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Introduction

Let (#, (-,-)) be a Hilbert space and consider linear operators
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Introduction

Let (#, (-,-)) be a Hilbert space and consider linear operators

A:D(A) - Hand B: D(B) — H.

The sum A + B is the operator that acts according to the identity
(A+B)p=Ap+ By
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The sum A + B is the operator that acts according to the identity
(A+B)p=Ap+ By

for vectors ¢ in the domain D(A + B) = D(A) N D(B).
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Introduction

Let (#, (-,-)) be a Hilbert space and consider linear operators
A:D(A) - Hand B: D(B) — H.

The sum A + B is the operator that acts according to the identity
(A+B)p=Ap+ By

for vectors ¢ in the domain D(A + B) = D(A) N D(B).

Philosophy: If ‘B is small compared to A’, then A and the
perturbed operator A + B should have similar properties.

Focus: Preservation of self-adjointness
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Introduction

Let (#, (-,-)) be a Hilbert space and consider linear operators
A:D(A) - Hand B: D(B) — H.

The sum A + B is the operator that acts according to the identity
(A+B)p=Ap+ By

for vectors ¢ in the domain D(A + B) = D(A) N D(B).

Philosophy: If ‘B is small compared to A’, then A and the
perturbed operator A + B should have similar properties.

Rigorous meaning?
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‘B is small compared to A’

Assume that A and B are densely defined and suppose that
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‘B is small compared to A’
Assume that A and B are densely defined and suppose that

©® D(B) D D(A),
® For some a,b > 0 and all ¢ € D(A) we have

[Bell < allAg]l + ble|l- (1)
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‘B is small compared to A’

Definition

Assume that A and B are densely defined and suppose that
©® D(B) D D(A),
® For some a,b > 0 and all ¢ € D(A) we have

[1Boll < allAp]l + bll¢l|- (1)

Then B is said to be (a, b)-bounded with respect to A.
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‘B is small compared to A’

Definition

Assume that A and B are densely defined and suppose that
©® D(B) D D(A),
® For some a,b > 0 and all ¢ € D(A) we have

[1Boll < allAp]l + bll¢l|- (1)

Then B is said to be (a, b)-bounded with respect to A.
Note that the inequality (1) implies
1Bo|* < a'lApl® +'ll]*. 2

with ¢’ = 24% and b’ = 2b2.
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‘B is small compared to A’

Definition

Assume that A and B are densely defined and suppose that
©® D(B) D D(A),
® For some a,b > 0 and all ¢ € D(A) we have

[Bell < allAgl + bljo]l. (1)
Then B is said to be (a, b)-bounded with respect to A.
Note that the inequality (1) implies
1Bol* < d'l|Ag]* + bl )
with @’ = 24? and b’ = 2b2.

Conversely, (2) implies (1) with a = va’ and b = /1.
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The Kato-Rellich Theorem

Theorem (Kato-Rellich)

Let A be self-adjoint and consider a symmetric operator B for
which there exists 0 < a < 1 and b > 0 such that B is
(a, b)-bounded with respect to A.
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The Kato-Rellich Theorem

Theorem (Kato-Rellich)

Let A be self-adjoint and consider a symmetric operator B for
which there exists 0 < a < 1 and b > 0 such that B is
(a, b)-bounded with respect to A.

Then A + B is self-adjoint on D(A) and essentially self-adjoint
on any core of A.
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The Kato-Rellich Theorem

Theorem (Kato-Rellich)

Let A be self-adjoint and consider a symmetric operator B for
which there exists 0 < a < 1 and b > 0 such that B is
(a, b)-bounded with respect to A.

Then A + B is self-adjoint on D(A) and essentially self-adjoint
on any core of A.

Moreover, if A is bounded below by M, then A + B is bounded
below by M — max{ -, a|M| + b}.
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Proof of the Kato-Rellich Theorem
Self-adjointness of A + B on D(A):
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Proof of the Kato-Rellich Theorem
Self-adjointness of A + B on D(A):

A + B is symmetric on the dense domain D(A) so the
self-adjointness of A + B will by [GG,Thm 12.10 and (12.13)]
follow if

Ran(A+ B+ ip) =#H for some p > 0.
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Proof of the Kato-Rellich Theorem
Self-adjointness of A + B on D(A):

A + B is symmetric on the dense domain D(A) so the
self-adjointness of A + B will by [GG,Thm 12.10 and (12.13)]
follow if

Ran(A+ B+ ip) =#H for some p > 0.
For the case with ‘4" note that

(A+B+in)p=(1+BA+in) ") A +iu)p forpc D(A).
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Proof of the Kato-Rellich Theorem
Self-adjointness of A + B on D(A):

A + B is symmetric on the dense domain D(A) so the
self-adjointness of A + B will by [GG,Thm 12.10 and (12.13)]
follow if

Ran(A+ B+ ip) =#H for some p > 0.
For the case with ‘4" note that

(A+B+in)p=(1+BA+in) ")A+iu)p forpc DA).

