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§5. Spectral theory

5.1 The spectrum of −Δ in the periodic case.
The simplest example of an elliptic operator exhibiting the spectral prop-

erties we are now going to discuss, is the Laplace operator on a torus. With
the notation used e.g. in Mat 2MA, we consider the space L2(T

k) of functions
u(x) on R

k that have period 2π in each variable xj and are square integrable
on Q = ] − π, π[ k; the space L2(T

k) is a Hilbert space when provided with
the scalar product and norm

(f, g) = (2π)−k

∫
Q

f(x)g(x)dx, ‖f‖ =
(
(2π)−k

∫
Q

|f(x)|2 dx
) 1

2

,

and with the convention that functions differing on a set of Lebesgue measure
zero are identified with one another. Clearly, L2(T

k) � L2(Q, (2π)−kdx).
The functions u ∈ L2(T

k) can be expanded in Fourier series with respect
to the orthonormal basis {en}n∈Zk , where en = ein·x = ei(n1x1+···+nkxk). In
fact, there is a 1–1 correspondence between the functions in L2(T

k) and the
elements of �2(Z

k), where f corresponds to {cn}n∈Zk when

f =
∑
n∈Zk

cnen, convergence in L2(T
k);

here cn = cn(f) = (f, en) for each n. The unitary mapping defined in this
way is denoted F ,

F : L2(T
k)

∼→ �2(Z
k), with Ff = {cn(f)}n∈Zk .

By Cm(Tk) we denote the (Banach) space of functions in Cm(Rk) that
have period 2π in each variable; this space identifies with the subspace of
functions in Cm(Q) such that all derivatives up to order m match at the
boundary in such a way that the functions extend to continuous periodic
functions (see e.g. Mat 2MA IV§4.4 (1)). C∞(Tk) is the Fréchet space⋂

m∈N0
Cm(Tk). One can also define more general spaces over Tk, e.g. distri-

bution spaces, where one can take D′(Tk), the space of periodic distributions,
to be the dual space of C∞(Tk) (see also Schwartz [Sc 1950]). We study the
general Sobolev spaces further below.

The eigenvalues and eigenfunctions of −Δ on T
k are extremely easy to

calculate. Since −Δ− λ is elliptic for any λ, all eigenfunctions must be C∞,
as they satisfy an equation (−Δ−λ)u = 0 with right hand side in C∞. Now,
each en is an eigenfunction, with

−Δen = (n2
1 + · · ·+ n2

k)en,
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i.e., the corresponding eigenvalue is ‖n‖2. We have hereby found all eigenval-
ues, and a full system of eigenfunctions (in a sense explained further below);
this is seen as follows:

The operator −Δ on C∞(Tk) satisfies

(−Δu, v) =

k∑
j=1

(Dju,Djv) = (u,−Δv), in particular

(−Δu, u) =

k∑
j=1

‖Dju‖2 ≥ 0,

(5.3)

as is seen by integrations by part. Thus −Δ with domain C∞(Tk) is sym-
metric and ≥ 0. It follows that all eigenvalues are ≥ 0. Moreover, when u
and v are eigenfunctions belonging to different eigenvalues λ resp. μ,

(λ− μ)(u, v) = (−Δu, v)− (u,−Δv) = 0,

so since λ �= μ, (u, v) = 0. This shows that eigenfunctions belonging to
different eigenvalues are orthogonal.

The system {en}n∈Zk is a complete orthonormal system in L2(T
k), as

we know from Mat 2MA. Then we have found all eigenvalues; for there
cannot be an eigenfunction with eigenvalue outside the set we already have,
since it would be orthogonal to all the en and hence zero. Moreover, for
each of the eigenvalues ‖n‖2 that we have found, the number d(‖n‖2) of
vectors em with ‖m‖2 = ‖n‖2 is finite (since the coordinates are integers
with absolute value ≤ ‖n‖). The full set V (‖n‖2) of eigenvectors belonging
to ‖n‖2, with the nullvector adjoined, is a vector space containing the em,
hence with dimension at least d(‖n‖2). Now if the dimension were > d(‖n‖2),
there would be a normal vector orthogonal to all the eigenvectors we have
found, which contradicts the completeness. Thus the d(‖n‖2) vectors em
with ‖m‖2 = ‖n‖2 is a system of eigenvectors spanning all the eigenvectors
with eigenvalue ‖n‖2. (The dimension of V (‖n‖2) is called the (geometric)
multiplicity of ‖n‖2; we have shown that it equals d(‖n‖2).)

Now let us take a look at the associated eigenvalue system {‖n‖2}n∈Zk .
First we consider multiplicities. Clearly, all eigenvalues �= 0 have multiplicity
≥ 2, since the replacement of an nj �= 0 by −nj gives the same eigenvalue.
Moreover, when n1,n2, . . . , nk are k different integers, the number n2

1+· · ·+n2
k

is eigenvalue for all the mutually distinct functions ei(σ(n1)x1+···+σ(nk)xk) ob-
tained when we let σ run through all permutations of the k integers. Further-
more, different sets {n1, . . . , nk} can give the same eigenvalue, as for example
for k = 3, the sets {1, 1, 4} and {0, 3, 3} give the same eigenvalue 18. (This
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indicates some first steps in the study of the eigenvalues and their multiplic-
ities, that is related to deep problems in number theory.) We always count
the eigenvalues with multiplicities (so λ is counted N times when there is an
N -dimensional space of eigenfunctions associated with it). Note that 0 is a
simple eigenvalue, i.e. has multiplicity 1.

For an overall view of the behavior of the eigenvalues of an elliptic operator
one often studies the counting function, indicating the number of eigenvalues
less than t, for t ≥ 0:

N(t) = #{ eigenvalues ≤ t }

(counted with multiplicity).
It can be determined in great detail in the present case, since it equals pre-

cisely the number of points n in R
k with integer coordinates (“grid points”)

for which ‖n‖ ≤ t
1
2 . To get an estimate of the number of grid points

n = (n1, . . . , nk) in the closed ball B(0, t
1
2 ), we associate with each of them

the k-dimensional cube with side length 1, Cn = [n1, n1+1[× · · ·×[nk, nk+1[.

Then the points n for which Cn ⊂ B(0, t
1
2 ) (we can call them the “inner”

cubes) certainly have ‖n‖ ≤ t
1
2 , and the points such that Cn∩B(0, t

1
2 +1) = ∅

have ‖n‖ > t
1
2 (the “outer” cubes). The union of the “inner” cubes contains

the ball B(0, t
1
2 − k

1
2 ) (when t > k), and the complement of the union of

the “outer” cubes is contained in the ball B(0, t
1
2 + k

1
2 + 1). The number of

grid points defining the “inner” cubes equals their collected volume, which

is ≥ ωk(t
1
2 − k

1
2 )k, where ωk is the volume of the unit ball in R

k, and the
number of grid points defining cubes that are not “outer” equals the volume

of the complement of the outer cubes, hence is ≤ ωk(t
1
2 + k

1
2 + 1)k. Thus

ωk(t
1
2 − k

1
2 )k ≤ N(t) ≤ ωk(t

1
2 + k

1
2 + 1)k,

from which we deduce that

N(t) = ωkt
k/2 +O(t(k−1)/2), for t → ∞. (5.6)

This is a first example of the famous Weyl formula for the asymptotic
behavior of the counting function N(t) for an elliptic problem on a compact
domain.

To give another example, we can change the period intervals to be dif-
ferent in the different coordinate directions. Consider functions with pe-
riod rj in the coordinate xj , j = 1, . . . , k (we call such functions r-periodic;

r = (r1, . . . , rk)). The functions en,r = e2πi(r
−1
1 n1x1+···+r−1

k nkxk) (with n =
(n1, . . . , nk) ∈ Z

k) are r-periodic; and they are mutually orthogonal in
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L2( ]0, r1[× · · ·× ]0, rk[ ). (Let us not bother to normalize.) They are eigen-
functions of −Δ considered on the r-periodic C∞ functions, with eigenvalues

λn,r = (2π)2
(n2

1

r21
+ · · ·+ n2

k

r2k

)
.

Again we have found all the eigenfunctions, since {en,r}n∈Zk is a complete
orthogonal system in L2( ]0, r1[× · · ·× ]0, rk[ ) (i.e. a system of nonzero vec-
tors that by normalization gives an orthonormal basis); one can show this
e.g. by carrying the situation back to T

k by coordinate transformations.
Again, eigenvalues �= 0 have multiplicity ≥ 2 since nj and −nj enter in the

same way; but a permuation of the nj now usually gives a different eigenvalue

when the rj are distinct, so the eigenvalues “spread out” more on R+.
The counting function N(t) can here be shown to satisfy

N(t) = ωk,rt
k/2 +O(t(k−1)/2),

where ωk,r is the volume of the ellipsoid

ωk,r = vol
{
x

∣∣∣ x2
1

r21
+ · · ·+ x2

k

r2k
≤ 1

(2π)2

}
,

by geometric considerations for grid points as above.

5.2 Sobolev spaces on the torus.
For any s ∈ R we denote by �2,s(Z

k) the vector space of sequences c =
{cn}n∈Zk such that

‖c‖�2,s ≡
(∑
n∈Zk

(〈n〉s|cn|)2
) 1

2

< ∞;

it is simply the Hilbert space L2(Z
k, 〈n〉2sμ) where μ is the counting measure.

(As usual, 〈n〉 = (1 + n2
1 + · · ·+ n2

k)
1
2 = (1 + ‖n‖2) 1

2 .) Note that �2,0(Z
k) =

�2(Z
k).

It is easily verified that the differentiation operator Dα (|α| ≤ m) acts
on functions in Cm(T) by multiplication of the n’th coefficient by nα =
nα1
1 . . . nαk

k :

cn(D
αf) = (2π)−k

∫
Q

Dαf(x)e−in·x dx = nαcn(f),

by integrations by part. The multiplication operator Mnα sending {cn} into
{nαcn}, with domain

D(Mnα) = { {cn}n∈Zk ∈ �2(Z
k) | {nαcn}n∈Zk ∈ �2(Z

k) }, (5.8)



5.5

is selfadjoint (unbounded when |α| > 0); cf. Mat 2MA IV§4 or [MA]. We
then define a generalization of Dα by

Dα = F−1MnαF, (5.5)

with domain D(Dα) = {u ∈ L2(T
k) | {nαcn(u)}n∈Zk ∈ �2(Z

k)}; it is a
selfadjoint operator in L2(T

k) (unbounded when |α| > 0). Still more general
versions of Dα are possible, see below.

When m is an integer ≥ 0, the Sobolev space Hm(Tk) is defined and
described by

Hm(Tk) =
⋂

|α|≤m

D(Dα)

= { u ∈ L2(T
k) | {nαcn(u)}n∈Zk ∈ �2 for |α| ≤ m }

= { u ∈ L2(T
k) | {〈n〉mcn(u)}n∈Zk ∈ �2 }

= F−1�2,m;

it is a Hilbert space with either of the equivalent norms

‖u‖m =
( ∑
|α|≤m

‖Dαu‖2L2

) 1
2

, ‖u‖m,∧ = ‖Fu‖�2,m .

Using this as inspiration, one can define Hs(Tk) also for general s ∈ R as
spaces of formal objects u with Fourier series

u ∼
∑
n∈Zk

cnen, where {cn}n∈Zk ∈ �2,s;

they are Hilbert spaces with norm

‖u‖s,∧ = ‖{cn}n∈Zk‖�2,s = ‖{〈n〉scn}‖�2 .

