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In this paper we study the (Lp, L2) mapping properties of a spectral projection 
operator for Riemannian manifolds. This operator is a generalization of the har- 
monic projection operator for spherical harmonics on S” (see C. D. Sogge, Duke 
Math. J. 53 (1986), 43-65). Among other things, we generalize the L2 restriction 
theorems of C. Fefferman, E. M. Stein, and P. Tomas (Bull. Amer. Math. Sot. 81 
(1975), 477478) for the Fourier transform in R” to the setting of Riemannian 
manifolds. We obtain these results for the spectral projection operator as a 
corollary of a certain “Sobolev inequality” involving d +r2 for large r. This 
Sobolev inequality generalizes certain results for R” of C. Kenig, A. Ruiz, and 
the author (Duke Math. J. 55 (1987), 329-347). The main tools in the proof of 
the Sobolev inequalities for Riemannian manifolds are the Hadamard parametrix 
(cf. L. Hbrmander, Acta Mad 88 (1968), 341-370, and “The Analysis of Linear 
Partial Differential Equations,” Vol. III, Springer-Verlag, New York, 1985) and 
oscillatory integral theorems of L. Carleson and P. Sjolin (Studia Math. 44 (19X?), 
287-299) and Stein (Arm. Math. Stud. 112 ( 1986), 307-357). 0 1988 Academic pnss, IW. 

1. INTRODUCTION 

Let A4 be a smooth connected compact manifold without boundary of 
dimension 22 and P a second-order elliptic operator on M with smooth 
coefficients. Assume also that P is self-adjoint with respect to a smooth 
positive density & and that the eigenvalues, S, i = 0, 1,2, . . . . are ordered so 
that the sequence {Jj} is monotonic. It is then well known that the L2 
space with respect to r.$, L2(A4), can be written as the direct sum of the 
corresponding eigenspaces q. 
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The aim of this paper is to study the LP(M) -+ LY(M) mapping proper- 
ties of a certain projection operator associated to these eigenspaces. 

Before we state things more precisely, let us review what is known in the 
model case where M= S”, the Euclidean sphere, and P is the standard 
Laplace-Beltrami operator on S”. In this case the distinct eigenvalues are 
-,j(j+ n - l), j=o, 1, . . . . Furthermore, if H, denotes the projection 
operator with respect to the associated eigenspaces (i.e., the spherical har- 
monics of degree j), then in a previous work the author [20] obtained 
sharp inequalities of the form 

II H/f‘ II LU(S”) d w(p,4,n) II f IILP(S”,, (1.1) 

whenever 1 6p 6 2 and q equals 2 or p’. As usual, p’ is given by 
l/p + l/p’= 1, and the exponents o(p, q, n) are defined as 

dP> P’, fl) = 
i 

41/P - l/P’) - 1, 1 6p 6 2(n + 1 )/(n + 3), 
(n - 1x2 - P)/2P, W+l)/(n+3)6pd2, 

4P, 2,fl) = 4P, P’, nY2. 

The results for spherical harmonics were proved by first establishing 
them for the critical exponent p,, = 2(n + l)/(n + 3), and then interpolating 
with respect to trivial endpoint estimates. It was possible to prove the 
inequalities corresponding to this critical exponent by adapting the proof of 
the L* restriction theorem of Stein and Tomas [27], since rather precise 
estimates for the kernels associated to spherical harmonic projection 
operators were known (cf. [ 1, 203). 

In this special case, the eigenvalues repeat with a high frequency; 
however, for a general compact Riemannian manifold, the number of eigen- 
values satisfying 

is always comparable to k”- ‘, on account of the sharp form of the Weyl 
formula. (See [lo].) Thus, it is not surprising that the appropriate 
generalization of the harmonic projection theorem (1.1) should involve 
projection onto a band of frequencies of width one. 

Let us now state the main inequality of this paper. Let M and P be as 
above and let xk, k = 1, 2, . . . . denote the projection operators associated to 
the orthogonal subspaces of L2, xjtnk 3, where /i, = {i: me 
[k- 1, k)}. As above, Ai is the (j+ 1)st eigenvalue for P, and 3 is the 
associated eigenspace. Thus, if f = C qj, where C+Y~ E 3, then 

L&f= c 'pi. (1.2) 
it4 
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Our main result then is that, if 1 <p < 2 and if q =p’ or 2, then there is a 
constant C depending only on A4 and P for which 

Here a( p, q, n) is the same exponent occurring in ( 1.1). 
It is easy to see that the inequality (1.3) contains (1.1) as a special case. 

