\psi \in H^{2}\left(\mathbb{R}^{3}\right)$ and all $\varepsilon>0$

$$
\begin{aligned}
\|\psi\|_{\infty} & =(2 \pi)^{-3} \sup _{\boldsymbol{x} \in \mathbb{R}^{3}}\left|\int_{\mathbb{R}^{3}} \mathrm{e}^{i \boldsymbol{x} \cdot \boldsymbol{p}} \widehat{\psi}(\boldsymbol{p}) \mathrm{d} \boldsymbol{p}\right| \\
& \leq(2 \pi)^{-3} \quad \int_{\mathbb{R}^{3}}\left(\varepsilon|\boldsymbol{p}|^{4}+1\right)^{-\frac{1}{2}}\left(\varepsilon|\boldsymbol{p}|^{4}+1\right)^{\frac{1}{2}}|\widehat{\psi}(\boldsymbol{p})| \mathrm{d} \boldsymbol{p} \\
& \leq(2 \pi)^{-3}\left(\int_{\mathbb{R}^{3}}\left(\varepsilon|\boldsymbol{p}|^{4}+1\right)^{-1} \mathrm{~d} \boldsymbol{p}\right)^{\frac{1}{2}}\left(\int_{\mathbb{R}^{3}}\left(\varepsilon|\boldsymbol{p}|^{4}+1\right)|\widehat{\psi}(\boldsymbol{p})|^{2} \mathrm{~d} \boldsymbol{p}\right)^{\frac{1}{2}}
\end{aligned}
$$

Proof of Lemma

Note first that for all $\psi \in H^{2}\left(\mathbb{R}^{3}\right)$ and all $\varepsilon>0$

$$
\begin{aligned}
\|\psi\|_{\infty} & =(2 \pi)^{-3} \sup _{\boldsymbol{x} \in \mathbb{R}^{3}}\left|\int_{\mathbb{R}^{3}} \mathrm{e}^{i \boldsymbol{x} \cdot \boldsymbol{p}} \widehat{\psi}(\boldsymbol{p}) \mathrm{d} \boldsymbol{p}\right| \\
& \leq(2 \pi)^{-3} \quad \int_{\mathbb{R}^{3}}\left(\varepsilon|\boldsymbol{p}|^{4}+1\right)^{-\frac{1}{2}}\left(\varepsilon|\boldsymbol{p}|^{4}+1\right)^{\frac{1}{2}}|\widehat{\psi}(\boldsymbol{p})| \mathrm{d} \boldsymbol{p} \\
& \leq(2 \pi)^{-3}\left(\int_{\mathbb{R}^{3}}\left(\varepsilon|\boldsymbol{p}|^{4}+1\right)^{-1} \mathrm{~d} \boldsymbol{p}\right)^{\frac{1}{2}}\left(\int_{\mathbb{R}^{3}}\left(\varepsilon|\boldsymbol{p}|^{4}+1\right)|\widehat{\psi}(\boldsymbol{p})|^{2} \mathrm{~d} \boldsymbol{p}\right)^{\frac{1}{2}}
\end{aligned}
$$

Polar coordinates : $\int_{\mathbb{R}^{3}}\left(\varepsilon|\boldsymbol{p}|^{4}+1\right)^{-1} \mathrm{~d} \boldsymbol{p}=\sqrt{2} \pi^{2} \varepsilon^{-\frac{3}{4}}$.

Proof of Lemma

Note first that for all $\psi \in H^{2}\left(\mathbb{R}^{3}\right)$ and all $\varepsilon>0$

$$
\begin{aligned}
\|\psi\|_{\infty} & =(2 \pi)^{-3} \sup _{\boldsymbol{x} \in \mathbb{R}^{3}}\left|\int_{\mathbb{R}^{3}} \mathrm{e}^{i \boldsymbol{x} \cdot \boldsymbol{p}} \widehat{\psi}(\boldsymbol{p}) \mathrm{d} \boldsymbol{p}\right| \\
& \leq(2 \pi)^{-3} \quad \int_{\mathbb{R}^{3}}\left(\varepsilon|\boldsymbol{p}|^{4}+1\right)^{-\frac{1}{2}}\left(\varepsilon|\boldsymbol{p}|^{4}+1\right)^{\frac{1}{2}}|\widehat{\psi}(\boldsymbol{p})| \mathrm{d} \boldsymbol{p} \\
& \leq(2 \pi)^{-3}\left(\sqrt{2} \pi^{2} \varepsilon^{-\frac{3}{4}}\right)^{\frac{1}{2}}\left(\int_{\mathbb{R}^{3}}\left(\varepsilon|\boldsymbol{p}|^{4}+1\right)|\widehat{\psi}(\boldsymbol{p})|^{2} \mathrm{~d} \boldsymbol{p}\right)^{\frac{1}{2}}
\end{aligned}
$$

Polar coordinates : $\int_{\mathbb{R}^{3}}\left(\varepsilon|\boldsymbol{p}|^{4}+1\right)^{-1} \mathrm{~d} \boldsymbol{p}=\sqrt{2} \pi^{2} \varepsilon^{-\frac{3}{4}}$.