For s ≥ 0, Hs(Tk) is a subspace of L2(T
k) (consistent with the preceding

definition when s is integer); it also identifies with the domain of the operator
F−1M〈n〉sF . For s < 0, Hs(Tk) can be identified with the dual space of

H−s(Tk), with respect to a duality generalizing the L2 scalar product, just
as in the case of Sobolev spaces over R

k. (All the spaces can be viewed as
subspaces of D′(Tk).) One has of course

Hs(Tk) ⊂ Ht(Tk) for s > t,
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and Theorem 2.4 and Corollary 2.5 readily generalize to these spaces:

‖u‖θs+(1−θ)t,∧ ≤ ‖u‖θs,∧‖u‖1−θ
t,∧ , (5.8)

‖u‖r,∧ ≤ ε‖u‖t,∧ + C(ε)‖u‖s,∧. (5.9)

Such Sobolev spaces of periodic funtions of several variables are studied also
in [A 1965] and in Bers, John and Schechter [B-J-S 1964].

One has the Sobolev imbedding theorem (cf. e.g. Mat 2MA IV§4):
Hs(Tk) ⊂ Cl(Tk) for s > l +

k

2
,

l integer ≥ 0.
We can give Dα a meaning on Hs(Tk) by defining it as the multiplication

by nα on the coefficients cn; it maps Hs(Tk) into Hs−|α|(Tk). As is often
done in distribution theory, we use the name Dα again, writing

Dα : Hs(Tk) → Hs−|α|(Tk), s ∈ R.

The multiplication operators Mf(n) above are defined in a precise sense
as operators with domain and range in �2. We shall also sometimes need the
more general notation

Mf(n) : {cn} �→ {f(n)cn}
with unspecified domain and range; for example

M〈n〉s : {cn} �→ {〈n〉scn}.
(M〈n〉s is the version of this with largest possible domain and range in �2.)
The corresponding operator on the expressions

∑
cnen will be called Λs, so

Λs :
∑
n∈Zk

cnen �→
∑
n∈Zk

〈n〉scnen.

Note that
Λs maps Ht(Tk) isometrically onto Ht−s(Tk), (5.10)

when the norms ‖u‖r,∧ are used; and that Λ−s is the inverse of Λs for any s.
Now consider the Laplacian on the torus. Since −Δ for smooth func-

tions acts like multiplication of cn(u) by ‖n‖2, we can define a selfadjoint
realization ATk of −Δ by

ATk = F−1M‖n‖2F.

Here the domain consists of the u ∈ L2(T
k) with {‖n‖2cn(u)} ∈ �2, so in fact

D(ATk) = H2(Tk).

This operator is an extension (one can show that it is the closure) of the
symmetric operator discussed in the beginning of Section 5.1; it has the
same eigenvalues and eigenfunctions ‖n‖2 and en, n ∈ Z

k; and no others,
this follows from the completeness of the system {en}, as in the analysis in
the beginning of Section 5.1.
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5.3 Dirichlet and Neumann problems on cubes.
We can also study the Dirichlet and Neumann problems for −Δ on a cube;

here we consider Q0 = ]0, π[ k. For general domains with corners and edges,
it is not nearly as simple as in the smooth case to discuss the boundary
operators γj on Sobolev spaces and to interpret the variational realizations,
but in this very special constant coefficient case on the cube, one can get
around much of the difficulty by using the symmetries.

Let us first define the operators in a classical way.
Define Aγ,0 and Aν,0 as −Δ with domain, respectively,

D(Aγ,0) = { u ∈ C2(Q0) | u = 0 on ∂Q0 },
D(Aν,0) = { u ∈ C2(Q0) | ∂u

∂
n = 0 on ∂Q0 },

where ∂u
∂
n is well-defined on the open boundary hypersurfaces where one

coordinate equals 0 or π and the others lie in ]0, π[ (the “faces” of the cube).
It is seen by integration by parts that

(Aγ,0u, v) =
k∑

j=1

(Dju,Djv) = (u,Aγ,0v), (Aγ,0u, u) ≥ 0,

(Aν,0u, v) =
k∑

j=1

(Dju,Djv) = (u,Aν,0v), (Aν,0u, u) ≥ 0,

for u and v in D(Aγ,0) resp. D(Aν,0). (Scalar products in L2(Q0).) Again
this implies, for each of the operators, that all eigenvalues are ≥ 0, and that
eigenfunctions belonging to different eigenvalues are mutually orthogonal.

For the treatment of Aγ,0 we now recall that L2(Q0) has the orthonormal
basis {fn}n∈Nk , where

fn(x) = ( 2π )
k
2 sinn1x1 · · · sinnkxk. (5.12)

(The completeness can be shown by identifying L2(Q0) with the subspace of
L2(T

k) consisting of functions that are odd in each variable x1, . . . , xk and
using the completeness of {ein·x}n∈Zk there, cf. e.g. Mat 2MA V§1.4.) One
verifies directly that these functions are in fact eigenfunctions for Aγ,0, with
eigenvalues

‖n‖2 = n2
1 + · · ·+ n2

k, n ∈ N
k. (5.13)

Since the system of functions {fn}n∈Nk is a complete orthonormal system, it
is seen as in the treatment of −Δ on T

k that (5.13) gives all the eigenvalues,
and {fn}n∈Nk spans all the eigenfunctions, in the way explained there. Each
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eigenvalue has finite multiplicity (that can be discussed as above), and it can
again be shown by geometric considerations on grid points (now in (R+)

k)
that the counting function satisfies

N(t) = 2−kωkt
k/2 +O(t(k−1)/2), for t → ∞. (5.14)

For the discussion of Aν,0 we observe that the system

gn(x) = an cosn1x1 . . . cosnkxk, n ∈ N
k
0 , (5.15)

an = 1
‖ cosn1x1··· cosnkxk‖ = ( 2

π
)

j
2 ( 1

π
)

k−j
2 , j = #{nonzero entries in n},

is a complete orthonormal system in L2(Q0). (This can be deduced from
the completeness of {ein·x}n∈Zk by identifying L2(Q0) with the subspace of
L2(T

k) consisting of functions that are even in each variable x1, . . . , xk.) Now
the gn are in fact eigenfunctions of Aν,0, with eigenvalues

‖n‖2 = n2
1 + · · ·+ n2

k, n ∈ N
k
0 . (5.16)

Again the completeness of the system (5.15) assures that we have found all
eigenvalues and all eigenfunctions (up to linear combinations).

Also here one finds (5.14) by geometric considerations on grid points. In
particular, it may be observed that

N(t;Aγ,0) ≤ 2−kωkt
k/2 ≤ N(t;Aν,0) for all t, (5.17)

since the former equals the number of grid points in (R+)
k ∩ B(0, t

1
2 ), and

the latter equals the number of grid points in (R+)
k ∩B(0, t

1
2 ).

In order to study the relation of these operators to the two variational
operators Aγ and Aν defined from the sesquilinear form

s(u, v) =

k∑
j=1

(Dju,Djv)L2(Q0) (5.18)

on V = H1
0 (Q0) resp. H1(Q0), with H = L2(Q0), we need a discussion of

Sobolev spaces and boundary values. We first observe:

Lemma 5.1. For any m ∈ N0, C
∞(Q0) is dense in Hm(Q0).

Proof. The proof goes almost as in the smooth case, thanks to the simple
geometric form of Q0. Let u ∈ Hm(Q0). Instead of translating, we dilate u
(blow it up), approximating u(x) by

uh(x) = u( 1
1+h (x− p 1

2
) + p 1

2
), p 1

2
= (π2 , . . . ,

π
2 ), h > 0;
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this converges to u in Hm on Q0 for h → 0. Here uh is defined on Qh =
] − hπ

2 , π + hπ
2 [ k. Now approximate eQh

uh by hj ∗ (eQh
uh) for j → ∞; it is

seen to converge in Hm(Q0) similarly as in Theorem 3.2, using that

〈Dα(hj ∗ (eQh
uh)), ϕ〉Q0

= 〈hj ∗ (eQh
Dαuh), ϕ〉Q0

,

for |α| ≤ m, ϕ ∈ C∞
0 (Q0). �

Such density statements can be shown for quite general sets, namely the
sets Ω having the so-called segment property, cf. e.g. [A 1965] or Edmunds
and Edwards [E-E 1987].

For each m ∈ N0, the space Hm(Q0) can, besides the identification with
rQ0

Hm(Rk), be regarded as the space of restrictions to Q0 of functions in
Hm(Tk). We can also define a continuous linear extension operator p(m),T

from Hm(Q0) to Hm(Tk), as follows:

In view of Lemma 5.1, it suffices to define p(m),T on the functions in

C∞(Q0) and show that it defines a continuous mapping. For u ∈ C∞(Q0),
we use the “reflection” described in Theorem 3.3 in several consecutive steps:
First reflect across the boundary surfaces where x1 = 0 and x1 = π, just for
a small distance a into x1 < 0 resp. x1 > π, so that only the values of u for,
say, x1 ∈ [0, 1] resp. x1 ∈ [π−1, π] are used. Take a < π/2. Multiplying with
a cut-off function of x1 that is 1 on a neighborhood of [0, π] and vanishes
outside [−a

2 , π + a
2 ], we obtain a function defined for x1 ∈ [−π

2 ,
3π
2 ] that we

can extend by periodicity in x1 to a function on R × [0, π]k−1, such that it
is Cm−1 with piecewise continuous m’th derivatives (having their possible
jumps at x1 = lπ, l ∈ Z). Next, extend this function across x2 = 0 and
x2 = π in a similar way, and continue the procedure successively in all the
other directions x3, . . . , xk. This gives a function that is in Hm on each
bounded set, with the distribution derivatives up to order m coinciding with
the (piecewise continuous) usual dervatives (checked e.g. as in [MA, Lemma
6.6]). The continuity of the mapping with respect to m-norm can be followed
in each step.

Observe that for m = 1, there is a still better procedure: We can extend
u as an even 2π-periodic function in each direction; let us call the resulting

function
≈
u . (So

≈
u takes the same value at (x1, x2, . . . , xk), (−x1, x2, . . . , xk)

and (2πlx1, x2, . . . , xk), for all l ∈ Z; there is a similar symmetry in the other

coordinates.) The mapping u �→ ≈
u is continuous from H1(Q0) to H1(Tk),

since this continuity holds for u ∈ C1(Q0).

Now γj can for u ∈ Hm(Q0) be defined on each face by reference to the

definition on Hm(Tk). For example, the action of γj on the face {0}×Q
(k−1)
0 ,
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Q
(k−1)
0 = ]0, π[ k−1, is defined as the composition of

u �→ p(m),Tu, from Hm(Q0) to Hm(Tk),

p(m),Tu �→ Dj
x1
p(m),Tu|x1=0, from Hm(Tk) to Hm−j− 1

2 (Tk−1),

Dj
x1
p(m),Tu|x1=0 �→ r

Q
(k−1)
0

(Dj
x1
p(m),Tu|x1=0),

from Hm−j− 1
2 (Tk−1) to Hm−j− 1

2 (Q
(k−1)
0 ).

Altogether,

γj at x1 = 0 maps Hm(Q0) continuously into Hm−j− 1
2 (Q

(k−1)
0 ). (5.23)

The full mapping γj is not surjective onto the union of the spaces

Hm−j−1/2 for each face; there are compatibility requirements at the edges
and corners where the faces meet. We shall not attempt a detailed study
here.