[GG,Thm 12.10]:  —ip ¢ o(A)  forall u > 0.
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Proof of the Kato-Rellich Theorem
Self-adjointness of A + B on D(A):

A + B is symmetric on the dense domain D(A) so the
self-adjointness of A + B will by [GG,Thm 12.10 and (12.13)]
follow if

Ran(A+ B+ ip) =#H for some p > 0.
For the case with ‘4" note that

(A+B+ipn)p = (1+BA+iu) ") A +in)p forpc DA).

[GG,Thm 12.10]: Ran(A + in) =H forall x> 0.
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Proof of the Kato-Rellich Theorem
Self-adjointness of A + B on D(A):

A + B is symmetric on the dense domain D(A) so the
self-adjointness of A + B will by [GG,Thm 12.10 and (12.13)]
follow if

Ran(A+ B+ ip) =#H for some p > 0.
For the case with ‘4" note that

(A+B+in)p = (1+BA+in) ")A+iu)p forpc DA).

Show: 1 + B(A + in)~" is invertible H — # for some u > 0.
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Proof of the Kato-Rellich Theorem
1+ B(A +ip)~!is invertible H — H for some p > 0:
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Proof of the Kato-Rellich Theorem
1+ B(A +ip)~!is invertible H — H for some p > 0:
For all p € D(A)

lA+in) ¢  IP=l1A  » P+l ¢ P
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Proof of the Kato-Rellich Theorem
1+ B(A +ip)~!is invertible H — H for some p > 0:
For all p € D(A)

lA+ip) v IP=lA ¢ P+l ¢ P

Set = (A+iu)~ 'y fory € H
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Proof of the Kato-Rellich Theorem
1+ B(A +ip)~!is invertible H — H for some p > 0:
Forally € H

(A + im) (A + i)~ '[P = A + i)~ |2 + w2 ([ (A + i) "2
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Proof of the Kato-Rellich Theorem
1+ B(A +ip)~!is invertible H — H for some p > 0:
Forally € H

(A + i) (A + i) "I = JAGA + ip) ™ DI + 12 (A + ip) ™ )2
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Proof of the Kato-Rellich Theorem
1+ B(A +ip)~!is invertible H — H for some p > 0:
Forally € H

1117 = A + i) "' 1P + (1A + ip) " |
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Proof of the Kato-Rellich Theorem
1+ B(A +ip)~!is invertible H — H for some p > 0:

Forall ¢ € H
117 = A + i) ™" 1P + (1A + ip) " |2
SO
A + i) "' 17 = [[l* = w2 lI(A + i)~ )2 ,

1
1A+ i)~ 'p|* = F(Hiﬁll2 — [IA(A + i) "'l ’
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Proof of the Kato-Rellich Theorem
1+ B(A +ip)~!is invertible H — H for some p > 0:

Forally € |
(1> = A + i) "I + 12| (A + i)~
SO
IAGA + i)' 1? = 1917 = 12 [[(A + i)'l ;
1A + ip) =9[> = %(nwnz— 1A(A + i)~ ']?) ;

Non-negative
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Proof of the Kato-Rellich Theorem
1+ B(A +ip)~!is invertible H — H for some p > 0:

Forally € |
(1> = A + i) "I + 12| (A + i)~
SO
1A + i) "1 = 917 = 12 1(A + i)~ I < (|9,

1 1
1A + i)~ > = ;(Ilwll2 — A +ip) T l?) < ?Ilwllz,
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Proof of the Kato-Rellich Theorem
1+ B(A +ip)~!is invertible H — H for some p > 0:

Forally € H
1017 = IAA + i) ™" ? + @2 [l (A + i)' |?
SO
A + i) l? = 0l? = @2 ll(A + i)~ I < ]2,
1A + i)~ "0l = %(IIQPII2 — A +iw)~'WIP) < %IWJIIZ,
whereby

IB(A +in) ™"l < allA(A + i) "' + BII(A +ip)
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Proof of the Kato-Rellich Theorem
1+ B(A +ip)~!is invertible H — H for some p > 0:

Forall v € A
1911 = I|AA + i) "> + i (A + i)~ |

SO

1A + i)~ I = 0l? — k(A + i)~ I < ol
1A + i)~ l* = %(IWII2 —[lAA + i) 'YI?) < énwnz,
whereby
IB(A + i) "'l < allA(A + ip) ™'l + bII(A + i)~ |
< (a2l
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Proof of the Kato-Rellich Theorem
1+ B(A +ip)~!is invertible H — H for some p > 0:

Forally € |
(1> = A + i) "I + 12| (A + i)~
SO
1A + i) "1 = 917 = 12 1(A + i)~ I < (|9,

1 1
1A + i)~ > = ;(Ilwll2 — A +ip) T l?) < ?Hwnz,

whereby
IB(A + i)~ < al|A(A + i) ™" || + bII(A + i)~
b
< Z
< (a2 )1l
Choose i > 0 so that ||B(A +iu) || < 1.
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Proof of the Kato-Rellich Theorem
A + B is essentially self-adjoint on any core of A:
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Proof of the Kato-Rellich Theorem
A + B is essentially self-adjoint on any core of A:
Let C be a core of A thatis C ¢ D(A) and Alc = A
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Proof of the Kato-Rellich Theorem
A + B is essentially self-adjoint on any core of A:
Let C be a core of A thatis C ¢ D(A) and Alc = A = A.
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Proof of the Kato-Rellich Theorem
A + B is essentially self-adjoint on any core of A:
Let C be a core of A thatis C ¢ D(A) and Alc = A = A.

Show: (A + B)|c = A+ B.
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Proof of the Kato-Rellich Theorem
A + B is essentially self-adjoint on any core of A:
Let C be a core of A thatis C ¢ D(A) and Alc = A = A.
Show: (A + B)|c = A+ B.

* (A+B)lcCA+B
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Proof of the Kato-Rellich Theorem
A + B is essentially self-adjoint on any core of A:
Let C be a core of A thatis C ¢ D(A) and Alc = A = A.

Show: (A + B)|c = A+ B.
* (A+B)lcCA+B

closed extension
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Proof of the Kato-Rellich Theorem
A + B is essentially self-adjoint on any core of A:
Let C be a core of A thatis C ¢ D(A) and Alc = A = A.
Show: (A + B)|c = A+ B.

e (A+B)|[c CA+Bso(A+B)cCA+B.
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Proof of the Kato-Rellich Theorem
A + B is essentially self-adjoint on any core of A:
Let C be a core of A thatis C ¢ D(A) and Alc = A = A.

Show: (A + B)|c = A+ B.
e (A+B)|[c CA+Bso(A+B)cCA+B.

« Fory € D(A) we have (v,Av) € G(Alc) so we can
choose a sequence (¢,),en 0f C-vectors such that

v, — ¥ and Ay, — Av.
n— o0 n— o0
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Proof of the Kato-Rellich Theorem
A + B is essentially self-adjoint on any core of A:
Let C be a core of A thatis C ¢ D(A) and Alc = A = A.

Show: (A + B)|c = A+ B.
e (A+B)|[c CA+Bso(A+B)cCA+B.

« Fory € D(A) we have (v,Av) € G(Alc) so we can
choose a sequence (¢,),en 0f C-vectors such that

v, — ¥ and Ay, — Av.
n— o0 n— o0
Then

(A +B)[ctn — (A+ B
S (a+ 1>||A'¢}n —A¢|| +b||"/}n - ¢|| njo 07

Kim Petersen (Department of Mathematical Sciences) — Perturbations of Self-adjoint Operators — 27/10/2011
Slide 7/16




UNIVERSITY OF COPENHAGEN FACULTY OF SCIENCE

Proof of the Kato-Rellich Theorem
A + B is essentially self-adjoint on any core of A:
Let C be a core of A thatis C ¢ D(A) and Alc = A = A.
Show: (A + B)|c = A+ B.

e (A+B)|[c CA+Bso(A+B)cCA+B.

« Fory € D(A) we have (v,Av) € G(Alc) so we can
choose a sequence (¢,),en 0f C-vectors such that

v, — ¢ and Ay, — At
n— o0 n— 00
Then

(A +B)[ctn — (A+ B
S (a+ 1>||A'¢}n —A¢|| +b||"/}n - ¢|| njo 07

s (¢, (A +B)¢b) € G((A T B)|c).
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Proof of the Kato-Rellich Theorem
A + B is essentially self-adjoint on any core of A:
Let C be a core of A thatis C ¢ D(A) and Alc = A = A.