Proof of Lemma

Note first that for all $\psi \in H^{2}\left(\mathbb{R}^{3}\right)$ and all $\varepsilon>0$

$$
\begin{aligned}
&\|\psi\|_{\infty}=(2 \pi)^{-3} \sup _{\boldsymbol{x} \in \mathbb{R}^{3}}\left|\int_{\mathbb{R}^{3}} \mathrm{e}^{i \boldsymbol{x} \cdot \boldsymbol{p}} \widehat{\psi}(\boldsymbol{p}) \mathrm{d} \boldsymbol{p}\right| \\
& \leq(2 \pi)^{-3} \quad \int_{\mathbb{R}^{3}}\left(\varepsilon|\boldsymbol{p}|^{4}+1\right)^{-\frac{1}{2}}\left(\varepsilon|\boldsymbol{p}|^{4}+1\right)^{\frac{1}{2}}|\widehat{\psi}(\boldsymbol{p})| \mathrm{d} \boldsymbol{p} \\
& \leq(2 \pi)^{-3}\left(\sqrt{2} \pi^{2} \varepsilon^{-\frac{3}{4}}\right)^{\frac{1}{2}}\left(\int_{\mathbb{R}^{3}}\left(\varepsilon|\boldsymbol{p}|^{4}+1\right)|\widehat{\psi}(\boldsymbol{p})|^{2} \mathrm{~d} \boldsymbol{p}\right)^{\frac{1}{2}} \\
& \int_{\mathbb{R}^{3}}\left(\varepsilon|\boldsymbol{p}|^{4}+1\right)|\widehat{\psi}(\boldsymbol{p})|^{2} \mathrm{~d} \boldsymbol{p}=\left.\left.\varepsilon \int_{\mathbb{R}^{3}}| | \boldsymbol{p}\right|^{2} \widehat{\psi}(\boldsymbol{p})\right|^{2} \mathrm{~d} \boldsymbol{p}+\int_{\mathbb{R}^{3}}|\widehat{\psi}(\boldsymbol{p})|^{2} \mathrm{~d} \boldsymbol{p} \\
&=\varepsilon\|-\Delta \psi\|_{2}^{2}+\|\psi\|_{2}^{2} .
\end{aligned}
$$

Proof of Lemma

Note first that for all $\psi \in H^{2}\left(\mathbb{R}^{3}\right)$ and all $\varepsilon>0$

$$
\begin{aligned}
&\|\psi\|_{\infty}=(2 \pi)^{-3} \sup _{\boldsymbol{x} \in \mathbb{R}^{3}}\left|\int_{\mathbb{R}^{3}} \mathrm{e}^{i \boldsymbol{x} \cdot \boldsymbol{p}} \widehat{\psi}(\boldsymbol{p}) \mathrm{d} \boldsymbol{p}\right| \\
& \leq(2 \pi)^{-3} \quad \int_{\mathbb{R}^{3}}\left(\varepsilon|\boldsymbol{p}|^{4}+1\right)^{-\frac{1}{2}}\left(\varepsilon|\boldsymbol{p}|^{4}+1\right)^{\frac{1}{2}}|\widehat{\psi}(\boldsymbol{p})| \mathrm{d} \boldsymbol{p} \\
& \leq(2 \pi)^{-3}\left(\sqrt{2} \pi^{2} \varepsilon^{-\frac{3}{4}}\right)^{\frac{1}{2}}\left(\varepsilon\|-\Delta \psi\|_{2}^{2}+\|\psi\|_{2}^{2}\right)^{\frac{1}{2}} \\
& \int_{\mathbb{R}^{3}}\left(\varepsilon|\boldsymbol{p}|^{4}+1\right)|\widehat{\psi}(\boldsymbol{p})|^{2} \mathrm{~d} \boldsymbol{p}=\left.\left.\varepsilon \int_{\mathbb{R}^{3}}| | \boldsymbol{p}\right|^{2} \widehat{\psi}(\boldsymbol{p})\right|^{2} \mathrm{~d} \boldsymbol{p}+\int_{\mathbb{R}^{3}}|\widehat{\psi}(\boldsymbol{p})|^{2} \mathrm{~d} \boldsymbol{p} \\
&=\varepsilon\|-\Delta \psi\|_{2}^{2}+\|\psi\|_{2}^{2} .
\end{aligned}
$$