Concerning Hm
0 (Q0), the closure of C∞

0 (Q0) in Hm(Q0), we observe that
since γj is well-defined on each face, as in (5.23), and gives 0 on C∞

0 (Q0),
it gives 0 on Hm

0 (Q0), for j ≤ m − 1. Moreover, the mapping eQ0,T that
extends by 0 on [−π/2, 3π/2]k \ Q0, and extends the resulting function to
have period 2π in each coordinate, is continuous:

eQ0,T : H
m
0 (Q0) → Hm(Tk).

For, it has this continuity when applied to C∞
0 (Q0) and this extends by

closure to all of Hm
0 (Q0). We shall show:

Lemma 5.2. The functions u ∈ Cm(Q0) ∩Hm
0 (Q0) are precisely the func-

tions in Cm(Q0) that have γju = 0 for j ≤ m− 1 on all the boundary faces
of Q0.

Proof. When u ∈ Cm(Q0) ∩ Hm
0 (Q0), then γju is zero on each boundary

face, as noted before the lemma. To show the converse, let u ∈ Cm(Q0)
with γju = 0 on each boundary face, j ≤ m− 1. We have to show that this
element of Hm(Q0) can be approximated there by C∞

0 (Q0) functions. Now
eQ0,Tu identifies with a function in Hm(Tk), since the derivatives up to order
m − 1 are continuous and the m’th derivatives have nice jumps (as in the
construction of p(m),T). By dilation (contraction) of u, defining

vh(x) = u( 1
1−h(x− p 1

2
) + p 1

2
), p 1

2
= (π2 , . . . ,

π
2 ), h ∈ ]0, 1[ ,

and extension by zero on [−π
2 ,

3π
2 ]k\Q′

h, Q
′
h = ]hπ2 , π− hπ

2 [ , extending further

by periodicity, we get a sequence of functions converging in Hm(Tk) to the
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extension of u. Since vh on [−π
2
, 3π

2
]k is supported in the compact subset

Q′
h of Q0, convolution by hj gives an approximating sequence of C∞

0 (Q0)
functions for sufficiently large j. �

This suffices to motivate that Hm
0 (Q0) represents the boundary condition

γ0u = γ1u = · · · = γm−1u = 0, although we have not fully analyzed the most
general elements.

We shall now show:

Theorem 5.3.
1◦ The closure of Aγ,0 equals Aγ , the selfadjoint operator defined by the

variational construction with s as in (5.18), V = H1
0 (Q0), H = L2(Q0).

2◦ The closure of Aν,0 equals Aν , the selfadjoint operator defined by the
variational construction with s as in (5.18), V = H1(Q0), H = L2(Q0).

3◦ The system {fn}n∈Nk in (5.12) is the full system of eigenvectors for Aγ ,
with eigenvalues ‖n‖2. Thus in the Fourier representation Fγ : L2(Q0) →
�2(N

k) determined by the orthonormal basis {fn}n∈Nk , Aγ corresponds to
multiplication by ‖n‖2:

Aγ = F−1
γ M‖n‖2Fγ . (5.24)

The system {gn}n∈Nk
0
in (5.15) is the full system of eigenvectors for Aν , with

eigenvalues ‖n‖2. Thus in the Fourier representation Fν : L2(Q0) → �2(N
k
0)

determined by the orthonormal basis {gn}n∈Nk
0
,

Aν = F−1
ν M‖n‖2Fν . (5.25)

4◦ The domains D(Aγ) and D(Aν) are contained in H2(Q0).

Proof. 1◦. We denote −Δ = A. Since Aγ,0 ⊂ Amax, Aγ,0 is closable. Recall
from Section 1.3 that Aγ acts like Amax with D(Aγ) = H1

0 (Q0) ∩D(Amax);
then since clearly D(Aγ,0) ⊂ H1

0 (Q0) ∩ D(Amax), Aγ,0 ⊂ Aγ . Since Aγ is
closed,

Aγ,0 ⊂ Aγ . (5.26)

Since (5.26) implies Aγ ⊂ (Aγ,0)
∗, Aγ,0 = Aγ will follow if we show that Aγ,0

is selfadjoint. This is done by using the eigenfunction information we already
have. Indeed, we shall show that (with λn = ‖n‖2, the eigenvalue at fn)

u ∈ D(Aγ,0) ⇐⇒
∑
n∈Nk

λ2
n|(u, fn)|2 < ∞,

Aγ,0u =
∑
n∈Nk

λn(u, fn)fn in the affirmative case.
(5.27)

When (5.27) holds, it shows that Aγ,0 corresponds to the multiplication

operator Mλn
on �2(N

k) in the Fourier representation Fγ : L2(Q0)
∼→ �2(N

k)
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sending v into its Fourier coefficients {(v, fn)}n∈Nk . The operator Mλn
is

selfadjoint, so since Fγ is unitary, it follows that Aγ,0 is selfadjoint too.
It remains to show (5.27). When u is such that

∑
n∈Nk λ2

n|(u, fn)|2 < ∞,
then uN =

∑
‖n‖≤N (u, fn)fn ∈ D(Aγ,0) converges to u for N → ∞, and

Aγ,0uN =
∑

‖n‖≤N λn(u, fn)fn converges in L2 to a function g =∑
n∈Nk λn(u, fn)fn, so u ∈ D(Aγ,0) with Aγ,0u = g. Conversely, when

u ∈ D(Aγ,0), there is a sequence vN → u such that vN ∈ D(Aγ,0) and

Aγ,0vN → Aγ,0u. Then for any n ∈ N
k,

(Aγ,0u, fn) = lim
N

(Aγ,0vN , fn) = lim
N

(vN , Aγ,0fn)

= λn lim
N

(vN , fn) = λn(u, fn),

so Aγ,0u has the Fourier expansion Aγ,0u =
∑

n∈Nk λn(u, fn)fn, and

‖Aγ,0u‖2 =
∑

n∈Nk λ2
n|(u, fn)|2 (the Parseval equation). This ends the proof

of 1◦.
For 2◦, we find in exactly the same way that Aν,0 is selfadjoint, and equals

F−1
ν M‖n‖2Fν . To see that Aν,0 ⊂ Aν , which will end the proof of 2◦, we

proceed as follows:
Clearly, D(Aν,0) ⊂ H1(Q0). When u ∈ D(Aν,0) and v ∈ C1(Q0), an

integration by part shows that

(Aν,0u, v) = s(u, v). (5.28)

Since C1(Q0) is dense in H1(Q0) by Lemma 5.1, (5.28) extends to be valid
for all v ∈ H1(Q0). Then u ∈ D(Aν), by definition. So D(Aν,0) ⊂ D(Aν),
and since Aν,0 and Aν both act like Amax, Aν,0 ⊂ Aν . Since the latter is

closed, Aν,0 ⊂ Aν . This ends the proof of 2◦.
In the course of these proofs, we have also obtained 3◦.
Finally, 4◦ is deduced for Aγ from (5.27) as follows: A function u satisfying∑
n∈Nk λ2

n|(u, fn)|2 < ∞ is the restrictions to Q0 of an odd periodic function
ũ with an expansion ũ =

∑
n∈Zk cnen in the full trigonometric system, such

that
∑

n∈Zk ‖n‖4|cn|2 < ∞. Hence ũ ∈ H2(Tk), and therefore u ∈ H2(Q0).
The proof for Aν is similar, except that it refers to even periodic exten-
sions. �

Note in particular that N(t;Aγ) = N(t;Aγ,0) and N(t;Aν) = N(t;Aν,0),
so (5.14) and (5.17) hold for these counting functions also.

We have here shown some properties of Aγ and Aν by “hand calculation”
(using the special symmetries of the considered case), that one can show in
general with a much greater effort, which we shall now take up.
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5.4 Compact selfadjoint operators.

A compact operator in a Hilbert spaces H is an operator T ∈ B(H) that
maps bounded sets into precompact sets. In other words, when xk (k ∈ N)
is a bounded sequence, then Txk has a convergent subsequence. A compact
normal operator can be diagonalized by a complete system of eigenvectors,
such that the corresponding eigenvalues go to 0 at ∞, see e.g. G. K. Pedersen
[P 1989, 3.3.5 and 3.3.8]. Let us here give a selfcontained proof that also
shows how the eigenvalues are found (in principle), in the case of operators
that are ≥ 0. (The general selfadjoint case can be treated very similarly, see
e.g. Edmunds and Evans [E-E 1988, Th. II 5.2].) We first show:

Lemma 5.4. Let T ∈ B(H) be selfadjoint ≥ 0. Then

‖T‖ = sup{ (Tx, x) | ‖x‖ ≤ 1 }. (5.30)

Proof. Denote the right hand side of (5.30) by μ. The inequality ‖T‖ ≥ μ
follows since

(Tx, x) ≤ ‖Tx‖ ‖x‖ ≤ ‖T‖ ‖x‖2 ≤ ‖T‖ for ‖x‖ ≤ 1.

To show the other inequality we use the identity

4‖Tx‖2 = (T (ax+ 1
aTx), ax+ 1

aTx)− (T (ax− 1
aTx), ax− 1

aTx), (5.31)

that is valid for all a > 0, x ∈ H. It implies

4‖Tx‖2 ≤ μ(‖ax+ 1
aTx‖2 + ‖ax− 1

aTx‖2) ≤ 2μ(a2‖x‖2 + 1
a2 ‖Tx‖2).

When Tx �= 0, the expression a2‖x‖2 + 1
a2 ‖Tx‖2 takes its minimum for

a2 = ‖Tx‖/‖x‖, and this choice gives that

4‖Tx‖2 ≤ 4μ‖x‖ ‖Tx‖,

and hence

‖Tx‖ ≤ μ‖x‖.

This obviously also holds if ‖Tx‖ = 0, and the validity for all x implies that
‖T‖ ≤ μ. �
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Theorem 5.5. Let H be a Hilbert space, and let T ∈ B(H) be compact,
selfadjoint and ≥ 0. Then T is diagonalizable with respect to an orthonormal
basis {ej}j∈J of H, such that J = J0∪J1, where {ej}j∈J0

is a basis of the zero
eigenspace and J1 is countable (finite or infinite) with {ej}j∈J1

consisting of
eigenvectors belonging to positive eigenvalues of finite multiplicity. Here J1
can be ordered (replaced by the infinite sequence N or by a set {1, . . . , N})
such that the corresponding eigenvalues μj form a decreasing sequence, going
to 0 if the sequence is infinite:

μ1 ≥ μ2 ≥ · · · ≥ μj ≥ · · · → 0, μj > 0. (5.33)

When the eigenvalues and eigenvectors are ordered in this way, the n’th eigen-
value satisfies

μn = max{ (Tx, x) | ‖x‖ ≤ 1, x ⊥ e1, . . . en−1 }

= min
X⊂H

dimX≤n−1

max
x∈H\{0}

x⊥X

(Tx, x)

‖x‖2 . (5.34)

Proof. (The proof has much in common with the proof in Mat 2MA V §2.2
showing the existence of eigenvalues and eigenvectors of a solution operator
in the Sturm-Liouville theory.)

