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This paper introduces a class of  pseudodifferential operators depending on a 
parameter in a particular way. The main application is a complete expansion 
of the trace of the resolvent of a Dirac-type operator with nonlocal boundary 
conditions of  the kind introduced by Atiyah, Patodi, and Singer [APS]. This ex- 
tends the partial expansion in [G2] to a complete one, and extends the complete 
expansion in [GS 1 ] to the case where the Dirac operator does not have a prod- 
uct structure near the boundary. A secondary application is to obtain a complete 
expansion of  the resolvent of a ~bdo on a compact manifold, essentially reprov- 
ing a result of Agranovich [Agr]. The resolvent expansion yields immediately 
an expansion of the trace of the heat kernel, and determines the singularities 
of  the zeta function; moreover, a pseudodifferential factor can be allowed. 

A major motive for these expansions is to obtain index formulas for elliptic 
operators; there are many such applications in the physics and geometry litera- 
ture. The index formula comes from one particular term in the expansion, but 
each term is a spectral invariant, and they have been used for other purposes 
as well as for the index. In particular, Branson and Gilkey have a number of 
papers (e.g. [BG] and [Gi]) analyzing these invariants, and drawing geometric 
consequences. 

Interest in the asymptotic behavior of  the resolvent goes back to Carleman 
[C]. More recently, Agmon [Agm] developed it extensively for analytic appli- 
cations; he introduced the fundamental idea of treating the resolvent parameter 
essentially as another cotangent variable. This idea was developed in [S1] to 
analyze the singularities of  the zeta function of an elliptic Odo on a compact 
manifold, and in [$3] to analyze the resolvent of  a differential operator with 
differential boundary conditions. The technique works smoothly for differential 
operators, producing so-called local invariants, integrals over the underlying 
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manifold of  densities defined locally by the symbol of  the operator involved. 
But in the pseudodifferential case it only goes so far. In particular, [APS] iden- 
tifies an interesting nonlocal term in the expansion, contributing to the index 
formula. Grubb [G2] has studied carefully how far the Agmon approach does 
go, in a framework of pseudodifferential boundary problems, obtaining an ex- 
pansion up to and including the first nonlocal term. The present paper modifies 
the technique, thus yielding the complete expansion, with a full sequence of 
nonlocal terms, and logarithmic terms as noticed by [DG] in the case of a tpdo 
on a compact manifold. 

A simple example illustrates the modification. Suppose that a(x, ~) is the 
leading symbol of  a first-order elliptic system A. Then the first term in the Sdo 
expansion of the resolvent (A - 2) -1 has symbol (a - 2) -1. I f  a is a polyno- 
mial in ~, then each ~-derivative of  ( a -  2) -1 increases the rate of decay as 
2 ~ oo; this is an important property of the class of  Sdo's  with parameter as 
studied e.g. in Shubin [Sh]. But if  a is a general Sdo symbol, homogeneous 
only for ]~] > 1 (when taken to be C ~ for all ~), then the i-derivatives of 
(a - 2) -1 do not produce decay greater than 2 -2. Still, (a - ).)-1 does have an 
expansion in decreasing powers of  2, with coefficients which have increasing 
growth as [~] ~ oo. It is this sort of  expansion which we require of  our sym- 
bols, and we call them weakly parametric ~bdo's, in contrast to those in [Sh]. 

It is appropriate here to point out some deficiencies in the earlier paper [S1] 
on this topic. A technical problem was corrected in [$3]. Then [DG] noted that 
certain singularities occurring in the case of  Sdo's had been overlooked. In 
[S1], p. 290, it was stated that the residues of  the zeta function Tr(A s) vanish 
for s -- 1,2 . . . . .  This is true only for differential operators. 