Proof of Lemma

Note first that for all $\psi \in H^{2}\left(\mathbb{R}^{3}\right)$ and all $\varepsilon>0$

$$
\begin{aligned}
\|\psi\|_{\infty} & =(2 \pi)^{-3} \sup _{\boldsymbol{x} \in \mathbb{R}^{3}}\left|\int_{\mathbb{R}^{3}} \mathrm{e}^{i \boldsymbol{x} \cdot \boldsymbol{p}} \widehat{\psi}(\boldsymbol{p}) \mathrm{d} \boldsymbol{p}\right| \\
& \leq(2 \pi)^{-3} \quad \int_{\mathbb{R}^{3}}\left(\varepsilon|\boldsymbol{p}|^{4}+1\right)^{-\frac{1}{2}}\left(\varepsilon|\boldsymbol{p}|^{4}+1\right)^{\frac{1}{2}}|\widehat{\psi}(\boldsymbol{p})| \mathrm{d} \boldsymbol{p} \\
& \leq(2 \pi)^{-3}\left(\quad \sqrt{2} \pi^{2} \varepsilon^{-\frac{3}{4}}\right)^{\frac{1}{2}}\left(\varepsilon\|-\Delta \psi\|_{2}^{2}+\|\psi\|_{2}^{2}\right)^{\frac{1}{2}} \\
& \leq C \varepsilon^{\frac{1}{8}}\|-\Delta \psi\|_{2}+C \varepsilon^{-\frac{3}{8}}\|\psi\|_{2}
\end{aligned}
$$

Proof of Lemma

Note first that for all $\psi \in H^{2}\left(\mathbb{R}^{3}\right)$ and all $\varepsilon>0$

$$
\begin{aligned}
\|\psi\|_{\infty} & =(2 \pi)^{-3} \sup _{\boldsymbol{x} \in \mathbb{R}^{3}}\left|\int_{\mathbb{R}^{3}} \mathrm{e}^{i \boldsymbol{x} \cdot \boldsymbol{p}} \widehat{\psi}(\boldsymbol{p}) \mathrm{d} \boldsymbol{p}\right| \\
& \leq(2 \pi)^{-3} \quad \int_{\mathbb{R}^{3}}\left(\varepsilon|\boldsymbol{p}|^{4}+1\right)^{-\frac{1}{2}}\left(\varepsilon|\boldsymbol{p}|^{4}+1\right)^{\frac{1}{2}}|\widehat{\psi}(\boldsymbol{p})| \mathrm{d} \boldsymbol{p} \\
& \leq(2 \pi)^{-3}\left(\quad \sqrt{2} \pi^{2} \varepsilon^{-\frac{3}{4}}\right)^{\frac{1}{2}}\left(\varepsilon\|-\Delta \psi\|_{2}^{2}+\|\psi\|_{2}^{2}\right)^{\frac{1}{2}} \\
& \leq C \varepsilon^{\frac{1}{8}}\|-\Delta \psi\|_{2}+C \varepsilon^{-\frac{3}{8}}\|\psi\|_{2}
\end{aligned}
$$

so given a $V=V_{2}+V_{\infty}$ with $V_{2} \in L^{2}\left(\mathbb{R}^{3}\right)$ and $V_{\infty} \in L^{\infty}\left(\mathbb{R}^{3}\right)$ we have for all $\psi \in H^{2}\left(\mathbb{R}^{3}\right)$ and $\varepsilon>0$ that

$$
\|V \psi\|_{2} \leq\left\|V_{2} \psi\right\|_{2}+\left\|V_{\infty} \psi\right\|_{2}
$$

Proof of Lemma

Note first that for all $\psi \in H^{2}\left(\mathbb{R}^{3}\right)$ and all $\varepsilon>0$

$$
\begin{aligned}
\|\psi\|_{\infty} & =(2 \pi)^{-3} \sup _{\boldsymbol{x} \in \mathbb{R}^{3}}\left|\int_{\mathbb{R}^{3}} \mathrm{e}^{i \boldsymbol{x} \cdot \boldsymbol{p}} \widehat{\psi}(\boldsymbol{p}) \mathrm{d} \boldsymbol{p}\right| \\
& \leq(2 \pi)^{-3} \quad \int_{\mathbb{R}^{3}}\left(\varepsilon|\boldsymbol{p}|^{4}+1\right)^{-\frac{1}{2}}\left(\varepsilon|\boldsymbol{p}|^{4}+1\right)^{\frac{1}{2}}|\widehat{\psi}(\boldsymbol{p})| \mathrm{d} \boldsymbol{p} \\
& \leq(2 \pi)^{-3}\left(\quad \sqrt{2} \pi^{2} \varepsilon^{-\frac{3}{4}}\right)^{\frac{1}{2}}\left(\varepsilon\|-\Delta \psi\|_{2}^{2}+\|\psi\|_{2}^{2}\right)^{\frac{1}{2}} \\
& \leq C \varepsilon^{\frac{1}{8}}\|-\Delta \psi\|_{2}+C \varepsilon^{-\frac{3}{8}}\|\psi\|_{2}
\end{aligned}
$$