We shall first show that

μ1 = sup{ (Tx, x) | ‖x‖ ≤ 1 }

is an eigenvalue. This surely holds if T = 0, so we just have to consider the
case T �= 0; then μ1 > 0 in view of Lemma 5.4. By definition, there is a
sequence yk with ‖yk‖ ≤ 1 such that (Tyk, yk) → μ1. Then (Tyk, yk) �= 0
from a certain step on, and hence also yk �= 0, so xk = yk/‖yk‖ satisfies

(Tyk, yk) = (Txk, xk)‖yk‖2 ≤ (Txk, xk) ≤ μ1;

and therefore

(Txk, xk) → μ1 for k → ∞; ‖xk‖ = 1.

By the compactness of T , Txk has a convergent subsequence Txkj
→ v in

H. Now

0 ≤ ‖Txkj
− μ1xkj

‖2 = ‖Txkj
‖2 − 2μ1(Txkj

, xkj
) + μ2

1

≤ 2μ2
1 − 2μ1(Txkj

, xkj
) → 0,
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so in fact ‖Txkj
− μ1xkj

‖ → 0, and

μ1xkj
= Txkj

− (Txkj
− μ1xkj

) → v.

Since xkj
→ 1

μ1
v and Txkj

→ v, v is an eigenvector for T with the eigenvalue

μ1. Since ‖xkj
‖ = 1, ‖v‖ = μ1; we shall denote v/‖v‖ = e1.

The eigenvalue μ1 is the largest possible, since any normed eigenvector e
with eigenvalue μ must satisfy

μ1 ≥ (Te, e) = (μe, e) = μ. (5.35)

Insertion shows that μ1 satisfies (5.34) (with the empty set of eigenvectors
with lower index, and with X = {0}).

To find the next eigenvalue, we observe that the space X1 spanned by
e1 is invariant under T (obviously), and so is its orthogonal complement
H1 = X⊥

1 :

(Tx, e1) = (x, Te1) = μ1(x, e1) = 0, when x ∈ H1.

Then the restriction T1 of T to H1 is a compact selfadjoint nonnegative
operator in H1.

To this we can apply the above procedure, finding that

μ2 = sup{ (T1x, x) | ‖x‖ ≤ 1, x ∈ H1 }

is an eigenvalue of T1, hence of T , with normed eigenvector e2 ∈ H1. It
certainly verifies the first line in (5.34); the second line will be dealt with at
the end of the proof. Moreover, μ2 ≤ μ1, in view of (5.35).

One repeats this procedure as long as Tn is nonzero. In the n+ 1’st step,
we set Xn = span{e1, . . . , en} and Hn = X⊥

n ; it is invariant under T since

(Tx, c1e1 + · · ·+ cnen) = (x, T (c1e1 + · · ·+ cnen))

= (x, μ1c1e1 + · · ·+ μncnen) = 0 when x ⊥ Xn.

Thus T restricts to an operator Tn on Hn that is again compact selfadjoint
≥ 0, and to which the procedure applies. This gives the n+ 1’st eigenvalue
μn+1, which is ≤ μn and satisfies the first line in (5.34).

If there is a number n0 such that μn0
> 0 and Tn0

is the zero operator,
then Hn0

equals the nullspace Z(T ) of T , i.e. the zero eigenspace. For, it is
clear that Hn0

⊂ Z(T ), and on the other hand, if Tx = 0, then for n ≤ n0,

(x, en) =
1
μn

(x, Ten) =
1
μn

(Tx, en) = 0, (5.36)
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so x ⊥ Xn0
, hence lies in Hn0

. This is the case formulated in the theorem,
where J1 is finite with N = n0; the {ej}j∈J0

can be taken as an orthonormal
basis of Hn0

.
Otherwise the procedure goes on to give an infinite, decreasing sequence

of positive eigenvalues μn, with an orthonormal system of eigenfunctions en,
n ∈ N. The sequence μn converges to a limit c ≥ 0. If c were positive,
we would have a bounded sequence xn = 1

μn
en with Txn = en being an

orthonormal sequence; this has no convergent subsequence, in contradiction
to the compactness of T . Thus c = 0, and (5.33) is shown. In particular, μn

can only take the same positive value finitely many times, so there is only a
finite number of en’s belonging to the same positive eigenvalue.

Let V1 be the closure of the space spanned by the en, and let V0 = V ⊥
1 ;

observe that V0 =
⋂

n∈N
Hn. Then V0 is invariant under T , and the restriction

of T to V0, TV0
, satisfies

0 ≤ (TV0
x, x) = (Tx, x) ≤ μn‖x‖2 for all n ∈ N, x ∈ V0,

so (TV0
x, x) = 0 on V0. It follows by Lemma 5.4 that TV0

= 0, i.e., V0 ⊂ Z(T ).
The converse, Z(T ) ⊂ V0, is seen as above by (5.36).

If we let {ej}j∈J0
be an orthonormal basis of V0, we have that {en}n∈N ∪

{ej}j∈J0
is an orthonormal basis of H.

It remains to account for the second formulation in (5.34). First we show
that when X is an arbitrary finite dimensional subspace of H, then the
maximum of (Tx, x)/‖x‖2 for x ∈ X⊥ \ {0} is attained: Let PX⊥ denote the
orthogonal projection onto X⊥, and let T ′ = PX⊥T , it is a compact operator
in X⊥ satisfying

(T ′x, x) = (PX⊥Tx, x) = (Tx, x) ≥ 0 for x ∈ X⊥,

hence selfadjoint ≥ 0 there. An application of the first step in the above proof
to T ′ shows that the maximum of (T ′x, x)/‖x‖2 on X⊥ \ {0} is attained.

Now let us denote

an = inf
X⊂H

dimX≤n−1

max
x∈H\{0}

x⊥X

(Tx, x)

‖x‖2 ; (5.37)

we have to show that μn = an for each n, and that the infimum is attained,
so that it is a minimum.

Since, by the first line in (5.34),

μn = max
x∈H\{0}
x⊥Xn−1

(Tx, x)

‖x‖2 ,
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where Xn−1 is a special case of the X occurring in (5.37), μn ≥ an.
To show that μn ≤ an, we must show that for an arbitrary n′-dimensional

space X ⊂ H with n′ ≤ n− 1,

μn ≤ max
x∈H\{0}

x⊥X

(Tx, x)

‖x‖2 . (5.38)

Let x1, . . . , xn′ be a basis of X . To find a vector v = c1e1 + · · · + cnen
orthogonal to X , we have to solve the n′ homogeneous equations with n
unknowns c1, . . . , cn:

c1(e1, xj) + · · ·+ cn(en, xj) = 0, for j = 1, . . . , n′;

since n′ < n, this always has a nontrivial solution. Such a v satisfies

(Tv, v) = (
∑
j≤n

Tcjej ,
∑
k≤n

ckek) =
∑
j≤n

μj |cj |2

≥ μn

∑
j≤n

|cj |2 = μn‖v‖2, v �= 0.

This shows (5.38), and hence an ≥ μn. The infimum is attained at X =
Xn−1. �

The second line in (5.34) is useful for comparison of eigenvalues of different
operators. We have for example:

Corollary 5.6. Let S and T be operators in B(H) that are compact, self-
adjoint ≥ 0, and satify S ≤ T , i.e.,

(Sx, x) ≤ (Tx, x) for all x ∈ H. (5.39)

Then the number (≤ ∞) of nonzero eigenvalues μn(S) for S is ≤ the number
of nonzero eigenvalues μn(T ) for T ; and when they are ordered as in the above
theorem, each nonzero eigenvalue of S satisfies

μn(S) ≤ μn(T ). (5.40)

Proof. This follows immediately from (5.39) and (5.34). �

There is also a converse of Theorem 5.5 (cf. [P 1989, Lemma 3.3.5]), for
which we shall include the classical proof:
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Theorem 5.7. Let the Hilbert space H have an orthonormal basis {ej}j∈J ,
where J = J0 ∪ J1, with J1 finite or equal to N, and let T be an operator
acting as follows:

Tx =
∑
j∈J1

μj(x, ej)ej ,

where μj �= 0, and μj → 0 for j → ∞ if J1 is infinite. Then T is compact.

Proof. In the expression defining Tx, one could include a zero term∑
j∈J0

0(x, ej)ej . By the Parseval equation,

‖Tx‖2 =
∑
j∈J1

|μj(x, ej)|2 ≤ max |μj |2‖x‖2,

with equality when x is a vector ej with largest |μj |, so T is a bounded
operator with ‖T‖ = maxj |μj |.

Let xk be a sequence in H with ‖xk‖ ≤ C for all k ∈ N; we must show
that Txk has a convergent subsequence. For this, note that when we write

Txk =
∑
j∈J1

μjcjkej , cjk = (xk, ej),

then |cjk| ≤ C for all j, k, so each sequence {cjk}k∈N has a convergent sub-
sequence. We use this as follows: Let

In = { j ∈ J1 | |μj| ≥ 1
n
}, n ∈ N;

then In ⊂ In+1 for all n and J1 =
⋃

n∈N
In. Let

Tnx =
∑
j∈In

μj(x, ej)ej ,

then
‖Tx− Tnx‖ = ‖

∑
j∈J1\In

μj(x, ej)ej‖ ≤ 1
n‖x‖.

For n = 1, we can find a subsequence {k1l }l∈N of {k}k∈N such that the
sequence of vectors {cjk1

l
}j∈I1 converges to a limit {cj}j∈I1 for l → ∞; i.e.,

each sequence cjk1
l
converges to a limit cj , for j ∈ I1. Next, we construct a

subsequence k2l of {k1l }l∈N such that also the sequences cjk2
l
with j ∈ I2 \ I1

converge to limits cj for l → ∞; then we have convergence for all j ∈ I2. One

goes on in this way; in the general step one takes for kn+1
l a subsequence of

knl such that the sequences cj,kn+1
l

converge to limits cj for l → ∞, when
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j ∈ In+1. If J1 is finite, the procedure ends after a finite number of steps,
and the last subsequence is index sequence for a convergent subsequence
of {Txk}. If J1 is infinite, we define from the sequences {knl }, n, l ≥ 1, the
sequence {krr}r∈N; it is called the diagonal sequence. For any of the sequences
{knr }r∈N, the sequence {krr}r∈N is a subsequence from r = n and onwards, so
cj,kr

r
→ cj for r → ∞, for all j ∈ J1. Now we claim that Txkr

r
is a Cauchy

sequence in H, hence convergent. For,

‖Txkr
r
− Txks

s
‖ ≤ ‖(T − Tn)xkr

r
‖+ ‖Tn(xkr

r
− xks

s
)‖+ ‖(T − Tn)xks

s
‖

≤ 2 1
n
C + ‖Tn(xkr

r
− xks

s
)‖.

For a given ε we first choose n so large that 2C/n ≤ ε/2; then since In is
finite and each coefficient sequences cj,kr

r
converges for r → ∞, there exists

N so that ‖Tn(xkr
r
− xks

s
)‖ ≤ ε/2 for r, s ≥ N . �

The method of successively taking subsequences can also be used to show
the general fact that if a sequence of finite rank operators converges in oper-
ator norm to an operator T , then T is compact.

5.5 Applications to variational operators.
We shall now apply the above results to selfadjoint unbounded operators.

The interesting case is where the Hilbert space H is infinite dimensional (so
that the operators can be unbounded), we assume this from now on.