Show: (A + B)|c = A+ B.
e (A+B)|[c CA+Bso(A+B)cCA+B.

« Fory € D(A) we have (v,Av) € G(Alc) so we can
choose a sequence (¢,),en 0f C-vectors such that

Uy njo ¥ and Ay, n;)(} A,
Then
(A + B)levn — (A + B)Y||

< (a+ D][Agy — AP + bl = Pl — 0,

s0 (¥, (A + B)Y) € G((A +B)lc).
Conclusion: (A + B)|c D A+ B.
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Proof of the Kato-Rellich Theorem
IfA>MthenA +B > M — max{;Z,a|M| +b}:
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Proof of the Kato-Rellich Theorem
IfA>MthenA +B > M — max{;Z,a|M| +b}:
Under the assumption A > M we want to show that

inf (1, (A + B)) > M — max {% alM| + b}

YeD(A)
llll=1
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Proof of the Kato-Rellich Theorem
IfA>MthenA + B > M — max{;%,a|M| +b}:
Under the assumption A > M we want to show that
inf (0, (A+B)v) > M — max {IL alM]| + b}
—da

$H€ED(A)
lvl=1

fei%f(A)(w, (A + B))) = info(A + B)
pl|=1
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Proof of the Kato-Rellich Theorem
IfA>MthenA +B > M — max{;Z,a|M| +b}:

Under the assumption A > M we want to show that

b
info(A + B) ZM—max{l—,a|M|+b}
—a
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Proof of the Kato-Rellich Theorem
IfA>MthenA + B > M —max{;2,a|M| +b}:

Under the assumption A > M we want to show that
. b
info(A + B) > M — max 1—,a\M|+b
—da
i.e. that for any given r € R satisfying
b
—t <M —max{ ——,alM|+b
1—a
the operator A + B + ¢t has a bounded inverse.

—It . U(A—}—B) B
T 1 7

M= max {2 ot}
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Proof of the Kato-Rellich Theorem
IfA>MthenA + B > M —max{;2,a|M| +b}:

Under the assumption A > M we want to show that
. b
info(A + B) > M — max 1—,a\M|+b
—da
i.e. that for any given r € R satisfying
b
—f < M — max 1—,a|M| +b
—da

the operator A + B + ¢ has a bounded inverse. Note that
info(A) > M > —r so the operator A + ¢ has a bounded inverse
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Proof of the Kato-Rellich Theorem
IfA>MthenA+ B> M — max{;2,alM|+b}:

Under the assumption A > M we want to show that
. b
info(A + B) > M — max 1—,a\M|+b
—da
i.e. that for any given r € R satisfying
b
—f < M — max 1—,a|M| +b
—da

the operator A + B + ¢ has a bounded inverse. Note that
info(A) > M > —r so the operator A + ¢ has a bounded inverse
and thus

A+B+0p=(1+BA+1)"YA+1)p foryeDA).
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Proof of the Kato-Rellich Theorem
IfA>MthenA + B > M —max{;2,a|M| +b}:

Under the assumption A > M we want to show that
. b
info(A + B) > M — max 1—,a\M|+b
—da
i.e. that for any given r € R satisfying
b
—f < M — max 1—,a|M| +b
—da

the operator A + B + ¢ has a bounded inverse. Note that
info(A) > M > —r so the operator A + ¢ has a bounded inverse
and thus

A+B+t)p=(1+BA+1))A+1t)p forpc DA).
Show: 1 + B(A + 1)~ ! is invertible H — H.

Kim Petersen (Department of Mathematical Sciences) — Perturbations of Self-adjoint Operators — 27/10/2011
Slide 8/16




UNIVERSITY OF COPENHAGEN FACULTY OF SCIENCE

Proof of the Kato-Rellich Theorem
1+ B(A +1¢)"!isinvertible if —t < M — max{ll':,a|M| +b}:
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Proof of the Kato-Rellich Theorem

1+ B(A + )~ 'is invertible if —t < M — max{;2,a|M| +b}:

An argument as above gives in the case r > 0 that for v € H
IAA + 07" < [9IP — (2 +2M)[[(A + )" 2

M? s
< WWH if £ 4+2tM <0
||¢||2 iR +2tM >0
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Proof of the Kato-Rellich Theorem

1+ B(A + )~ 'is invertible if —t < M — max{;2,a|M| +b}:
An argument as above gives in the case ¢ > 0 that for v eH
IAA + 07" < [9IP — (2 +2M)[[(A + )" 2