so given a $V=V_{2}+V_{\infty}$ with $V_{2} \in L^{2}\left(\mathbb{R}^{3}\right)$ and $V_{\infty} \in L^{\infty}\left(\mathbb{R}^{3}\right)$ we have for all $\psi \in H^{2}\left(\mathbb{R}^{3}\right)$ and $\varepsilon>0$ that

$$
\begin{aligned}
\|V \psi\|_{2} & \leq\left\|V_{2} \psi\right\|_{2}+\left\|V_{\infty} \psi\right\|_{2} \\
& \leq\left\|V_{2}\right\|_{2}\|\psi\|_{\infty}+\left\|V_{\infty}\right\|_{\infty}\|\psi\|_{2}
\end{aligned}
$$

Proof of Lemma

Note first that for all $\psi \in H^{2}\left(\mathbb{R}^{3}\right)$ and all $\varepsilon>0$

$$
\begin{aligned}
\|\psi\|_{\infty} & =(2 \pi)^{-3} \sup _{\boldsymbol{x} \in \mathbb{R}^{3}}\left|\int_{\mathbb{R}^{3}} \mathrm{e}^{i \boldsymbol{x} \cdot \boldsymbol{p}} \widehat{\psi}(\boldsymbol{p}) \mathrm{d} \boldsymbol{p}\right| \\
& \leq(2 \pi)^{-3} \quad \int_{\mathbb{R}^{3}}\left(\varepsilon|\boldsymbol{p}|^{4}+1\right)^{-\frac{1}{2}}\left(\varepsilon|\boldsymbol{p}|^{4}+1\right)^{\frac{1}{2}}|\widehat{\psi}(\boldsymbol{p})| \mathrm{d} \boldsymbol{p} \\
& \leq(2 \pi)^{-3}\left(\quad \sqrt{2} \pi^{2} \varepsilon^{-\frac{3}{4}}\right)^{\frac{1}{2}}\left(\varepsilon\|-\Delta \psi\|_{2}^{2}+\|\psi\|_{2}^{2}\right)^{\frac{1}{2}} \\
& \leq C \varepsilon^{\frac{1}{8}}\|-\Delta \psi\|_{2}+C \varepsilon^{-\frac{3}{8}}\|\psi\|_{2}
\end{aligned}
$$

so given a $V=V_{2}+V_{\infty}$ with $V_{2} \in L^{2}\left(\mathbb{R}^{3}\right)$ and $V_{\infty} \in L^{\infty}\left(\mathbb{R}^{3}\right)$ we have for all $\psi \in H^{2}\left(\mathbb{R}^{3}\right)$ and $\varepsilon>0$ that

$$
\begin{aligned}
\|V \psi\|_{2} & \leq\left\|V_{2} \psi\right\|_{2}+\left\|V_{\infty} \psi\right\|_{2} \\
& \leq\left\|V_{2}\right\|_{2}\|\psi\|_{\infty}+\left\|V_{\infty}\right\|_{\infty}\|\psi\|_{2} \\
& \leq C\left\|V_{2}\right\|_{2} \varepsilon^{\frac{1}{8}}\|-\Delta \psi\|_{2}+\left(C\left\|V_{2}\right\|_{2} \varepsilon^{-\frac{3}{8}}+\left\|V_{\infty}\right\|_{\infty}\right)\|\psi\|_{2}
\end{aligned}
$$

The Hydrogen Atom

Example:

The Hamiltonian $-\Delta-\frac{1}{|x|}$ for the Hydrogen atom is a self-adjoint operator with domain $H^{2}\left(\mathbb{R}^{3}\right)$ and essentially self-adjoint on e.g. $C_{c}^{\infty}\left(\mathbb{R}^{3}\right)$

The Hydrogen Atom

Example:

The Hamiltonian $-\Delta-\frac{1}{|x|}$ for the Hydrogen atom is a self-adjoint operator with domain $H^{2}\left(\mathbb{R}^{3}\right)$ and essentially self-adjoint on e.g. $C_{c}^{\infty}\left(\mathbb{R}^{3}\right)$ since

$$
-\frac{1}{|\boldsymbol{x}|}=-1_{\mathcal{B}(\mathbf{0}, 1)}(\boldsymbol{x}) \frac{1}{|\boldsymbol{x}|}-1_{\mathbb{R}^{3} \backslash \mathcal{B}(\mathbf{0}, 1)}(\boldsymbol{x}) \frac{1}{|\boldsymbol{x}|}
$$

where the function $\boldsymbol{x} \mapsto\left(-1_{\mathcal{B}(\mathbf{0}, 1)}(\boldsymbol{x}) \frac{1}{|x|}\right)$ is square integrable and $\boldsymbol{x} \mapsto\left(-1_{\mathbb{R}^{3} \backslash \mathcal{B}(\mathbf{0}, 1)}(\boldsymbol{x}) \frac{1}{|\boldsymbol{x}|}\right)$ is bounded.