As recalled in Chapter 1, a triple (H, V, s) as in Theorem 1.4 with a
symmetric coercive sesquilinear form gives rise to a selfadjoint operator S
by the variational construction. Conversely, any selfadjoint operator S in
H with lower bound m(S) > −∞ is the variational operator defined from
a suitable triple, namely the one where V is the completion of D(S) with
respect to the scalar product

(u, v)V = (Su, v)H + (c−m(S))(u, v)H , u, v ∈ D(S), c > 0; (5.40)

and s(u, v) is the continuous extension of the sesquilinear form (Su, v)H to
all of V , cf. e.g. [MA, Sect. 2.6] (the analysis in the proof of the Friedrichs
theorem assures that V identifies with a subspace of H). Any c > 0 can be
used; they all give equivalent scalar products on V . V is often called the
form domain for S.

Assume for simplicity that m(S) ≥ 1, and take c = m(S) in (5.40). Then
S−1 exists and is a selfadjoint bounded operator ≥ 0; and (u, v)V = s(u, v).

Now consider the case where the injection V ↪→ H is compact, i.e., any
bounded sequence in V has a subsequence that is convergent in H. This
implies that S−1 is compact. For, if xk (k ∈ N) is a sequence in H such that
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‖xk‖H ≤ C for all k, then yk = S−1xk lies in D(S) ⊂ V and satisfies

s(yk, yk) = (Syk, yk)H = (xk, S
−1xk)H

≤ ‖xk‖H ‖S−1xk‖H ≤ C2‖S−1‖;

hence yk is bounded in V -norm, and then, by the compactness of the in-
jection, has a subsequence that converges in H. We shall see later that the
converse also holds: compactness of S−1 implies compactness of V ↪→ H.

When S−1 is compact, we can apply the results of Section 5.4. Since S−1

has nullspace {0}, it is diagonalized by a complete orthonormal system of
eigenvectors {en}n∈N, with eigenvalues μn forming a decreasing sequence as
in (5.33). (Recall that we have taken H to be infinite dimensional; and note
that we now find that it must be separable.)

So S−1 acts as follows:

S−1x =
∑
n∈N

μn(x, en)Hen, for x ∈ H;

it corresponds to the multiplication operator Mμn
in the Fourier representa-

tion F : H → �2(N) that maps x into its Fourier coefficients {(x, en)H}n∈N.
It follows immediately that S corresponds to the multiplication operator

Mλn
, where

λn = 1
μn

, 0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · → ∞; (5.41)

here
D(S) = {u ∈ H |

∑
n∈N

λ2
n|(u, en)H |2 < ∞},

Su =
∑
n∈N

λn(u, en)Hen.
(5.42)

We have shown:

Proposition 5.8. Let S be selfadjoint ≥ 1 in H, and let s(u, v) be the asso-
ciated sesquilinear form with domain V ⊂ H, such that S is the variational
operator determined by (H, V, s).

If the injection V ↪→ H is compact, then S−1 is a compact operator in H.
When S−1 is compact, S has a complete orthonormal system of eigenvec-

tors (the same as those of S−1) with eigenvalues (5.41), and diagonalizes as
in (5.42).

The sesquilinear form s(u, v) and the space V are related to the orthogonal
expansions by:
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Proposition 5.9. Let S, s and V be as in Proposition 5.8, with S−1 com-
pact.

The space V consists of precisely the elements v in H for which∑
n∈N

λn|(v, en)H |2 < ∞; (5.44)

for these elements, the ordinary Fourier series
∑

n∈N
(v, en)Hen converges to

v in V . Moreover,

s(u, v) =
∑
n∈N

λn(u, en)H(en, v)H , when u, v ∈ V. (5.45)

Proof. Let us take s(u, v) as scalar product on V .
We begin by observing that the functions vn = 1√

λn
en form an orthonor-

mal system in V :

(vn, vm)V = s(vn, vm) = (S 1√
λn

en,
1√
λm

em)H = (en, em)H = δnm.

It is complete, since one has for v ∈ V :

(v, vn)V = s(v, vn) = (v, Svn)H =
√
λn(v, en)H , (5.46)

so if v is V -orthogonal to all vn, it is H-orthogonal to all en and hence equals
0. The Parseval equation gives for each v ∈ V , using (5.46) again:

‖v‖2V =
∑
n∈N

|s(v, vn)|2 =
∑
n∈N

λn|(v, en)H |2,

showing that for v ∈ V , (5.44) holds.
Conversely, if v ∈ H is such that (5.44) holds, then

wm =
∑

n≤m(v, en)Hen

satisfies

‖wm+p − wm‖2V = s(
∑m+p

n=m+1(v, en)Hen,
∑m+p

j=m+1(v, ej)Hej)

=
∑m+p

n=m+1 λn|(v, en)H |2,
again by (5.46), and hence wm is a Cauchy sequence in V for m → ∞. So it
converges to some w in V and hence to w in H; and since it converges to v
in H, v must equal w and lies in V .

This shows the first claim in the proposition. For the second claim, we
now have that

s(u, v) = lim
m→∞ s(

∑
n≤m(u, en)Hen,

∑
j≤m(v, ej)Hej)

= lim
m→∞

∑
n≤m λn(u, en)H(en, v)H . �

This allows us to give a characterization of the eigenvalues of S in terms
of the associated sesquilinear form:
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Theorem 5.10. When S is selfadjoint ≥ 1 in H with S−1 compact, and s
is the associated sesquilinear form, with domain V , the eigenvalues λn of S
(cf. (5.41) ff.) are described by

λn = min
v∈V \{0}

v⊥e1,...,en−1

s(v, v)

‖v‖2H

= max
X⊂H

dimX≤n−1

min
v∈V \{0}

v⊥X

s(v, v)

‖v‖2H
.

(5.47)

The formula extends to the case where S is just selfadjoint lower bounded,
associated with a coercive symmetric sesquilinear form s(u, v) on a space
V ⊂ H as in Theorem 1.4, as long as the injection of V into H is compact.

Proof. The first line in (5.47) follows easily from Proposition 5.9: When
v ∈ V with v ⊥ e1, . . . en−1, then

s(v, v) =
∑
j≥n

λj |(v, ej)H |2 ≥ λn

∑
j≥n

|(v, ej)H |2 = λn‖v‖2H ,

since the sequence λn is increasing; hence

λn ≤ s(v, v)

‖v‖2H
when v ⊥ e1, . . . , en−1.

Equality holds for v = en (cf. (5.46)).
For the second line, we proceed as at the end of the proof of Theorem 5.5.

To see that the minimum is attained, let V ′ = V ∩X⊥, let H ′ be the closure
of V ′ in H and let s′ be the restriction of s to V ′. This triple (H ′, V ′, s′) has
similar properties as the given triple (H, V, s), and the considered minimum
equals min{ s′(v, v)/‖v‖2H | v ∈ V ′ \{0} }, so it is attained in view of the first
part of the theorem. Denote

sup
X⊂H

dimX≤n−1

min
v∈V \{0}

v⊥X

s(v, v)

‖v‖2H
= bn.

It is clear that λn ≤ bn, since the space spanned by e1, . . . , en−1 is a special
case of X . On the other hand, when a general X is considered, there is a
nontrivial vector w = c1e1 + · · · + cnen orthogonal to X , and evaluation of
s(w,w)/‖w‖2H gives a number ≤ λn. Hence

min
v∈V \{0}

v⊥X

s(v, v)

‖v‖2H
≤ λn
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for all X , and thus bn ≤ μn. This shows that λn = bn. The supremum is
attained at X = span{e1, . . . , en−1}, hence is a maximum.

For the last statement in the theorem, we observe that the addition of a
constant c times (u, v)H to s(u, v) corresponds to the replacement of S by
S + c, whereby the eigenvalues are shifted to λn + c. At the same time,

s(v, v) + c · (v, v)H
‖v‖2H

=
s(v, v)

‖v‖2H
+ c.

This allows us to reduce to the case where s(u, v) is V -elliptic, as already
treated. �

The expressions in the right hand side of (5.47) are often called the
Rayleigh (or Rayleigh-Ritz) coefficients, and the whole statement is called
the max-min principle. It helps us compare eigenvalues, when the opera-
tors stem from different sesquilinear forms on the same space V , and even
different forms on different spaces V , when there is a suitable ordering.

Theorem 5.11. Let (H1, V1, s1) and (H2, V2, s2) be triples giving rise to
selfadjoint variational operators S1 resp. S2 as in Theorem 1.4. Assume that
V1 ⊂ V2 with continuous injection, that H1 is a closed subspace of H2, that
the injections of Vi into Hi are compact (i = 1, 2), and that s1(v, v) ≥ s2(v, v)
for v ∈ V1. Then the eigenvalues λn(S1) and λn(S2) of S1 and S2 (ordered
as above) satisfy

λn(S1) ≥ λn(S2), for all n ∈ N. (5.50)

Equivalently, the counting functions N(t;Si) = #{n | λn(Si) ≤ t} satisfy

N(t;S1) ≤ N(t;S2), for all t ≥ 0.

Proof. Theorem 5.10 applies to both S1 and S2. Note that when X2 is a
finite dimensional subspace of H2, and v ∈ H1, then v ⊥ X2 ⇐⇒ v ⊥ X1,
where X1 = PH1

X2, orthogonal projection. All subspaces of H1 of dimension
≤ n− 1 are obtained as PH1

X when X runs through the subspaces of H2 of
dimension ≤ n− 1.

For each X ⊂ H2 of dimension n− 1,

min{ s1(v, v)/‖v‖2H1
| v ∈ V1 \ {0}, v ⊥ PH1

X }
≥ min{ s2(v, v)/‖v‖2H2

| v ∈ V1 \ {0}, v ⊥ X }
≥ min{ s2(v, v)/‖v‖2H2

| v ∈ V2 \ {0}, v ⊥ X },
since s1(v, v) ≥ s2(v, v) on V1, and V2 contains more elements than V1.
Taking the maximum over all subspaces X of H2 of dimension ≤ n − 1, we
get the n’th eigenvalues, which then must satisfy the inequality (5.50). �
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Whereas the domains of two different unbounded selfadjoint operators
rarely admit any inclusions, the form domains (V1 and V2) may very well
have inclusions, with comparable sesquilinear forms. This is the case for
example for the Dirichlet and Neumann realizations Aγ and Aν of −Δ on a
set Ω, where the form domains are H1

0 (Ω) resp. H
1(Ω), and the sesquilinear

forms have the same expression
∑

j(Dju,Djv)0. Provided that we have the

required compact injection (see Section 5.6), Theorem 5.11 will give:

λn(Aγ) ≥ λn(Aν), for all n ∈ N. (5.51)

With the description of V given in Proposition 5.9, we can also show that
S−1 compact implies V ↪→ H compact. In fact, Proposition 5.9 shows that
in the situation there, V equals the domain of the operator S

1
2 ≡ F−1M

λ
1
2
n

F ,

using the Fourier representation F : H
∼→ �2(N) mentioned above. Equiva-

lently, V is the range of the operator S− 1
2 ≡ F−1M

λ
− 1

2
n

F . Since λ
− 1

2
n → 0 for

n → ∞, S− 1
2 is a compact operator by Theorem 5.7. When vk is a sequence

in V , then fk = S
1
2 vk is a sequence in H such that vk = S− 1

2 fk, and

‖vk‖2V = s(vk, vk) =
∑
n∈N

λn|(vk, en)|2 = ‖S 1
2 vk‖2H = ‖fk‖2H .

Here ‖vk‖V bounded =⇒ ‖fk‖H bounded =⇒ S− 1
2 fk has a subsequence

converging in H =⇒ vk has a subsequence converging in H.