M? s
< WWH if £ 4+2tM <0
||7/’H2 iR +2tM >0

so [[B(A+1)""Y]
< allA(A + 07"l +oll(A+ 1)

ifr <0
(a+ MH)nwn ifr <
< (a M| )||¢|| ifr>0and? +2:M <0
o M+t M+t -

(a+ g )0l it > 0and £ 204 > 0
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Proof of the Kato-Rellich Theorem

1+ B(A + )~ 'is invertible if —t < M — max{;2,a|M| +b}:
An argument as above gives in the case ¢ > 0 that for v eH
IAA + 07" < [9IP — (2 +2M)[[(A + )" 2

M? s
< WWH if £ 4+2tM <0
||7/’H2 iR +2tM >0

so [[B(A+1)""Y]
< allA(A + 07"l +oll(A+ 1)

if 1 <0

(a+ MH)nwn i <

<4 (a M| >||¢|| if 1> 0and 2 +2M < 0

B M1 Mt =
(a+ g )0l it > 0and £ 204 > 0

which means that [|B(A +1)~!| < 1.
Kim Petersen (Department of Mathematical Sciences) — Perturbations of Self-adjoint Operators — 27/10/2011
Slide 9/16




UNIVERSITY OF COPENHAGEN FACULTY OF SCIENCE

Schrédinger Operators
Remember for d € N:
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Schrédinger Operators
Remember for d € N:
e —Ais a self-adjoint (non-negative) operator on L?(R¢) with
domain D(-A) = H*(RY)
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Schrédinger Operators
Remember for d € N:
e —Ais a self-adjoint (non-negative) operator on L?(R¢) with
domain D(—A) = H*(R)
e The multiplication operator corresponding to a measurable
function V : RY — R is self-adjoint on L2(R?) with domain
D(V) = {y € L*(RY) | VY € L*(RY)}.
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Schrédinger Operators
Remember for d € N:
e —Ais a self-adjoint (non-negative) operator on L?(R¢) with
domain D(—A) = H*(RY)
e The multiplication operator corresponding to a measurable
function V : RY — R is self-adjoint on L2(R?) with domain
D(V) = {y € L*(RY) | VY € L*(RY)}.

We will consider the case where d = 3 and V is in the space

LA(R?) + L®(R?) = {V, + Vo | V2 € L*(R?) and V,, € L¥(R?)}.
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Schrédinger Operators
Remember for d € N:
e —Ais a self-adjoint (non-negative) operator on L?(R¢) with
domain D(—A) = H*(RY)
e The multiplication operator corresponding to a measurable
function V : RY — R is self-adjoint on L2(R?) with domain
D(V) = {y € L*(RY) | VY € L*(RY)}.

We will consider the case where d = 3 and V is in the space
L*(R3) 4 L®°(R?) = {Vs + Vi | Vo € L*(R?) and V. € L™ (R%)}.
For V=V, + V, € L*(R?) + L°(R?) and v € H*(R?) we have

Vibllz < [[Vatdllz + [[Veotbll2
< Val2ll$lloe + Voo llos [l 1l2
< C(IVall2 + Veolloo) 112
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Schrédinger Operators
Remember for d € N:
e —Ais a self-adjoint (non-negative) operator on L?(R¢) with
domain D(—A) = H*(RY)
e The multiplication operator corresponding to a measurable
function V : RY — R is self-adjoint on L2(R?) with domain
D(V) = {y € L*(RY) | VY € L*(RY)}.

We will consider the case where d = 3 and V is in the space

L*(R3) 4 L®°(R?) = {Vs + Vi | Vo € L*(R?) and V. € L™ (R%)}.

For V=V, + V, € L*(R?) + L°(R?) and v € H*(R?) we have
Vil < IV2tll2 + Vool

< IV2ll2llelloo + I Voolloo Il
< C(IVall2 + Veolloo) 112

so D(V) D D(—A).
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Schrédinger Operators
Remember for d € N:
e —Ais a self-adjoint (non-negative) operator on L?(R¢) with
domain D(—A) = H*(RY)
e The multiplication operator corresponding to a measurable
function V : RY — R is self-adjoint on L2(R?) with domain
D(V) = {y € L*(RY) | VY € L*(RY)}.

We will consider the case where d = 3 and V is in the space

L*(R3) 4 L®°(R?) = {Vs + Vi | Vo € L*(R?) and V. € L™ (R%)}.