Furthermore, we shall also show that if 1 bp dp,, then the results are 
sharp. 

We should point out that if p # 2 then the exponent o(p, q, n) is always 
positive. If, however, M= T* and if P is the standard Laplacian then it is a 
result of Cooke and Zygmund [31] that there is a constant C independent 
of j = 1, 2, . . . for which 

II f II La(7.22) 6 c II f II L2(@), if Pf= - (27cj)*J 

Comparing this inequality with the corresponding inequality in (1.3) points 
out the difference between the projection operators associated to individual 
frequencies and bands of frequencies. 

In order to motivate the proof of (1.3), let us remind the reader of the 
connection between the special case (1.1) and certain differential 
inequalities. More specifically, D. Jerison [ 151 used the inequality (1.1) in 
the case where p =pn and q=pil to give a new, simplified proof of the 
following Carleman inequality of Jerison and Kenig [ 163 which holds for 
all u E Cr(6V\O) and t E [w with dist(t, Z) = 4: 

Here A denotes the Euclidean Laplace operator. Inequality (1.4) was used 
by Jerison and Kenig to prove a sharp unique continuation theorem for 
this operator. 

Inequality (1.1) can be thought of as a discrete restriction lemma (cf. 
[20]), and, in fact, later Kenig, Ruiz, and Sogge [18] used the Euclidean 
restriction lemma of Stein and Tomas [27] to prove Carleman inequalities 
which are related to (1.4). The main inequality in the elliptic case was that 
if L(D) is a constant coefficient differential operator with principal part A 
then for a sharp range of exponents r and s, 

II u II LJ(R”) d CII L(D) u lILyray, (1.5) 

where the constant C is independent of the lower-order terms of L(D). The 
uniform inequality (1.5) was proved by using oscillatory integral theorems. 
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Also, Renig, Ruiz, and Sogge were able to determine a necessary condition 
on the exponents by noticing that 

lim(d+l+is) ‘=T, 
I + 0 

where the the operator T has as its “imaginary part” the restriction 
operator of Stein and Tomas, 

Thus (although the argument is circular!), the differential inequalities of 
[ 181 imply the L2 restriction theorem of Stein and Tomas [27]. 

With these things in mind, it is not surprising that a good way to prove 
the “discrete restriction theorem” (1.3) is by proving a related differential 
inequality. This is exactly what we shall do. In fact, if p =p, and 
cr = a(p, 2, n), then we will show that there is a constant C depending only 
on M and P for which 

II u IILY(,,,)< Ck- ll(P+k2) uII~~(,,,)+ Ck” IIuII~~(~). (1.6) 

As we shall see, the inequalities (1.3) follow easily from this one by using 
orthogonality, duality, and interpolation. 

The strategy behind the proof of (1.6) is to first use the classical 
Hadamard parametrix method (see Hormander [14]) to obtain 
approximate inverses for the operators (P f k*). One then obtains the 
appropriate bounds for the operators which arise by using an oscillatory 
integral theorem of Stein [24] and the Carleson-Sjolin [3] method, as 
in [20]. 

The paper is organized as follows. In Section 2 we will state the theorem 
involving (1.3), as well as the related differential inequalities. In this section 
we will also prove the sharpness results discussed above. In Section 3 we 
will give a brief review of the Hadamard parametrix method and collect the 
facts which we will need for the proof of (1.6). In Section 4 we will prove 
the key differential inequalities and, finally, in Section 5 we will state some 
open problems which seem to be related to (1.3). 

In this paper we will stick to the convention that C denotes a constant 
which is not necessarily the same at each occurrence. Also, p will always 
denote the Fourier transform for [w”, and ai= @3x,. 