5.6 Dirichlet-Neumann bracketing.

We are now in a position to study the spectrum of realizations of selfadjoint
strongly elliptic operators A on general domains. We do this by compari-
son with simpler cases, using the max-min property of eigenvalues shown in
Theorem 5.10; notably the consequences described in the subsequent theorm.

In preparation for the study, let us first show the compactness of suitable
imbeddings.

Theorem 5.12. For s > 0, t ∈ R, the injection of Hs+t(Tk) into Ht(Tk) is
compact.

Proof. First let t = 0. As noted in Section 5.2, Hs(Tk) equals the domain of
the operator

Ξs = F−1M〈n〉sF,

and

‖u‖s,∧ = ‖Ξsu‖L2(Tk).
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The operator Ξ−s = F−1M〈n〉−sF is a bounded operator in L2(T
k); it equals

Ξ−1
s . In details,

Ξ−su =
∑
n∈Zk

〈n〉−s(u, en)en.

Theorem 5.7 shows that Ξ−s is a compact operator in L2(T
k). Now when

uj is a bounded sequence in Hs(Tk), we have that uj = Ξ−sfj , where ‖fj‖0
is bounded, so the compactness of Ξ−s in L2(T

k) implies that uj has a
convergent subsequence in L2(T

k).
This shows the statement for t = 0. For t �= 0 we combine what was just

proved with the unitary maps Λt : H
s+t(Tk)

∼→ Hs(Tk) and Λt : H
t(Tk)

∼→
H0(Tk) = L2(T

k). �

We can use this to get results for suitable subsets of Rk.

Theorem 5.13. Let m ∈ N.
1◦ When Ω is a smooth bounded open subset of Rk, the injection of Hm(Ω)

into L2(Ω) is compact.
2◦ When Q is a box, Q = ]a1, b1[× · · ·× ]ak, bk[ , the injection of Hm(Q)

into L2(Q) is compact.
3◦ For any bounded open subset Ω of R

k, the injection of Hm
0 (Ω) into

L2(Ω) is compact.

4◦ When Ω is a finite union Ω =
⋃N

j=1 Ωj of smooth bounded open sets

and boxes as in 1◦ and 2◦, the injection of Hm(Ω) into L2(Ω) is compact.

Proof. 1◦. By a linear coordinate change, we can obtain that Ω ⊂ Q0 =
]0, π[ k. There is a continuous extension operator p(m),Ω,T from Hm(Ω) to

Hm(Tk), defined from the usual extension operator by composition with
multiplication by a function η ∈ C∞

0 ( ] − π
2 ,

3π
2 [ k) that is 1 on Ω, and ex-

tension of the resulting function on [−π
2
, 3π

2
] to a function with period 2π in

each coordinate. When uj is bounded in Hm(Ω), p(m),Ω,Tuj is bounded in

Hm(Tk). It has a convergent subsequence p(m),Ω,Tujr in L2(T
k) (r ∈ N) by

the preceding theorem; and then ujr is convergent in L2(Ω).
2◦. By a linear coordinate change, we can reduce to the case Q = Q0.

Here the extension operator p(m),T defined after Lemma 5.1 can be used, and
the proof completed in the same way as above.

3◦. Let R be so large that Ω ⊂ B(0, R). The extension by zero, eΩ,
followed by restriction to B(0, R), rB(0,R), maps Hm

0 (Ω) continuously into
Hm(B(0, R)), since it is continuous on the dense subset C∞

0 (Ω). Then if
{ul}l∈N is bounded in Hm

0 (Ω), rB(0,R)eΩul is bounded in Hm(B(0, R)), and
hence by 1◦ has a subsequence that converges in L2(B(0, R)), and in L2(Ω).

4◦. If a sequence ul, l ∈ N, is bounded in Hm(Ω), we can find a sub-
sequence that converges in L2(Ω) by successively, for j = 1, . . . , N , taking
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subsequences ulr of ul such that rΩj
ulr converges in L2(Ωj); here we use 1◦

and 2◦. �
Also the imbeddings Hs+t(Ω) ↪→ Ht(Ω) with s > 0, t ∈ R, can be shown

to be compact, when Ω is bounded and smooth, or is a cube. We also note
that when only a fixedm is considered, one can make do with less smoothness
of the domain (e.g. it can be shown that a C1 boundary (or even less) suffices
for the compactness of the imbedding H1(Ω) ↪→ L2(Ω), Ω bounded).

One of the main points in the following analysis is that we compare an
operator with a direct sum of operators. This builds on the elementary

Proposition 5.14. Let A1 and A2 be operators in Hilbert spaces H1 and
H2, and consider the operator A = A1 ⊕A2 defined on H = H1 ⊕H2 (where
{u1, u2} is identified with u1 + u2, and the norm is ‖u1 + u2‖H = (‖u1‖2H1

+

‖u2‖2H2
)

1
2 ) by:

D(A) = D(A1)⊕D(A2),

A(u1 + u2) = A1u1 +A2u2 for u1 ∈ D(A1), u2 ∈ D(A2).

When the Aj are selfadjoint, so is A. When the Aj are variational, de-
fined from triples (Hj , Vj, sj), A is variational and is defined from the triple
(H, V, s), where V = V1 ⊕ V2, and

s(u1 + u2, v1 + v2) = s1(u1, v1) + s2(u2, v2),

denoted s1 ⊕ s2.
When each Aj has the eigenvalues λn(Aj) and orthogonal eigenvectors

en(Aj), n ∈ Mj, then A has the eigenvalues and orthogonal eigenvectors

{λn(A1)}n∈M1
∪ {λm(A2)}m∈M2

,

{en(A1) + 0}n∈M1
∪ {0 + em(A2)}m∈M2

;

and vice versa.
In particular, when the Ai are like S in Theorem 5.10, the counting func-

tions satisfy

N(t;A1 ⊕ A2) = N(t;A1) +N(t;A2), for all t > 0.

There are similar statements for the direct sum of a finite number of op-

erators Aj given in Hilbert spaces Hj for j = 1, . . . , N ; here A =
⊕N

j=1 Aj

on H =
⊕N

j=1 Hj, with sesquilinear form s =
⊕N

j=1 sj on V =
⊕N

j=1 Vj in
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the variational case. For operators Aj of the kind treated in Theorem 5.10
one then has the formula:

N(t;
⊕

j≤N Aj) =
∑

j≤N N(t;Aj), for all t ≥ 0. (5.56)

Proof. That selfadjointness of A1 and A2 implies selfadjointness of A follows
from the fact that A∗ = A∗

1 ⊕A∗
2.

For the variational operators, note that coerciveness of the sj implies
coerciveness of s, since (with obvious notation)

Re s(u, u) = Re s1(u1, u1) + Re s2(u2, u2)

≥ c01‖u1‖2V1
− k1‖u1‖2H1

+ c02‖u2‖2V2
− k2‖u2‖2H2

≥ min{c01, c02}‖u‖2V −max{k1, k2}‖u‖2H ,

so (H, V, s) defines a variational operator, easily checked to equal A1 ⊕A2.
The statements on eigenvalues and eigenfunctions are also directly verified.

(As usual, eigenvalues are repeated according to multiplicity.)
Sums with more terms are included by induction on the number of terms.
�

We shall compare an operator on a general domain Ω with operators on
cubes that are contained in Ω, or whose union contains Ω. Then we shall use
Theorem 5.11 and Proposition 5.14 in the following two situations:

1◦. Let Ω be a bounded open set and let {Ωj}j≤N be a family of mutually
disjoint bounded open sets such that

⋃
j≤N Ωj ⊂ Ω.

Since Hm
0 (Ωj) is defined as the closure in Hm(Ωj) of C∞

0 (Ωj), the ex-
tension by 0, followed by restriction to Ω, sends Hm

0 (Ωj) continuously into
Hm

0 (Ω), i.e. we have a continuous injection

rΩeΩj
: Hm

0 (Ωj) → Hm
0 (Ω), for m ∈ N0.

In particular, rΩeΩj
injects L2(Ωj) continuously into L2(Ω).

Moreover, we can identify:⊕
j≤N L2(Ωj) � L2(

⋃
j≤N Ωj), closed subspace of L2(Ω)⊕

j≤N Hm
0 (Ωj) � Hm

0 (
⋃

j≤N Ωj), closed subspace of Hm
0 (Ω);

(5.57)

note here that if Ωi and Ωj have a common boundary piece, Hm
0 (Ωi ∪Ωj) is

not the same as Hm
0 ((Ωi ∪ Ωj)

◦).
By Theorem 5.13 3◦, the injections Hm

0 (Ω) ↪→ L2(Ω), H
m
0 (Ωj) ↪→ L2(Ωj)

and Hm
0 (

⋃
Ωj) ↪→ L2(

⋃
Ωj) are compact when m > 0.
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Now if m > 0 and

s(u, v) =
∑

|α|,|β|≤m

(aαβD
βu,Dαv)L2(Ω) (5.58)

is a symmetric sesquilinear form with smooth bounded coefficients, that is
coercive on Hm

0 (Ω) in L2(Ω), we can consider the following triples defining
variational Dirichlet realizations of A =

∑
|α|,|β|≤mDαaαβD

β :

(
L2(Ωj), H

m
0 (Ωj), s

)
defining Aγ,Ωj

in L2(Ωj),(
L2(

⋃
Ωj), H

m
0 (

⋃
Ωj), s

)
defining Aγ,

⋃
Ωj

in L2(
⋃
Ωj),(

L2(Ω), H
m
0 (Ω), s

)
defining Aγ,Ω in L2(Ω).

(5.59)

Using the identifications in (5.57), we have that

⊕
j≤N Aγ,Ωj

identifies with Aγ,
⋃

j≤N Ωj
.

Then we can apply Theoren 5.11 with s1 and s2 acting like s above and

H1 = L2(
⋃
Ωj), V1 = Hm

0 (
⋃

Ωj),

H2 = L2(Ω), V2 = Hm
0 (Ω).

This gives that

λn(Aγ,
⋃

Ωj
) = λn(

⊕
Aγ,Ωj

) ≥ λn(Aγ,Ω), for all n ∈ N; (5.60)

and it implies for the counting functions, in view of (5.56):

N(t;Aγ,
⋃

Ωj
) =

∑
j≤N

N(t;Aγ,Ωj
) ≤ N(t;Aγ,Ω), for all t ≥ 0. (5.61)

A geometrical point of view is to regard Aγ,
⋃

Ωj
as representing A with

more restrictive Dirichlet conditions than Aγ,Ω, since the functions in

D(Aγ,
⋃

Ωj
) must vanish on Ω \ (

⋃
Ωj) besides on ∂Ω. So (5.61) expresses

the following fact: More restrictive Dirichlet conditions lowers the counting
function. For example, if Ω is divided by a hypersurface Γ′ into a disjoint
union Ω = Ω1 ∪ Ω2 ∪ Γ′, then the functions in D(Aγ,Ω1∪Ω2

) satisfy an extra
Dirichlet condition along Γ′, and (5.61) shows the principle:

(I) The sum of the counting functions for the Dirichlet problems on Ω1

and Ω2 is lower than the counting function for the Dirichlet problem on Ω.
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Another special case is when Ω ⊂ Ω′ for some other bounded open set Ω′;
then

λn(Aγ,Ω) ≥ λn(Aγ,Ω′), for all n ∈ N;

N(t;Aγ,Ω) ≤ N(t;Aγ,Ω′), for all t ≥ 0.
(5.62)

Geometrically speaking, we have the principle:
(II) For the Dirichlet problem, an enlargement of the domain increases the

counting function.