For V=V, + V, € L*(R?) + L°(R?) and v € H*(R?) we have
Vil < IV2tll2 + Vool

< IV2ll2llelloo + I Voolloo Il
< C(IVall2 + Veolloo) 112

so D(V) D D(—A). Thus, the Schrdédinger operator —A 4+ V' is
well defined on the domain D(—A) = H*(R?).
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Self-adjointness of Schrédinger Operators

In quantum mechanics the self-adjointness of a given
Schrédinger operator is essential
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Self-adjointness of Schrédinger Operators

In quantum mechanics the self-adjointness of a given
Schrédinger operator is essential — we can apply the
Kato-Rellich theorem to —A + V in the case where

V € L2(R?) 4+ L>(R?) is real-valued if we manage to prove the
following Lemma.

Lemma

Let V € L*(R?) + L= (R?). Then for any a > 0 there exists a
b > 0 such that

IVll2 < all = Adlla + bl|5]f2-
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Self-adjointness of Schrédinger Operators

In quantum mechanics the self-adjointness of a given
Schrédinger operator is essential — we can apply the
Kato-Rellich theorem to —A + V in the case where

V € L2(R?) 4+ L>(R?) is real-valued if we manage to prove the
following Lemma.

Lemma

Let V € L*(R?) + L= (R?). Then for any a > 0 there exists a
b > 0 such that

IVll2 < all = Adlla + bl|5]f2-

Hence, for real V € L?(R?) 4+ L>°(R?) the operator —A + V is
self-adjoint on the domain H?(R?) and essentially self-adjoint on
e.g. C(R?).
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Proof of Lemma
Note first that for all 1 € H?(R?)

[l = (2m) 7 sup
xeR3

e
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Proof of Lemma
Note first that for all 1 € H?(R?)

[lloc = (2m) 7 sup

e

xeR3
_3 >
< (2m) 7 sup / ¥ (p)| dp
xeR3 JR3
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Proof of Lemma
Note first that for all 1 € H?(R?)

[¢le = (2m) 7 sup
xeR3

<[ 90)|

e
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Proof of Lemma
Note first that for all » € H*(R*) and all ¢ > 0

[¢le = (2m) 7 sup
xeR3

<en [ et el i) 4

e
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Proof of Lemma
Note first that for all » € H*(R*) and all ¢ > 0

[¢le = (2m) 7 sup
xeR3

<en [ et el i) 4

<@ ( [ bl =1 ) ([ b+ 0lT0) )

e
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Proof of Lemma
Note first that for all » € H*(R*) and all ¢ > 0

[¢le = (2m) 7 sup
xeR3

<en [ et el i) 4

<@ ([ ol =1 ) ([ bl +lde) @)

e

Polar coordinates : / (elp[* + 1)~ dp = V2rle 3.
R3
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Proof of Lemma
Note first that for all » € H*(R*) and all ¢ > 0

[¢le = (2m) 7 sup
xeR3

<en [ et el i) 4
<o ( vare ) ([ept i e)

e

Polar coordinates : / (elp[* + 1)~ dp = V2rle 3.
R3
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Proof of Lemma
Note first that for all » € H*(R*) and all ¢ > 0

[¢le = (2m) 7 sup
xeR3

<en [ et el i) 4
cen?( vaeet ) ([ epl i e)

e

/(ewul)!@@nzdp:e/ |u:|2$<p>|2dp+/ 15p) > dp
R3 R3 R3
— el - AYIE + 1.
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Proof of Lemma
Note first that for all » € H*(R*) and all ¢ > 0

[¢le = (2m) 7 sup
xeR3

<en [ et el i) 4

e

1

cen( vaRet ) (el ave i )

/(ewul)!@@nzdp:e/ |u:|2$<p>|2dp+/ 15p) > dp
R3 R3 R3
— el - AYIE + 1.
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Proof of Lemma
Note first that for all » € H*(R*) and all ¢ > 0

[¢le = (2m) 7 sup
xeR3

<en [ et el i) 4

e

1

como( et ) a-aeng )
< Cet| = Aply + Ce [[Y
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Proof of Lemma
Note first that for all » € H*(R*) and all ¢ > 0

[¢le = (2m) 7 sup
xeR3

<en [ et el i) 4

e

1

como( et ) a-aeng )
< Cet| = Aply + Ce [[Y

sogivenaV =V, + V,, with V, € L*(R?) and V,, € L*(R?) we
have for all 1 € H*(R?) and ¢ > 0 that

Vill2 < IV2tll2 + Vool
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Proof of Lemma
Note first that for all » € H*(R*) and all ¢ > 0