The Hydrogen Atom

Example:

The Hamiltonian $-\Delta-\frac{1}{|x|}$ for the Hydrogen atom is a self-adjoint operator with domain $H^{2}\left(\mathbb{R}^{3}\right)$ and essentially self-adjoint on e.g. $C_{c}^{\infty}\left(\mathbb{R}^{3}\right)$ since

$$
-\frac{1}{|\boldsymbol{x}|}=-1_{\mathcal{B}(\mathbf{0}, 1)}(\boldsymbol{x}) \frac{1}{|\boldsymbol{x}|}-1_{\mathbb{R}^{3} \backslash \mathcal{B}(\mathbf{0}, 1)}(\boldsymbol{x}) \frac{1}{|\boldsymbol{x}|}
$$

where the function $\boldsymbol{x} \mapsto\left(-1_{\mathcal{B}(0,1)}(\boldsymbol{x}) \frac{1}{|\boldsymbol{x}|}\right)$ is square integrable and $\boldsymbol{x} \mapsto\left(-1_{\mathbb{R}^{3} \backslash \mathcal{B}(\mathbf{0}, 1)}(\boldsymbol{x}) \frac{1}{|\boldsymbol{x}|}\right)$ is bounded.

Note also that $-\Delta$ is bounded from below and so the Kato-Rellich theorem also implies that the Hamiltonian $-\Delta-\frac{1}{|x|}$ is bounded from below

The Hydrogen Atom

Example:

The Hamiltonian $-\Delta-\frac{1}{|x|}$ for the Hydrogen atom is a self-adjoint operator with domain $H^{2}\left(\mathbb{R}^{3}\right)$ and essentially self-adjoint on e.g. $C_{c}^{\infty}\left(\mathbb{R}^{3}\right)$ since

$$
-\frac{1}{|\boldsymbol{x}|}=-1_{\mathcal{B}(\mathbf{0}, 1)}(\boldsymbol{x}) \frac{1}{|\boldsymbol{x}|}-1_{\mathbb{R}^{3} \backslash \mathcal{B}(\mathbf{0}, 1)}(\boldsymbol{x}) \frac{1}{|\boldsymbol{x}|}
$$

where the function $\boldsymbol{x} \mapsto\left(-1_{\mathcal{B}(0,1)}(\boldsymbol{x}) \frac{1}{|\boldsymbol{x}|}\right)$ is square integrable and $\boldsymbol{x} \mapsto\left(-1_{\mathbb{R}^{3} \backslash \mathcal{B}(\mathbf{0}, 1)}(\boldsymbol{x}) \frac{1}{|\boldsymbol{x}|}\right)$ is bounded.

Note also that $-\Delta$ is bounded from below and so the Kato-Rellich theorem also implies that the Hamiltonian $-\Delta-\frac{1}{|x|}$ is bounded from below: The Hydrogen atom is stable.

Many-body Schrödinger operators

Given $N \in \mathbb{N}$ measurable potentials $V_{1}, \ldots, V_{N}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ consider the many-body Schrödinger operator $-\Delta+\sum_{k=1}^{N} V_{k}$ formally given by

$$
\begin{aligned}
& \left(-\Delta+\sum_{k=1}^{N} V_{k}\right) \psi\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right) \\
& =-\Delta \psi\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right)+\sum_{k=1}^{N} V_{k}\left(\boldsymbol{x}_{k}\right) \psi\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right)
\end{aligned}
$$

for (suitable) square integrable functions $\psi: \mathbb{R}^{3 N} \rightarrow \mathbb{C}$.

Many-body Schrödinger operators

Given $N \in \mathbb{N}$ measurable potentials $V_{1}, \ldots, V_{N}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ consider the many-body Schrödinger operator $-\Delta+\sum_{k=1}^{N} V_{k}$ formally given by

$$
\begin{aligned}
& \left(-\Delta+\sum_{k=1}^{N} V_{k}\right) \psi\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right) \\
& =-\Delta \psi\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right)+\sum_{k=1}^{N} V_{k}\left(\boldsymbol{x}_{k}\right) \psi\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right)
\end{aligned}
$$

for (suitable) square integrable functions $\psi: \mathbb{R}^{3 N} \rightarrow \mathbb{C}$.
As in the one-body case $-\Delta+\sum_{k=1}^{N} V_{k}$ is seen to define an operator in $L^{2}\left(\mathbb{R}^{3 N}\right)$ with domain $H^{2}\left(\mathbb{R}^{3 N}\right)$.