2◦. Let Ω′ =
(⋃

j≤N Ω′
j

)◦
, where the Ω′

j are open cubes with side length

2−l and corners at grid points 2−l(n1, . . . , nk) ∈ 2−l
Z
k. As shown in Theorem

5.13 4◦, the injection Hm(Ω′) ↪→ L2(Ω
′) is compact when m > 0.

Here we want to relate Hm(Ω′) to
⊕

j∈N Hm(Ω′
j). Clearly, each element

f ∈ Hm(Ω′) defines an element of
⊕

Hm(Ω′
j) by the mapping

Φ: f �→ {rΩ′
1
f, rΩ′

2
f, . . . , rΩ′

N
f};

this mapping is continuous. Also, if Φ(f) = 0, then f = 0 as an element
of L2(Ω

′), hence is 0; so Φ is injective. The range space for Φ is simply the
set of N -tuples {g1, . . . , gN} subject to the condition that the traces (up to
order m−1) of gi and gj match whenever Ω′

i and Ω′
j have a face in common,

for i, j = 1, . . . , N . This condition defines a closed subspace of
⊕

Hm(Ω′
j)

(since the trace mappings are continuous), so Φ defines an identification of
Hm(Ω′) with a closed subspace of

⊕
j≤N Hm(Ω′

j). Moreover, Φ maps L2(Ω
′)

bijectively onto
⊕

j≤N L2(Ω
′
j).

Now assume that m > 0 and s(u, v) =
∑

|α|,|β|≤m(aαβD
βu,Dαv)L2(Ω′)

(with smooth bounded coefficients) is symmetric and coercive on Hm(Ω′) in
L2(Ω

′), and is such that its restrictions to subsets Ω′′ ⊂ Ω′,

sΩ′′(u, v) =
∑

|α|,|β|≤m

(aαβD
βu,Dαv)L2(Ω′′) (5.63)

are likewise Hm-coercive there. Let V2 =
⊕

j≤N Hm(Ω′
j) and consider the

form s2(u, v) =
⊕

j≤N sΩ′
j
(uj, vj); note that this form on vectors Φu,Φv

gives s(u, v).
Then Theorem 5.11 can be applied with

H1 = L2(Ω
′) = H2 (=

⊕
j≤N L2(Ω

′
j)),

V1 = ΦHm(Ω′), s1(Φu,Φv) = s(u, v),

and V2 and s2 as already explained. The triple (H1, V1, s1) defines the Neu-
mann realization Aν,Ω′ of A on Ω′. The triple (H2, V2, s2) defines the direct
sum of Neumann realizations

⊕
j∈N Aν,Ω′

j
. Thus we obtain:

λn(Aν,Ω′) ≥ λn(
⊕

j≤N Aν,Ω′
j
), for all n ∈ N. (5.64)
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For the counting functions, this implies in view of (5.56):

N(t;Aν,Ω′) ≤
∑
j≤N

N(t;Aν,Ω′
j
), for all t ≥ 0. (5.65)

In this construction, one could also take more general shapes of the Ω′
j ,

e.g. finite sums of smooth domains and boxes as in Theorem 5.13 4◦, as
long as Φ defines a homeomorphism onto a closed subspace of Hm(Ω′). An
interesting example is where Γ′ is a smooth hypersurface in Ω′, dividing it
into a disjoint union Ω′ = Ω′

1 ∪ Ω′
2 ∪ Γ′. Here (5.65) expresses the principle:

(III) The sum of the counting functions for the Neumann problems on Ω′
1

and Ω′
2 is higher than the counting function for the Neumann problem on Ω′.

Note that this goes in the opposite direction than the principle (I) for the
Dirichlet problem formulated above!

On could also consider overlapping domains Ω′
j , as long as the intersections

are geometrically simple; then the condition for a vector {g1, . . . , gN} to be
a set of restrictions of a function in Hm(Ω′) involves the matching on the
overlaps. However, the union of the Ω′

j must equal Ω′, up to a null-set. So
only special geometric shapes of Ω′ are allowed. We do not for the Neumann
problem have a simple principle like (II) above.

Let us finally recall the principle (5.51) that links the Dirichlet and Neu-
mann conditions:

(IV) Replacing a Dirichlet condition by a Neumann condition increases
the counting function.

To play on these various principles, introducing sub-divisions, is in the
more recent literature often called “Dirichlet-Neumann bracketing,” cf. e.g.
Reed and Simon [R-S 1978, Chapter XIII].

1◦ and 2◦ suffice to treat Dirichlet problems on quite general domains,
because of the convenient injection property of Hm

0 spaces. For Neumann
problems, our analysis only gives results for domains Ω′ that are unions of
cubes. When Ω is a general domain, its intersection with a net of cubes gives
some patches near the boundary that are not cubes. The classical method to
handle these patches is to make (nonlinear) coordinate transformations that
carry them into polygonal shapes (under further hypotheses on the regularity
of Ω); this is explained in detail for the case n = 2 in Volume 1 of Courant
and Hilbert’s fundamental book on partial differential equations [C-H 1953,
pp. 438 ff.], and a method that works for general n is explained in the thesis
of L. Sandgren [Sa 1955]. These methods are interesting because they require
rather little smoothness of the boundary (but more than the Dirichlet case
requires).

When full smoothness is available, we can use Fourier analysis at the
boundary, applying other natural points of view. One is to view the Neu-
mann solution operator as a perturbation of the Dirichlet solution operator
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by an operator that essentially “lives on the boundary” which is of dimen-
sion k − 1, whereby it only interferes with the remainder term (the term
besides const.tk/2) in the asymptotic estimate of the function N(t) (in the
way explained e.g. in Grubb [Gr 1984]). We hope to return to this point in
connection with the systematic use of Fourier integral methods to construct
solution operators later on, and leave out the analysis of Neumann problems
for general domains for the time being.

Now let us show how 1◦ and 2◦ are used in the case A = −Δ.
Let Ω be a bounded open set. For each integer l ∈ N, let {Qj,l}Nl

j=1 be an

enumeration of the Nl disjoint open cubes with sidelength 2−l and corners at
grid points 2−l(n1, . . . , nk), that are contained wholly in Ω (the inner cubes).

Enumerate as {Qj,l}N
′
l

j=Nl+1 the open cubes (still with sidelength 2−l and

corners at grid points 2−l(n1, . . . , nk)) that have to be added to {Qj,l}Nl
j=1 in

order that Ω ⊂ ⋃N ′
l

j=1 Qj,l (the whole collection {Qj,l}N
′
l

j=1 may be called the

outer cubes). Let us denote

Win,l =
⋃Nl

j=1 Qj,l, Wout,l =
(⋃N ′

l
j=1 Qj,l

)◦
. (5.66)

We say (as in [R-S 1978, p. 271]) that Ω is contented, when

lim supl→∞ vol(Win,l) = lim inf l→∞ vol(Wout,l) = vol(Ω). (5.67)

(Here vol(M) stands for the volume of the set M .)

Theorem 5.15. For any bounded open subset Ω of Rk, the Dirichlet real-
ization Aγ of −Δ on Ω has a system of positive eigenvalues going to ∞:

λ1(Aγ) ≤ λ2(Aγ) ≤ · · · ≤ λn(Aγ) ≤ · · · → ∞, (5.69)

(repeated according to multiplicities), with associated eigenvectors
{en(Aγ)}n∈N forming an orthonormal basis of L2(Ω).

If Ω is contented, the counting function N(t;Aγ) satisfies

N(t, Aγ) = (2π)−kωk vol(Ω)t
k/2 + o(tk/2), for t → ∞. (5.70)

If Ω is contained in the closure of the union of inner cubes Qj,l for some
l, then

N(t, Aγ) = (2π)−kωk vol(Ω)t
k/2 +O(t(k−1)/2), for t → ∞. (5.71)

Proof. Since the injection of H1
0 (Ω) into L2(Ω) is compact for any bounded

Ω (Theorem 5.13 3◦), the first statement holds by Theorem 5.10.
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Now let Ω be contented. By (5.14),

|N(t;Aγ,Q0
)− 2−kωkt

k/2| ≤ Ct(k−1)/2, for t ≥ 1, (5.72)

where C is a constant. A similar estimate holds for N(t;Aν,Q0
). If we replace

Q0 by 1
2lπ

Q0 = ]0, 2−l[ k, the complete system of eigenfunctions for Q0

sinn1x1 · · · sinnkxk, with eigenvalues n2
1 + · · ·+ n2

k, n ∈ N
k,

is replaced by the complete system of eigenfunctions for 1
2lπ

Q0,

sin 2lπn1x1 · · · sin 2lπnkxk, with eigenvalues 22lπ2(n2
1 + · · ·+ n2

k), n ∈ N
k;

so we see that there is the simple relation between the m’th eigenvalues

λm(Aγ, 1

2lπ
Q0

) = 22lπ2λm(Aγ,Q0
), all m ∈ N,

and hence

N(t;Aγ, 1

2lπ
Q0

) = N( t
22lπ2 , Aγ,Q0

). (5.73)

Similarly, we find by consideration of the cosine system (5.15):

N(t;Aν, 1

2lπ
Q0

) = N( t
22lπ2 , Aν,Q0

). (5.74)

The formula (5.61) applied to the inner cubes with sidelength 2−l gives,
in view of (5.72) and (5.73):

N(t;Aγ,Ω) ≥
∑
j≤Nl

N(t;Aγ,Qj,l
) ≥ Nl[2

−kωk(
t

22lπ2 )
k/2 − C( t

22lπ2 )
(k−1)/2]

= vol(Win,l)[(2π)
−kωkt

k/2 − C2lπ1−kt(k−1)/2], (5.75)

for t ≥ 1. It follows that

lim inft→∞ t−k/2N(t;Aγ,Ω) ≥ (2π)−kωk vol(Win,l). (5.76)

On the other hand, we have in view of (5.51), (5.56), (5.62) and (5.65),
taking Ω′ = Wout,l,

N(t;Aγ,Ω) ≤ N(t;Aγ,Wout,l
) ≤ N(t;Aν,Wout,l

) ≤
∑
j≤N ′

l

N(t;Aν,Qj,l
).
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This gives, by (5.72) ff. and (5.74):

N(t, Aγ,Ω) ≤
∑
j≤N ′

l

N(t;Aγ,Qj,l
) ≤ N ′

l [2
−kωk(

t
22lπ2 )

k/2 + C( t
22lπ2 )

(k−1)/2]

= vol(Wout,l)[(2π)
−kωkt

k/2 + C2lπ1−kt(k−1)/2], (5.77)

for t ≥ 1, and hence

lim supt→∞ t−k/2N(t;Aγ,Ω) ≤ (2π)−kωk vol(Wout,l). (5.78)

Since (5.76) and (5.78) hold for all l, we can conclude in view of (5.67) that

lim
t→∞ t−k/2N(t;Aγ,Ω) = (2π)−kωk vol(Ω), (5.79)

which can also be written as (5.70).
The last statement in the theorem is concerned with a case where the set

of inner cubes Qj,l, j ≤ Nl, equals the set of outer cubes. In particular,

vol(Win,l) = vol(Wout,l) = vol(Ω). (5.80)

Then (5.71) follows from directly from (5.75) and (5.77). �
Theorem 5.16. When Ω ⊂ R

k is such that the injection H1(Ω) ↪→ L2(Ω)
is compact (in particular, when Ω is a finite union of smooth bounded open
sets and open cubes), the Neumann realization Aν of −Δ on Ω has a system
of nonnegative eigenvalues going to ∞:

λ1(Aν) ≤ λ2(Aν) ≤ · · · ≤ λn(Aν) ≤ · · · → ∞, (5.81)

(repeated according to multiplicities), with associated eigenvectors
{en(Aν)}n∈N forming an orthonormal basis of L2(Ω).