2. THE INEQUALITIES 

Let us now state the following two sets of inequalities which are the main 
results of this paper. For reasons of exposition, we have chosen to state 
them separately, even though, as we shall see, they are in fact equivalent. 
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We shall stick to the notation introduced above. That is, M will denote a 
smooth connected compact manifold of dimension 22, to which we 
associate a self-adjoint second-order elliptic operator P with smooth coef- 
ficients. Also, xk will denote the projection operator associated to the band 
of frequencies of P which satisfy mu [k - 1, k), and pn will denote the 
critical exponent P,* = 2( n + 1 )/( n + 3 ). 

THEOREM 2.1. Fix a manifold M and second-order elliptic operator P as 
above. Then, 

(i 1 iffy LP(W, 1 d P d P,?, 

II Xkf II Lr,(,t.,,G Ck nClil)- IlP'l- 1 11 f I/u(M), (2.1) 

(ii) iff E LP(M), pn <p d 2, 

(2.2) 

Here, the constant C depends only on M and P. Moreover, the inequalities 
(2.1) are sharp. 

THEOREM 2.2. Fix M and P as above. Then, 

(i) if.fcLP(W, 1 Gpdp,,, and if a(p, n) is the exponent in (2.1), 

II xk f /I Lq,,,) G Ck”“‘, ‘)I2 II f II u(,,,), (2.3) 

(ii) $feLP(M), p,,<p<2, and ifo(p, n) is the exponent in (2.2), 

11 Xk .f II Lz(M) < Ck”(p~“)‘2 II f lip(M). (2.4) 

As above, the inequality (2.3) is sharp and C depends only on M and P. 

Remark. It is likely that (2.2) and (2.4) are also sharp. The proof of the 
sharpness of (2.1) and (2.3) breaks down in this case since inequalities (2.2) 
and (2.4) are not strong enough to imply the sharp Sobolev inequalities 
involving powers of P (cf. (2.8)). In the special case of spherical harmonics 
on s”, however, it is known that they are sharp, since one can write down 
a sequence of spherical harmonics of degree k with the appropriate 
Lebesgue norms (see [20]). 

Before we state the key ingredients in the proofs, let us indicate why the 
two theorems imply one another. 

First of all, fix 1 <p < 2, and let 0 = a(p, n) be the corresponding 

580.‘77 ‘I -9 
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exponent in Theorem 2.1. Then since the exponent associated to p in 
Theorem 2.2 is a/2, duality clearly gives the inequalities 

II xkf II,,, d Ck”‘2 II xkf 112 d (CkcJ2J2 II f II,,, 

which of course shows that Theorem 2.2 implies Theorem 2.1. 
The fact that Theorem 2.1 implies Theorem 2.2 is also easy to establish. 

This follows from the inequality 

1lXk.f II:< IIXkfllp, Ilfllp 

which in turn follows from orthogonality and the fact that xk is a projec- 
tion operator. 

Having pointed these things out, it is clear that we need only prove 
Theorem 2.2. However, if one uses duality and the M. Riesz convexity 
theorem (see [25]), it is plain that Theorem 2.2 is a consequence of the 
trivial L2 -+ L* estimate and the following. 

PROPOSITION 2.1. Let A4 and P be as above. Then iff E L’(M), 

llXkf I/,~z,n+,,,n~~~(~)~Ck(“~“:~(“+” I/f IIL+M), (2.5) 

II x,cf Ili>~, d Wnp Iv2 II f I/Lq,wp (2.6) 

Inequality (2.5) is much more difficult to establish. However, if P has a 
positive definite principal symbol, then 

Thus, (2.5) is a consequence of the following differential inequality, whose 
proof will be postponed until Section 4. 

LEMMA 2.1. Set o = (n - 1)/2(n + 1). Then there is an absolute constant 
C such that, for all u E C”(M) and k E N, one has 

II 2.l II L~~n+~~.~n Us,,,,)< Ck”-’ II (P+ k2) u IIL+,) 

+ Ck” II u II LqM). (2.7) 

The difficulty in proving this key inequality, of course, comes from the 
fact that the symbol of the operators (P f k2) can vanish (cf. [ 183). Also, 
an analogous differential inequality will be used to establish (2.6); however, 
this will not be stated until Section 4. 

Let us conclude this section by showing that the inequalities (2.1) and 
(2.3) of the theorems cannot be improved. By the equivalence of the two 
results, we need only show that (2.3) is sharp. This will follow from the 
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following result, which can be proved, in a straightforward manner, from 
results in Taylor [26, p. 3081 (see also Seeley [ 191). 