Many-body Schrödinger operators

Given $N \in \mathbb{N}$ measurable potentials $V_{1}, \ldots, V_{N}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ consider the many-body Schrödinger operator $-\Delta+\sum_{k=1}^{N} V_{k}$ formally given by

$$
\begin{aligned}
& \left(-\Delta+\sum_{k=1}^{N} V_{k}\right) \psi\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right) \\
& =-\Delta \psi\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right)+\sum_{k=1}^{N} V_{k}\left(\boldsymbol{x}_{k}\right) \psi\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right)
\end{aligned}
$$

for (suitable) square integrable functions $\psi: \mathbb{R}^{3 N} \rightarrow \mathbb{C}$.
As in the one-body case $-\Delta+\sum_{k=1}^{N} V_{k}$ is seen to define an operator in $L^{2}\left(\mathbb{R}^{3 N}\right)$ with domain $H^{2}\left(\mathbb{R}^{3 N}\right)$.

Kato's Theorem

Let $V_{1}, \ldots, V_{N} \in L^{2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right)$ be real. Then $-\Delta+\sum_{k=1}^{N} V_{k}$ is self-adjoint on $H^{2}\left(\mathbb{R}^{3 N}\right)$ and essentially self-adjoint on $C_{c}^{\infty}\left(\mathbb{R}^{3 N}\right)$.

Proof of Kato's Theorem

$\sum_{k=1}^{N} V_{k}$ is (c, d)-bounded wrt. $-\Delta$ for some $c<1$ and d :

Proof of Kato's Theorem

$\sum_{k=1}^{N} V_{k}$ is (c, d)-bounded wrt. $-\Delta$ for some $c<1$ and d :
Let $k \in\{1, \ldots, N\}$ and $\psi \in H^{2}\left(\mathbb{R}^{3 N}\right)$ be arbitrary. Then for all a there exists a b such that

$$
\begin{aligned}
& \left\|V_{k} \psi\right\|_{2}^{2} \\
& =\int_{\mathbb{R}^{3}} \cdots \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \cdots \int_{\mathbb{R}^{3}}\left(\int_{\mathbb{R}^{3}}\left|V_{k}\left(\boldsymbol{x}_{k}\right) \psi\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right)\right|^{2} \mathrm{~d} \boldsymbol{x}_{k}\right) \mathrm{d} \boldsymbol{x}_{1} \cdots \mathrm{~d} \boldsymbol{x}_{k-1} \mathrm{~d} \boldsymbol{x}_{k+1} \cdots \mathrm{~d} \boldsymbol{x}_{N}
\end{aligned}
$$

Proof of Kato's Theorem

$\sum_{k=1}^{N} V_{k}$ is (c, d)-bounded wrt. $-\Delta$ for some $c<1$ and d :
Let $k \in\{1, \ldots, N\}$ and $\psi \in H^{2}\left(\mathbb{R}^{3 N}\right)$ be arbitrary. Then for all a there exists a b such that

$$
\begin{aligned}
& \left\|V_{k} \psi\right\|_{2}^{2} \\
& =\int_{\mathbb{R}^{3}} \cdots \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \ldots \int_{\mathbb{R}^{3}}\left(\int_{\mathbb{R}^{3}}\left|V_{k}\left(\boldsymbol{x}_{k}\right) \psi\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right)\right|^{2} \mathrm{~d} \boldsymbol{x}_{k}\right) \mathrm{d} \boldsymbol{x}_{1} \cdots \mathrm{~d} \boldsymbol{x}_{k-1} \mathrm{~d} \boldsymbol{x}_{k+1} \cdots \mathrm{~d} \boldsymbol{x}_{N} \\
& \leq \\
& \leq 2 a^{2} \int_{\mathbb{R}^{3}} \cdots \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \cdots \int_{\mathbb{R}^{3}}\left(\int_{\mathbb{R}^{3}}\left|-\Delta_{k} \psi\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right)\right|^{2} \mathrm{~d} \boldsymbol{x}_{k}\right) \mathrm{d} \boldsymbol{x}_{1} \cdots \mathrm{~d} \boldsymbol{x}_{k-1} \mathrm{~d} \boldsymbol{x}_{k+1} \cdots \mathrm{~d} \boldsymbol{x}_{N} \\
& \\
& \quad+2 b^{2} \int_{\mathbb{R}^{3}} \ldots \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \cdots \int_{\mathbb{R}^{3}}\left(\left.\int_{\mathbb{R}^{3}} \psi\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right)\right|^{2} \mathrm{~d} \boldsymbol{x}_{k}\right) \mathrm{d} \boldsymbol{x}_{1} \cdots \mathrm{~d} \boldsymbol{x}_{k-1} \mathrm{~d} \boldsymbol{x}_{k+1} \cdots \mathrm{~d} \boldsymbol{x}_{N}
\end{aligned}
$$