If Ω is contained in the closure of the union of inner cubes Qj,l for some
l, then

N(t, Aν) = (2π)−kωk vol(Ω)t
k/2 +O(t(k−1)/2), for t → ∞. (5.82)

Proof. The first statement follows from Theorem 5.10 (cf. also Theorem 5.13
4◦).

Now consider an Ω satisfying the special hypothesis, so that (5.80) holds.
On one hand, we have in view of (5.51), (5.61), (5.72) and (5.73):

N(t;Aν,Ω) ≥ N(t;Aγ,Ω) ≥
∑
j≤Nl

N(t;Aγ,Qj,l
)

≥ Nl[2
−kωk(

t
22lπ2 )

k/2 − C( t
22lπ2 )

(k−1)/2]

= vol(Win,l)[(2π)
−kωkt

k/2 − C2lπ1−kt(k−1)/2], (5.83)
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for t ≥ 1. On the other hand, (5.65) and (5.74) give:

N(t, Aν,Ω) ≤
∑
j≤Nl

N(t;Aν,Qj,l
) ≤ Nl[2

−kωk(
t

22lπ2 )
k/2 + C( t

22lπ2 )
(k−1)/2]

= vol(Wout,l)[(2π)
−kωkt

k/2 + C2lπ1−kt(k−1)/2], (5.84)

for t ≥ 1. Since (5.80) holds, this proves (5.81). �
The finer estimates in (5.71) and (5.82), that we have here obtained for

domains that are unions of congruent cubes, can be shown for much more
general domains by use of deep theories. In fact, the question of their validity
was open for general smooth domains up until the seventies, where the fun-
damental works of L. Hörmander [H 1968], [H 1971], brought new methods
into the picture (Fourier integral operators).

The asymptotic estimates, we have shown above, are equivalent with as-
ymptotic estimates of eigenvalues in the following way:

Theorem 5.17. Let H be a Hilbert space, and let A be a selfadjoint pos-
itive operator in H with compact inverse. Let {λn}n∈N be the eigenvalue
sequence (arranged as in (5.41)) and N(t) the counting function; N(t) =
#{eigenvalues ≤ t}. Let C > 0, α > β > 0.

1◦ The counting function satisfies:

N(t) = Ctα + o(tα) for t → ∞, (5.85)

if and only if the eigenvalue sequence satisfies:

λn = C−1/αn1/α + o(n1/α) for n → ∞. (5.86)

2◦ The counting function satisfies:

N(t) = Ctα +O(tβ) for t → ∞, (5.87)

if and only if the eigenvalue sequence satisfies, with γ = (1− α+ β)/α:

λn = C−1/αn1/α +O(nγ) for n → ∞. (5.88)

Proof. Note that the functions t �→ N(t) and n �→ λn are in some sense
inverses of one another. More precisely, let {nj}j∈N be the subsequence of n
where the inequality λn ≤ λn+1 is strict, i.e.

λnj
< λnj+1, (5.89)
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and set n0 = 0 = λn0
; then N(t) takes the value nj on the interval

[λnj
, λnj+1[ = [λnj

, λnj+1
[ . Here N(t) jumps from nj−1 to nj at λnj

> 0,
and is continuous from the right. In particular,

N : {λn0
, λn1

, λn2
. . . .} → {n0, n1, n2, . . .} bijectively,

with N(λnj
) = nj. (5.90)

We can consider, along with N(t), the auxiliary counting function

N<(t) = #{eigenvalues < t}; (5.91)

for t not equal to an eigenvalue it coincides with N(t), and at λnj
it jumps

from nj−1 to nj , being continuous from the left. Then for any λn,

N<(λn) ≤ n ≤ N(λn). (5.92)

For, any n belongs to an interval [nj + 1, nj+1], where λnj+1 = λn = λnj+1
,

so N(λn) = N(λnj+1
) = nj+1, and N<(λn) = N<(λnj+1) = nj .

Note that N<(t) differs very little from N(t); in fact

N<(t) = lim
s↗t

N(s), N(t) = lim
s↘t

N<(s). (5.93)

Thus (5.85) resp. (5.87) implies the same property for N<(t).
1◦. Note that (5.85) means that

t−αN(t) → C, for t → ∞; (5.94)

and as just observed, then also t−αN<(t) → C. For t = λn, we have in view
of (5.92),

λ−α
n N<(λn) ≤ λ−α

n n ≤ λ−α
n N(λn),

so it follows that λ−α
n n → C for n → ∞, and this shows (5.86).

For the converse, we note that any t satisfies

λnj
≤ t < λnj+1 (5.95)

for a uniquely determined j. Here N(t) = nj, so it follows that

λ−α
nj+1nj < t−αN(t) ≤ λ−α

nj
nj . (5.96)

Now t → ∞ =⇒ j → ∞, and when (5.86) holds, the first and the last
expressions in (5.96) converge to C for j → ∞, so it follows that t−αN(t) → C
for t → ∞, showing (5.85). This ends the proof of 1◦.
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2◦. Assume (5.87); as noted above, it also holds for N<(t), so, for some
constant C1,

−C1t
β ≤ N<(t)− Ctα ≤ N(t)− Ctα ≤ C1t

β for all t ≥ 0.

Taking t = λn, we then have in view of (5.92):

−C1λ
β
n ≤ n− Cλα

n ≤ C1λ
β
n for all n ≥ 1. (5.97)

As already shown under 1◦, nλ−α
n → C for n → ∞, so there is a rough

estimate
C2n

1/α ≤ λn ≤ C3n
1/α for n ≥ C4,

with positive constants Cj .
We now find from the right inequality in (5.97), for large n:

λn ≥ (C−1n− C−1C1λ
β
n)

1/α

≥ C−1/αn1/α(1− C1n
−1(C3n

1/α)β)1/α

≥ C−1/αn1/α(1− C5n
−1+β/α) = C−1/αn1/α − C6n

γ ;

(5.98)

it is used here that (1 − ε)1/α ≥ 1 − C7ε for ε ∈ ]0, 1]. Similarly, the left
inequality gives, for large n:

λn ≤ (C−1n+ C−1C1λ
β
n)

1/α

≤ C−1/αn1/α(1 + C1n
−1(C3n

1/α)β)1/α

≤ C−1/αn1/α(1 + C8n
−1+β/α) = C−1/αn1/α + C9n

γ ;

(5.99)

using that (1 + ε)1/α ≤ 1 + C10ε for ε ∈ ]0, 1]. (5.98) and (5.99) together
show (5.88).

Finally, let (5.88) hold; i.e.,

−C′
1n

γ ≤ λn − C−1/αn1/α ≤ C′
1n

γ , (5.100)

for some C′
1 ≥ 0. Note that γ < 1/α. As shown under 1◦, t−αN(t) → C

then, so one has a rough estimate:

C′
2t

α ≤ N(t) ≤ C′
3t

α for t ≥ C′
4, (5.101)

with positive constants C ′
j . Let t = λnj

so that N(t) = nj ; cf. (5.90). The
right inequality in (5.100) gives

N(t) = nj ≥ (C1/αλnj
− C1/αC′

1n
γ
j )

α

= Ctα(1− t−1C′
1N(t)(1−α+β)/α)α

≥ Ctα(1− t−1C′
1C

′
3
γ
t1−α+β)α

≥ Ctα − C′
5t

β
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(as above), and similarly the left inequality implies N(t) ≤ Ctα+C′
6t

β . This
shows the desired estimates for t = λnj

;

Ctα − C′
5t

β ≤ N(t) ≤ Ctα + C′
6t

β, for t = λnj
. (5.102)

For general t we use (5.95) ff., that leads to

λ−α
nj+1N(λnj

)− C ≤ t−αN(t)− C ≤ λ−α
nj

N(λnj
)− C. (5.103)

Here we need to estimate λnj+1 − λnj
. In view of (5.100) and (5.101), and

the fact that (by the mean value theorem, with θ(x) ∈ ]0, 1[ )

(x+ 1)1/α − x1/α

1
= 1

α
(x+ θ(x))1/α−1 ≤ C′′

0 x
1/α−1

for large x, we have that

0 ≤ λnj+1 − λnj
≤ C−1/α((nj + 1)1/α − n

1/α
j ) + C′

1((nj + 1)γ + nγ
j )

≤ C−1/αC′′
0N(t)1/α−1 + C′

1((N(t) + 1)γ +N(t)γ) ≤ C′′
1 t

1−α+β + C′′
2 ,

for large t. Then

λ−α
nj+1 = λ−α

nj
(1 + λ−1

nj
(λnj+1 − λnj

))−α

≥ λ−α
nj

(1− C′′
3 λ

−1
nj

(C′′
1 t

1−α+β + C′′
2 )). (5.104)

The right inequalities in (5.103) and (5.102) give, by use of the rough esti-
mates,

t−αN(t)− C ≤ λ−α
nj

N(λnj
)− C ≤ C′

6λ
β−α
nj

≤ C′′
4 n

(β−α)/α
j

= C′′
4N(t)(β−α)/α ≤ C′′

5 t
β−α.

The left inequalities give, by use of (5.104) and the rough estimates,

t−αN(t)− C ≥ λ−α
nj+1N(λnj

)− C

≥ λ−α
nj

(1− C′′
3 λ

−1
nj

(C′′
1 t

1−α+β + C′′
2 ))N(λnj

)− C

≥ −C′
5λ

β−α
nj

− C′′
3 λ

−α−1
nj

(C′′
1 t

1−α+β + C′′
2 )N(λnj

)

≥ −C′′
6 t

β−α − C′′
7 t

−α−1(C′′
1 t

1−α+β + C′′
2 )t

α

≥ −C′′
8 t

β−α,

for large t. This shows (5.87) for general t, and ends the proof. �
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For the Dirichlet and Neumann problems of −Δ considered in Theorems
5.15 and 5.16, α = k/2, β = (k − 1)/2 and γ = 1/k, so here

N(t) = Ctk/2 +O(t(k−1)/2) for t → ∞ ⇐⇒
λn = C−2/kn2/k +O(n1/k) for n → ∞.

(5.105)

The other counting function N<(t), cf. (5.91), is used instead of N(t) in
many texts. (5.93) shows that they differ very little and, as we saw in the
proof, typical estimates for N(t) hold for N<(t) as well. Also an interesting
precise estimate such as (for −Δ)

N(t) = Ctk/2 + C′t(k−1)/2 + o(t(k−1)/2), for t → ∞, (5.106)

that has been shown in recent years, carries over to N<(t) (and vice versa).
Note that where the two counting functions differ, the difference equals

the multiplicity of the eigenvalue in question:

N(λnj
)−N<(λnj

) = nj − nj−1 = ν(λnj
),

the multiplicity of λnj
. It satisfies the same estimate as the remainder term

for N(t):
(5.85) =⇒ ν(λnj

) = o(λα
nj
) = o(nj),

(5.87) =⇒ ν(λnj
) = O(λβ

nj
) = O(n

β/α
j ).

(5.107)