LEMMA 2.2. If 1 <p < 2 then there is a constant C so that for 
m = 1,2, 3, . . . one has 

(2.8) 

Furthermore, this result is sharp in the sense that the above bounds cannot be 
replaced by 0(2”‘~(‘~p- I”)). 

To see why Lemma 2.2 implies the sharpness of (2.3), let us first give an 
argument showing that the estimates in (2.3) imply the lemma. This is easy, 
for (2.3) implies that the square of the left-hand side of (2.8) is dominated 
by 

c ihkflii~ck,,,~2m+, krr'p'n) Ilfli; 
k t [2m, 2m+‘l 

This argument clearly also shows that the sharpness of (2.8) implies that 
the estimates in (2.3) cannot be improved, which finishes this section, 

3. THE HADAMARD PARAMETRIX METHOD 

In this section we will show how the Hadamard parametrix construction 
can be used to obtain a “favorable” inverse for certain second-order elliptic 
differential operators. We shall follow closely the presentation in Horman- 
der [ 14, pp. 3&34], making only minor changes. 

Since the proof of the key differential inequality (2.7) will use local coor- 
dinates, the setting in this section will be R”, n 22. We will be working 
with operators P(x, D) of the form 

P(~, D) = - 1 ajg-"a, + C b,aj + c, 
j. k 

(3.1) 

where the coefficients g”, bj, and c are smooth on an open set XC R” 
which contains the origin. Since we want P to be elliptic, we will also 
assume that (gj”) is a real positive definite matrix. 

We will construct a parametrix for (P - z), when z E C\ R. We will be 
assuming that z is not real for technical reasons, but point out that this 
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assumption will not hurt us later on, since in (2.7) we could just as well 
replace k2 by (k + i)‘. 

As we shall see, the construction will make use of the “Bessel potential,” 
F, given by 

This is not surprising, for if the matrix (gjk) were constant and if we set 
IxIg=Eg,kx,xk)“2 (where (gik) denotes the inverse matrix), it then 
follows that 

(3.3) 

As usual, 6, is the Dirac distribution at the origin. 
The point of the Hadamard construction is that there is a favorable 

generalization of (3.2) to the variable coefficient case if one chooses the 
coordinates well. To be more specific, if P(x, D) is as in (3.1), then one can 
introduce “geodesic coordinates” near 0 so that if, with an abuse of 
notation, in the new coordinate system we write P as in (3.1), then 

~gjkb)Xk=~$!,k(")Xk, j=l,...,fl. 

k k 

(3.4) 

For a proof of this fact we refer the reader to Hormander [ 14, 
pp. 500-5011. 

The last formula has a very important consequence. Namely, if we now 
set 

,xl~=(~gjk(")x,xk)"2, 

j. k 

then 

~g’k(x)~,,~(~x~~)=~g’k(o)~,f(~x~:,, j-l,-,n. 
k 

From this last equation and the product rule it follows that, if 
v E CF( W) is supported in a small enough neighborhood of 0, and if P is 
as in (3.1), then 

(P(x, D) - z){q(x) F( Ix I,)} = q(O)(det gjk(0))“2 6,(x) 

+Nx,D)F(IxI,)> (3.5) 

where R(x, D) is a first-order differential operator. The crucial point is that 
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R(x, D) does not involve second-order derivatives, but it will also be 
convenient to note that R(x, D) has the form 

Nx, D) = RI(x) + f Vj(X) aj, (3.6) 
j= 1 

for appropriate C? functions vi which have the same support properties as 
9 and do not depend on the parameter z. 

Remark. We should point out that, as in Hormander [14, pp. 32-331, 
one could “improve” this rather crude parametrix by including terms 
involving inverse Fourier transforms of ( I< / 2 - z) -“, v > 2. However, this 
“improvement” is unnecessary since, as we shall see, the remainder for the 
parametrix with just one term has the desired L2 -+ Ly mapping properties. 

Formulae (3.5) and (3.6) would be sufficient for obtaining the 
L2(M) + Lm(M) estimates of Proposition 2.1; however, for the 
L2(M) + L 2(n+‘)‘(np l’(M) estimates, we will need a generalization which 
involves a parameter y E IX”. This, though, follows in a straightforward 
manner from the construction described above (see [14, pp. 33-341). 