The paper is divided into 3 sections and an appendix. In the first section we 
define and study our class of  weakly parametric Sdo's, for a compact manifold 
without boundary. Most proofs here are straightforward, and may be skipped 
on a first reading. Section 2 includes a general expansion theorem for this type 
of operator (Theorem 2.1 ). The proof shows how logarithmic terms and non- 
local terms arise in the expansion. The theorem is applied to the case of  the 
resolvent of  an elliptic ~,do on a compact manifold. Section 3 treats the case 
of  an APS operator PB, a Dirac-type differential operator P with ~9do boundary 
conditions (including those of [APS]). We construct the resolvent of  PB. Since 
the operator in the interior is differential, the associated operators connecting 
the interior with the boundary are relatively simple (so-called strongly polyho- 
mogeneous). Moreover, the trace calculation can be reduced to the boundary, 
where the theory from Sections 1 and 2 applies. One of  the main results (The- 
orem 3.13) is a complete description 
a full heat trace expansion: 

F ( s ) T r ( ~ o ( P B * P B )  - s )  ~ - -  

of the zeta function pole structure, and 

s + ,--2 7 + + --2 + ' j = l  S - -  2 = 

n Tr(q~e -tPB*eB) ~ aot-~ + ~ (~j 
j = l  

j - -  n O 0  ~ L ~ t  L 

+bj)t ~- + ~ ( -c j t21og t  +cjt2). 
j=0 
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The primed coefficients are in general globally defined, while the others 
are local. The appendix gives a selfcontained presentation of  the necessary 
results from the boundary operator calculus. The main results were announced 
in [GS2]. 

One can moreover set up a general (more complicated) calculus of  weakly 
polyhomogeneous boundary operators, to which our operators belong; but since 
it is not needed for the present trace formulas, it is not included in this paper. 
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1. Weakly parametric ~/do's 

1.1. Parameter-dependent symbols 

By sm(RV, lR n) we denote the standard Odo symbol space consisting of  the 
functions p(x, 4)E C~(IR" x IR") such that e~Gcp is O((4) m-I~l) for all e E 

N",  /3EN~;  here (4) = (1+[412) �89  and N = { i n t e g e r s  > 0}. The rules of  
calculus for this space are well-known, see e.g. [$4], [H2,3], [Y], [Sh]. A 
symbol p E sm(IR",IR ") is called "classical polyhomogeneous" (of  degree m) 
if it has an expansion p ~ ~ jE~ PJ' where the pj are homogeneous in 
of  degree m - j  for [4] > 1, and p - ~ j < j  pj E sm-J(]RV, lRn). Besides the 

usual notation (4) it will be convenient to introduce a function t ~ [t] such 
that 

(1.1) [t] C C~(IR) ,  [t] : It[ for It I ~ 1, [t] E [�89 1] for It t __< 1, 

1 for Itl < �88 then we also denote [ t~1]=[4] ,  for 4 E I R  n. [t] = ~ = 

In the definition of  sm(lRV, lRn), [4] can be used instead of (~) and has the 
advantage of  being homogeneous for I~l > 1. Further below, we also include 
a real or complex parameter/~; then we denote 

(1.2) I(4, P)I = (l~l 2 + l~12) } = I~,~l, [1(4,~,)12 = [~,~3. 

Since we are interested in questions local in x, p need not always be 
defined throughout R v, and "big O" is uniform in 4, but not necessarily in x 
(only locally so). 

We shall now define a class o f  symbols p depending on a parameter /~ 
varying in a sector F C �9 \ {0}. (F  is of the form {2 = re t~ I r > 0,0 c I}, 
I a subset of  [0,2n], and F is closed in ~E \ {0} when I is closed.) It is the 
behavior for [#[ --+ oo that is important here, and we often describe it in terms 
of the behavior of p(x, 4, ~) for z ~ 0, !z ---- P E F. For brevity o f  notation, 
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we write g~p(x, ~, �89 (or just ~ p )  for the j ' t h  z-derivative o f  the composite 
function z ~ p(x, ~, ~ ). 