Proof of Kato's Theorem

$\sum_{k=1}^{N} V_{k}$ is (c, d)-bounded wrt. $-\Delta$ for some $c<1$ and d :
Let $k \in\{1, \ldots, N\}$ and $\psi \in H^{2}\left(\mathbb{R}^{3 N}\right)$ be arbitrary. Then for all a there exists a b such that

$$
\begin{aligned}
&\left\|V_{k} \psi\right\|_{2}^{2} \\
&= \int_{\mathbb{R}^{3}} \ldots \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \ldots \int_{\mathbb{R}^{3}}\left(\int_{\mathbb{R}^{3}}\left|V_{k}\left(\boldsymbol{x}_{k}\right) \psi\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right)\right|^{2} \mathrm{~d} \boldsymbol{x}_{k}\right) \mathrm{d} \boldsymbol{x}_{1} \cdots \mathrm{~d} \boldsymbol{x}_{k-1} \mathrm{~d} \boldsymbol{x}_{k+1} \cdots \mathrm{~d} \boldsymbol{x}_{N} \\
& \leq 2 a^{2} \int_{\mathbb{R}^{3}} \cdots \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \cdots \int_{\mathbb{R}^{3}}\left(\int_{\mathbb{R}^{3}}\left|-\Delta_{k} \psi\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right)\right|^{2} \mathrm{~d} \boldsymbol{x}_{k}\right) \mathrm{d} \boldsymbol{x}_{1} \cdots \mathrm{~d} \boldsymbol{x}_{k-1} \mathrm{~d} \boldsymbol{x}_{k+1} \cdots \mathrm{~d} \boldsymbol{x}_{N} \\
&+2 b^{2} \int_{\mathbb{R}^{3}} \cdots \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \cdots \int_{\mathbb{R}^{3}}\left(\int_{\mathbb{R}^{3}}\left|\psi\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right)\right|^{2} \mathrm{~d} \boldsymbol{x}_{k}\right) \mathrm{d} \boldsymbol{x}_{1} \cdots \mathrm{~d} \boldsymbol{x}_{k-1} \mathrm{~d} \boldsymbol{x}_{k+1} \cdots \mathrm{~d} \boldsymbol{x}_{N} \\
&= 2 a^{2}\left\|-\Delta_{k} \psi\right\|_{2}^{2}+2 b^{2}\|\psi\|_{2}^{2}
\end{aligned}
$$

Proof of Kato's Theorem

$\sum_{k=1}^{N} V_{k}$ is (c, d)-bounded wrt. $-\Delta$ for some $c<1$ and d :
Let $k \in\{1, \ldots, N\}$ and $\psi \in H^{2}\left(\mathbb{R}^{3 N}\right)$ be arbitrary. Then for all a there exists a b such that

$$
\begin{aligned}
&\left\|V_{k} \psi\right\|_{2}^{2} \\
&= \int_{\mathbb{R}^{3}} \ldots \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \ldots \int_{\mathbb{R}^{3}}\left(\int_{\mathbb{R}^{3}}\left|V_{k}\left(\boldsymbol{x}_{k}\right) \psi\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right)\right|^{2} \mathrm{~d} \boldsymbol{x}_{k}\right) \mathrm{d} \boldsymbol{x}_{1} \cdots \mathrm{~d} \boldsymbol{x}_{k-1} \mathrm{~d} \boldsymbol{x}_{k+1} \cdots \mathrm{~d} \boldsymbol{x}_{N} \\
& \leq 2 a^{2} \int_{\mathbb{R}^{3}} \cdots \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \cdots \int_{\mathbb{R}^{3}}\left(\int_{\mathbb{R}^{3}}\left|-\Delta_{k} \psi\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right)\right|^{2} \mathrm{~d} \boldsymbol{x}_{k}\right) \mathrm{d} \boldsymbol{x}_{1} \cdots \mathrm{~d} \boldsymbol{x}_{k-1} \mathrm{~d} \boldsymbol{x}_{k+1} \cdots \mathrm{~d} \boldsymbol{x}_{N} \\
&+2 b^{2} \int_{\mathbb{R}^{3}} \cdots \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \cdots \int_{\mathbb{R}^{3}}\left(\int_{\mathbb{R}^{3}}\left|\psi\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right)\right|^{2} \mathrm{~d} \boldsymbol{x}_{k}\right) \mathrm{d} \boldsymbol{x}_{1} \cdots \mathrm{~d} \boldsymbol{x}_{k-1} \mathrm{~d} \boldsymbol{x}_{k+1} \cdots \mathrm{~d} \boldsymbol{x}_{N} \\
&= 2 a^{2}\left\|-\Delta_{k} \psi\right\|_{2}^{2}+2 b^{2}\|\psi\|_{2}^{2}
\end{aligned}
$$