In fact, if q E CF(rW” x IWn) is supported in a small enough neighborhood 
of (0, 0), then there is a Riemannian distance function s(x, y) defined on 
supp(q) for which 

P(x3 D){rl(x, Y) mx, Y))l 

= V(Y, y)(det gj“(y))“’ 6,,,(x) + &, Y, D) KG, Y)), (3.7) 

where, this time, R(x, y, D) is a first-order differential operator depending 
on the parameter y of the form 

R(x, Y, D) = C’O(XY Y) + 1 rlj(X, Y) (3.8) 

for the appropriate CF functions qj which have the same support properties 
as q. 

The function s(x, y), of course, depends on the changes of coordinates 
involved. One could write down a formula for this function (see [14, 
p. 341); however, the only properties we will want to use is that (s(x, y))’ is 
C” and that, moreover, if gjk(0)=djk, it follows that near (O,O), 
(s(x, y))’ = I x - y ) 2 + higher-order terms. 

Let us conclude this section by showing how formulae (3.7) and (3.8) 
can be used to “invert” the operator (P-z). More specifically, by taking 
adjoints, it follows that, if 11 E C~(lR’* x Iw”) has small enough support, and 
if we set q(x) = (det gj“(x))“2 q(x, 0), then 

ri(x) u(x)= r,C(P(., D)-z) u](x)+ (Tzu)(x), (3.9) 
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where the operators T, can be written as 

(T,f.)(x)= I K;(X,X-Y)f(Y) dY, (3.10) 

for kernels K, of the form 

K,(x,x-Y)=Ul(~~,X-y)F(s(x,y)) (3.11) 

and 

K2(x, x-Y)=rlO(xY x-Y) F(s(x>Y)) +I rl,(x, x-Y) ajF(s(x, Y)). (3.12) 

As before, the Cc functions q, have the same support properties as v. 
Formula (3.9) will of course be useful if q(x) = 1 near 0. 

In the next section we will use oscillatory integral theorems to show that 
the operators rj have the appropriate bounds in terms of the parameters 
z= (k + i). We remark that T, is a “worse” operator since it involves 
derivatives of F, and that this accounts for the different exponents in the 
differential inequality (2.7). 

4. PROOFS OF THE INEQUALITIES 

As above, let M be a smooth connected compact manifold of dimension 
22 and P a self-adjoint second-order elliptic differential operator on it4 
with smooth coefftcients. Since the aim of this section will be to prove dif- 
ferential inequalities which imply Proposition 2.1, clearly there will be no 
loss of generality in assuming from now on that the principal symbol of P 
is positive definite. This of course will imply that limj, ~ lj = + co, where 
as before (Aj} are the eigenvalues of P. 

Throughout this section, q will always denote the exponent pi = 
2(n+l)/(n-l), and we will let a(q)=(n-1)/2(n+l) and a(cc)= 
(n - 1)/2. Finally, B, will denote the ball of radius E in R”. 

Having set this notation, the main goal of this section will be to prove 
the following two inequalities which are to be uniform in k = 1, 2, . . . : 

II u II L.?(M) < Ckat4) - ’ II (P - (k + 4’) u IIL2(M) + a+) II u II L2(M), (4.1) 

It is for technical reasons that it is convenient to put xku in the left-hand 
side of (4.2); however, this will not affect the application we have in mind. 
In fact, if one recalls the definition of xk and uses the fact that the principal 
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symbol of P is positive definite, then it is easy to see from orthogonality 
that 

On acount of this last observation, it is plain that (4.1) and (4.2) imply 
Proposition 2.1, which, as we have shown in Section 2, implies the positive 
statements of Theorems 2.1 and 2.2. 

Let us start out by demonstrating (4.1) since it is the more interesting 
and difficult inequality of the two. By using the compactness of it4 and 
local coordinates it is clear that (4.1) would be a consequence of the 
following “local Sobolev inequality” for R”. 