[¢le = (2m) 7 sup
xeR3

<en [ et el i) 4

e

1

como( et ) a-aeng )
< Cet| = Aply + Ce [[Y

sogivenaV =V, + V,, with V, € L*(R?) and V,, € L*(R?) we
have for all 1 € H*(R?) and ¢ > 0 that

Vibll2 < [[Vatdll2 + [[Veotbll2
< [Vall2ll#lloe + Voo llso 1112
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Proof of Lemma
Note first that for all » € H*(R*) and all ¢ > 0

[¢le = (2m) 7 sup
xeR3

<en [ et el i) 4

e

1

como( et ) a-aeng )
< Cet| = Aply + Ce [[Y

sogivenaV =V, + V,, with V, € L*(R?) and V,, € L*(R?) we
have for all 1 € H*(R?) and ¢ > 0 that
VY[l < [Varbll2 + [V ¥ll2
< Val2ll$lloe + Voo lloslI¥]l2
1 _3
< ClVall2e® || = Aglla + (Cl[Vall2e ™% + [[Voolloo) [¥]]2-
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The Hydrogen Atom

Example:

The Hamiltonian —A — ﬁ for the Hydrogen atom is a

self-adjoint operator with domain H*(R?) and essentially
self-adjoint on e.g. C=°(R?)

Kim Petersen (Dep of ical Sciences) — of Self-adjoint Operators — 27/10/2011 .
Slide 13/16




The Hydrogen Atom

Example:

The Hamiltonian —A — ﬁ for the Hydrogen atom is a

self-adjoint operator with domain H*(R?) and essentially
self-adjoint on e.g. C=°(R?) since

1 1 1
—1 = 1. ®) 7 — Ies\s,1)(*)
] O] O

where the function x — (—15(071)(x)|71|) is square integrable and

x = (=1 0,1 (x) ;) is bounded.

]
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The Hydrogen Atom

Example:

The Hamiltonian —A — ﬁ for the Hydrogen atom is a

self-adjoint operator with domain H*(R?) and essentially
self-adjoint on e.g. C=°(R?) since

1 1 1
—1 = 1. ®) 7 — Ies\s,1)(*)
] O] O

where the function x — (—15(071)(x)‘i) is square integrable and

x|
X (—1R3\B(071)(x)ﬁ) is bounded.
Note also that —A is bounded from below and so the
Kato-Rellich theorem also implies that the Hamiltonian —A — ﬁ
is bounded from below
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The Hydrogen Atom

Example:

The Hamiltonian —A — ﬁ for the Hydrogen atom is a

self-adjoint operator with domain H*(R?) and essentially
self-adjoint on e.g. C=°(R?) since

1 1 1
—1 = 1. ®) 7 — Ies\s,1)(*)
] O] O

where the function x — (—15(071)(x)‘l) is square integrable and

x|
X (—1R3\B(071)(x)ﬁ) is bounded.
Note also that —A is bounded from below and so the
Kato-Rellich theorem also implies that the Hamiltonian —A — ﬁ
is bounded from below: The Hydrogen atom is stable.
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Many-body Schrédinger operators

Given N € N measurable potentials V;,...,Vy : R* - R
consider the many-body Schrédinger operator —A + ZQ’ZI Vi
formally given by

( A"'ka) (x1,.-.,%xN)

:—wal,..., +Zkak xl,...,xN)

for (suitable) square integrable functions v : R — C.
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Many-body Schrédinger operators

Given N € N measurable potentials V;,...,Vy : R* - R
consider the many-body Schrédinger operator —A + ZQ’ZI Vi
formally given by

( A"'ka) (x1,.-.,%xN)

:—wal,..., +Zkak xl,...,xN)

for (suitable) square integrable functions v : R — C.

As in the one-body case —A + Y°p_, V, is seen to define an
operator in L?(R*) with domain H*(R*Y).
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Many-body Schrédinger operators

Given N € N measurable potentials V;,...,Vy : R* - R
consider the many-body Schrédinger operator —A + EQ’ZI Vi
formally given by

( A"'ka) (x1,.-.,%xN)

:—wal,..., +Zkak xl,...,N)

for (suitable) square integrable functions v : R — C.

As in the one-body case —A + ZQ’:I V, is seen to define an
operator in L?(R*) with domain H*(R*Y).