SO

$$
\left\|V_{k} \psi\right\|_{2} \leq \sqrt{2} a\left\|-\Delta_{k} \psi\right\|_{2}+\sqrt{2} b\|\psi\|_{2} .
$$

Proof of Kato's Theorem

$\sum_{k=1}^{N} V_{k}$ is (c, d)-bounded wrt. $-\Delta$ for some $c<1$ and d :
We have seen that for all a there exists a b such that

$$
\left\|V_{k} \psi\right\|_{2} \leq \sqrt{2} a\left\|-\Delta_{k} \psi\right\|_{2}+\sqrt{2} b\|\psi\|_{2} .
$$

Proof of Kato's Theorem

$\sum_{k=1}^{N} V_{k}$ is (c, d)-bounded wrt. $-\Delta$ for some $c<1$ and d :
We have seen that for all a there exists a b such that

$$
\left\|V_{k} \psi\right\|_{2} \leq \sqrt{2} a\left\|-\Delta_{k} \psi\right\|_{2}+\sqrt{2} b\|\psi\|_{2} .
$$

Therefore

$$
\begin{aligned}
\left\|\sum_{k=1}^{N} V_{k} \psi\right\|_{2} & \leq \sum_{k=1}^{N}\left\|V_{k} \psi\right\|_{2} \\
& \leq \sqrt{2} a \sum_{k=1}^{N}\left\|-\Delta_{k} \psi\right\|_{2}+\sqrt{2} b \sum_{k=1}^{N}\|\psi\|_{2}
\end{aligned}
$$

Proof of Kato's Theorem

$\sum_{k=1}^{N} V_{k}$ is (c, d)-bounded wrt. $-\Delta$ for some $c<1$ and d :
We have seen that for all a there exists a b such that

$$
\left\|V_{k} \psi\right\|_{2} \leq \sqrt{2} a\left\|-\Delta_{k} \psi\right\|_{2}+\sqrt{2} b\|\psi\|_{2} .
$$

Therefore

$$
\begin{aligned}
\left\|\sum_{k=1}^{N} V_{k} \psi\right\|_{2} & \leq \sum_{k=1}^{N}\left\|V_{k} \psi\right\|_{2} \\
& \leq \sqrt{2} a \sum_{k=1}^{N}\left\|-\Delta_{k} \psi\right\|_{2}+\sqrt{2} b \sum_{k=1}^{N}\|\psi\|_{2} \\
& \leq \sqrt{2} a N\|-\Delta \psi\|_{2}+\sqrt{2} b N\|\psi\|_{2}
\end{aligned}
$$

Proof of Kato's Theorem

$\sum_{k=1}^{N} V_{k}$ is (c, d)-bounded wrt. $-\Delta$ for some $c<1$ and d :
We have seen that for all a there exists a b such that

$$
\left\|V_{k} \psi\right\|_{2} \leq \sqrt{2} a\left\|-\Delta_{k} \psi\right\|_{2}+\sqrt{2} b\|\psi\|_{2} .
$$

Therefore

$$
\begin{aligned}
\left\|\sum_{k=1}^{N} V_{k} \psi\right\|_{2} & \leq \sum_{k=1}^{N}\left\|V_{k} \psi\right\|_{2} \\
& \leq \sqrt{2} a \sum_{k=1}^{N}\left\|-\Delta_{k} \psi\right\|_{2}+\sqrt{2} b \sum_{k=1}^{N}\|\psi\|_{2} \\
& \leq \sqrt{2} a N\|-\Delta \psi\|_{2}+\sqrt{2} b N\|\psi\|_{2}
\end{aligned}
$$

and so the desired result follows from the Kato-Rellich Theorem by choosing a such that $\sqrt{2} a N<1$.

References

[GG] Gerd Grubb: Distributions and Operators, Graduate Texts in Mathematics 252, Springer Science, 2009
[RS] Michael Reed, Barry Simon: Methods of Modern Mathematical Physics, Vol. 2: Fourier Analysis, Self-Adjointness, Academic Press, 1975.