LEMMA 4.1. Let X be an open subset of R”, n 3 2, containing the origin. 
Also, let P(x, D) be a second-order differential operator on X with smooth 
coefficients and real positive definite principal symbol. Then for all suf- 
ficiently small E > 0, there is a constant C depending only on E and P(x, D) 
such that .for k = 1, 2, . . . , one has 

To prove Lemma 4.1, we will of course want to use the parametrix 
constructed in Section 3. To this end, let us define the radial function 
Fdx)=FdlxI) by 

F,(x)=(2n)-fl~~~e’-‘.i(lr(2-(k+i)2)~1d~. (4.4) 

Taking z= k + i, we see that this is the function F which occurred in 
(3.2). 

Next, let us notice that we can simplify things slightly by assuming from 
now on that the principal part of P(x, D) is equal to -A at x = 0. Also, let 
s(x, y) be the “distance fuction” which arises from the Hadamard construc- 
tion. It is then not difficult to see that formulae (3.9)-(3.12) imply that 
Lemma 4.1 is a consequence of the following. 

LEMMA 4.2. Fix P(x, D) as above and let s(x, y) be the resulting 
“distance function.” It then follows that, whenever n E CF( R” x R”) is suppor- 
ted in a sufficiently small neighborhood of (0, 0), there is a constant C 
depending only on n and P such that 
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r(x, X-Y) V,,FkW> Y))f(Y) dY d G@‘lI f IILZ,~“). (4.6) 
L’l( W”) 

To prove Lemma 4.2 we will need to know a few properties of the 
“Bessel potentials” Fk. These are contained in the following lemma. 

LEMMA 4.3. There is an absolute constant C such that for k = 1, 2, . . . . the 
following results hold: 

(i) For nb3, 

IF,(x)ldClxl-‘“-2’, 1x1 G l/k 
for n = 2, 

IF&)l <Clog lllxl, /xl d l/k 
and, .for n 3 2, 

(4.7) 

IVF,(x)l <C Ixl-” “, Ix1 <l/k. (4.8) 

(ii) If 1x1 2 l/k and na2, 

Fk(X)=k(“-1)/2-1 e-ikirl /X(-(“--l)i2a,(kx), 

VFk(x) = k’” ~ I We ikl.4 1x1 p(n-‘v2 a,(kx), 

(4.9) 

(4.10) 

for radial C”, ,functions a, satisfying 

I(Wp)mq(p)l dC, IPI-“‘. (4.11) 

These properties are more or less well known and, moreover, can be 
easily proved from the definition (4.4) of Fk by using stationary phase and 
integration by parts (cf. [S, 181). 

The proof of (4.5) will of course make use of (4.7) and (4.9). Since the 
proof of (4.6) can easily be obtained by modifying the argument for (4.5) 
and taking into account (4.8) and (4.10), we shall only give the proof of 
(4.5). Also, on account of (4.7), let us assume for simplicity that n > 3 from 
now on. The case where dim M= 2 can be handled by obvious 
modifications. 

To prove (4.5) let us now introduce a bump function, II/ E C,“(R), 
supported in [f, 21 with the property that for t > 2, C,“=, J/(2-“t) = 1. Set 
(J(t)= 1 -c,“=, 11/(2-V). 
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Also, for a given v E C;( [w” x [W”) whose support is small enough so that 
s(x, y) is defined on supp(q), let us set 

hAx3 Y) = $(k I x -Y I 1 rl(x, x -Y) ~&(x3 Y)), 

and for v = 1, 2, . . . . 

Inequality (4.5) would follow then, from summing a geometric series, if we 
could show that there is an E E (0,s) so that whenever q E C;( I&!” x IR”) has 
the property that supp(q) c {(x, y): 1 x I, I y ) < E} then there is a constant 
depending only on s and q so that 

II 
L,,(x,y)f(y)dy 

Ii 
~C(2-“k)-“~k”‘+’ Ilf112, v=O, 1,2 ,.... (4.12) 

4 

(Note that L,sO if v>logk.) 
If we recall that s(x, y) is a Riemannian distance function near (0, 0), 

then, since f- l/q < l/n, it is easy to see from Young’s inequality and 
Lemma 4.3 that, if E is small enough, then (4.12) must hold for the special 
case v = 0. 

To prove the assertion for v > 1 we should recall that, near (0, 0), 
(s(x, YN’ is smooth and, moreover, (s(x, y))” = 1 x - y 1’ + higher-order 
terms. With this in mind, it is not hard to see that the following “oscillatory 
integral lemma” and Lemma 4.3 imply that, for v > 1, (4.12) must also hold 
if E is sufficiently small (cf. [20, p. 591). 