Kato’s Theorem

Let Vi,..., Vy € L2X(R?) +L°(R%) be real. Then —A+ ¥, Vi is
self-adjoint on H?(R3") and essentially self-adjoint on C>°(R3V).
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Proof of Kato’s Theorem
SV, Vi is (¢c,d)-bounded wrt. — A for some ¢ < 1 and d:
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Proof of Kato’s Theorem

SV, Vi is (¢c,d)-bounded wrt. — A for some ¢ < 1 and d:
Letk € {1,...,N} and v € H*(R3N) be arbitrary. Then for all a
there exists a b such that

IVewll3

/3 /3/3 /3 |3kak x1’~-~7xN)|2dxk)dx1~-~dxk_1dxk+1~~-de
R R3JR R
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Proof of Kato’s Theorem
SV, Vi is (¢c,d)-bounded wrt. — A for some ¢ < 1 and d:

Letk € {1,...,N} and ¢ € H*(R*") be arbitrary. Then for all a
there exists a b such that

IVill3

/ // / |‘/k xk xla-.~7xN)| (|ka)(|x1~--dxk_1dxk 1...de
R} JRIJR3 JRINR3 +
<2Cl/ // / Akw x17..~7xN)| ‘]xk)(lxl"'dxk_ldxk 1...de
R} JRJRS JRINR3 +
/ // / |w xl)-.-ny)| (ka>(|rl-~-dxk_1dxk 1...de
R3 R3JR3 R3 +
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Proof of Kato’s Theorem
SV, Vi is (¢c,d)-bounded wrt. — A for some ¢ < 1 and d:

Letk € {1,...,N} and ¢ € H*(R*") be arbitrary. Then for all a
there exists a b such that

IVill3

/ // / |‘/k xk xla-.~7xN)| (|ka)(|x1~--dxk_1dxk 1...de
R} JRIJR3 JRINR3 +
<2Cl/ // / Akw x17..~7xN)| ‘]xk)(lxl"'dxk_ldxk 1...de
R} JRJRS JRINR3 +
/ // / |w xl)-.-ny)| (ka>(|rl-~-dxk_1dxk 1...de
R3 R3JR3 R3 +

= 2a%|| — A3 + 2b2||¢|\2
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Proof of Kato’s Theorem
SV, Vi is (¢c,d)-bounded wrt. — A for some ¢ < 1 and d:

Letk € {1,...,N} and ¢ € H*(R*") be arbitrary. Then for all a
there exists a b such that

IVill3

/ // / |‘/k xk xla-.~7xN)| (|ka)(|x1~--dxk_1dxk 1...de
R} JRIJR3 JRINR3 +
<2Cl/ // / Akw x17..~7xN)| (]xjk)(lx‘l---dxk_ldxk 1...de
R} JRJRS JRINR3 +
/ // / |w xl)-.-ny)| (ka>(|rl-~-dxk_1dxk 1...de
R3 R3JR3 R3 +

= 2a%|| — A3 + 2192||¢H2
SO

IVesll: < v2al| — Atpllz + V2] .
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Proof of Kato’s Theorem
SV, Vi is (¢c,d)-bounded wrt. — A for some ¢ < 1 and d:

We have seen that for all a there exists a b such that

IVill2 < V2al| = Agbllz + V20|42
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Proof of Kato’s Theorem
SV, Vi is (¢c,d)-bounded wrt. — A for some ¢ < 1 and d:

We have seen that for all a there exists a b such that

IVill2 < V2al| = Agbllz + V20|42

Therefore

N N
> vew ], <" Iviwla
k=1 k=1

N N
<V2aY | = Al + V26D [0
k=1 k=1

If-adjoint Operators — 27/10/2011 .
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Proof of Kato’s Theorem
SV, Vi is (¢c,d)-bounded wrt. — A for some ¢ < 1 and d:

We have seen that for all a there exists a b such that

IVill2 < V2al| = Agbllz + V20|42

Therefore

N N
> vew ], <" Iviwla
k=1 k=1

N N

< \/iaz | — Axtpll2 + \/Ebz ll%1]2
k=1 k=1

< V2aN| — Az + V2bN| 9|
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Proof of Kato’s Theorem
SV, Vi is (¢c,d)-bounded wrt. — A for some ¢ < 1 and d:

We have seen that for all a there exists a b such that
Vil < V2a| — Awpl|2 + V201 .

Therefore

N N
> vew ], <" Iviwla
k=1 k=1

N N

< \/Eaz | — Axtpll2 + \/Ebz ll%1]2
k=1 k=1

< V2aN|| — A2 + V2bN| |

and so the desired result follows from the Kato-Rellich Theorem
by choosing a such that v/2aN < 1.
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