LEMMA 4.4. Let a(x, y) he a function supported in the set 
SZ={(X,~)ER”XR”): 1x1<+, $<I ~1~2). Then there is a neighborhood 
N of the function d,,(x, y) = I x-y I in the C” topology such that if q5 E ,V 
and A> 0 then 

ern9(r. .J) 4x, y)f(y) dy 
II 

6 CIp”‘y II f l12. 
4 

for a constant C depending only on the size of finitely many derivatives of the 
function a. 

In two dimensions, this result is a consequence of the so-called “main 
lemma of Carleson and SjGlin.” In higher dimensions, for the special case 
where 4 = & (and slightly less general a), the result follows from an 
oscillatory integral theorem of Stein [24], as was shown in [20, p. 631. 
Although it was not explicitly stated there, it is clear that this slightly more 
general case follows from the same argument that was used for &,. 
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These last comments finish the proof of Lemma 4.1 and, consequently, 
(4.1). 

Therefore, to finish things, we need only prove the inequality (4.2). 
However, the argument for this estimate is similar to the above one, so we 
will only sketch the important points. 

First of all, let us point out that if P(x, D) is as in Lemma 4.1, then it 
follows from Holder’s inequality and the above reasoning that, for all 
sufficiently small E > 0, there is a constant C depending only on P(x, D) 
and E for which 

The first two terms in the right-hand side of the above inequality occur 
because for 1x1 d l/k, Fk(x)x JxIP(‘-*) and IVF,(x)l z IxJ-(~~“. 

Nonetheless, by the compactness of M, if now P is as in (4.2) then the 
above inequalities imply that 

II f4 II .xt,,,,,<Ck -* JI(P-(k+i)*)~ll~r,~)+Ck~(~)~’ ll(P-(k+i)2)~11~2c+yj 

+ Ck”‘c) IIuII~z~~,. 

To finish the proof, we need only notice that inequality (2.8) implies that 

Il(p- (k + i)‘) xk”I/ Lr(,,.,) < Ck”‘* II (P - (k + 9’) u /I Lq,,.,). 

Consequently, since n/2 - 2 < c1( co) - 1, the last two inequalities imply 
(4.2). 

5. OPEN PROBLEMS 

Let us now state a few open problems which the above results suggest. 

(i) First of all, it would be interesting to know how the above 
“discreet restriction theorems” would carry over to the setting of C” 
paracompact manifolds M with smooth boundary 8M. This case seems 
harder than the one treated here due to the difficulties in constructing 
parametrices near JM (cf. [14, Sect. 17.51). 

(ii) Also, it would be interesting to know what the analogues of our 
restriction theorems would be for higher-order elliptic operators on com- 
pact manifolds M. In principle at least the case where dim M = 2 should be 
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approachable, since the sharp restriction theorems for degenerate curves in 
lR* are known (see [21]). 

(iii) Finally, it would be of interest to explore the possible connec- 
tion between our restriction theorems and “sharp” theorems for the Riesz 
means of the eigenfunction expansions associated to second-order elliptic 
operators P on compact manifolds M. More specifically, let us define the 
Reisz means of index 6 > 0 and dilation R > 0, Si, as 

'6Rf=C Cl- (lj/'R)*)f+ Cpj, f=C 'Pj. 

The conjecture (which the Euclidean results suggests, see [6]), then, is that 
if 6 > max(O, n ) $- l/p\ -i), then ,S”,f-f in LP(M). This restriction on 
the index is necessary (see [ 11); however, in most cases it is not known 
that it is sufficient. In fact, for p = 1, the best known result seems to be that 
there is L’ convergence when 6 > (n - 1) (see Hormander [ 1 l]), while the 
conjecture is that 6 > (n - 1)/Z should be sufficient. 

For some time, however, in the Euclidean case and in the case of 
spherical harmonics on S” (see [ 1, 7, 20]), it has been known that, for a 
given p, the “appropriate” (Lp, L’) restriction theorem implies the sharp Lp 
convergence theorem for Riesz means. This therefore suggests that it may 
be possible to use the above results to prove the sharp LP(M) theorems for 
p satisfying 1 <p dp,. 
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