Definition 1.1. Let n and v be positive integers, and let m and d E IR. Let 
F be a sector in II~ \ {0}. The space Sm'~ consists of  the functions 

0 

p(x,~,p) E C~(IR v x IR ~ x F) that are holomorphic in p E F for ]~,#1 >= c 
(some e > 0) and satisfy, for all j E N,  

~ p ( . , . , � 8 9  in sm+i(lR v -  , IR") for 7' CF,  

with uniform estimates for lzl < 1, ~ E closed subsectors of  F. 

Moreover, we set S m'd = #asm'~ that is, sm'd(IR v, IR ~, F) consists of  the fimc- 
o 

tions p (holomorphic in Iz E F for [{,p] > e) such that for all j E N,  

is in ") 2'ar  e r ,  
with uniform estimates for ]z] < 1, ~ E closed subsectors of  F. 

We call these symbols weakly parametric. Polyhomogeneous subclasses are 
considered below in Definition 1.10 if. The symbol spaces are Fr6chet spaces 
with systems o f  seminorms defined in the usual way: 

(1.3) p ~ sup{ (~)-"-.:+l~lla~O~i~(zap(x,~, �89 

tx E K , ~  E IR" _1 F'  ,z c with [z] < 1}, 
I N S '  - for ~ E INn, fl E , j E IN, K compact C IR v, F 'closed C F. 

Example 1.2. For symbols independent of  t2, one clearly has that sm(IR v, ~ " )  
C S'~'~ ~, IRn, C). On the other hand, if  f ( # )  is meromorphic in �9 and of  

Od ] R  v n F order d at ~ ,  then f E S ' ( , IR , ) for any F in the sector excluding poles 
o f  f .  

Lemma 1.3. I f f ( x , ~ )  E Sm(IRV, IR ") with m <= 0, then p(x ,~ ,# )  = f ( x ,~ /p)  
is in S~176 v, IRn, IR+ ). 

Proof. In this case,/2 is empty, so p need not be holomorphic. We can ignore 
the variable x. Note first that when f E S m, then a fortiori f C S ~ so we 

1 can assume that m = 0. Write ~ = z E IR+. We must show that ~ f ( z ~ )  E S j, 
uniformly for 0 < z < 1. 

For j = 0, this follows from the estimates 

]O~f(z~)t = zt<l~f(q)],=~-r < C~zl~t(1 + lz~I2) -I</z 

= C~(z -2 + 1~12) ->1/2 < C~(1 + l~12) -1~l/2, 

that hold with C~ independent of  z, since z ~ 1. For j > 0 we observe that 

lfll=j 
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Here a~f(r / )  E S -Ifll c S ~ so the first part o f  the proof  shows that c~f(t/)ln=~ ~ 
is uniformly in S O for z <__ 1. Multiplication by ~/~ ({fi[ = j )  then gives a 
symbol that is uniformly in SJ for z =< 1. [] 

m 
Example  1.4. Suppose that p(x, ~, #) E C ~ ( I R  '' x IR ~ • IR+) and p is homo- 
geneous of  degree 0 in (~,#)  for I~,Pl > 1. Then p E S~176 To 
see this, note first that the (~,#)-derivatives of  order k are homogeneous of 
degree - k  for [~,#1 > 1, and continuous on Ig,#l < 1, even at # = 0; hence 
they are O([~ ,#]-k) .  In particular, 

O{O~p(x,~,#o) = O([~,#01 -b~l) = O([~]-I<) ,  for each /t0 > 0, 

so p is in S O for each fixed /t0. It remains to show the required uniformity 
for /~ > 1 (i.e z < 1). Here p ( x , ~ , g ) =  p(x,~/fl, 1) by the homogeneity, so 
Lemma 1.3 applies with f (x ,  ~) = p(x, ~, 1 ). 

L e m m a  1.5. For the spaces introduced in Definition 1.1 the following maps 
are continuous." 

(i) 

(ii) 

(1.4) (iii) 
(iv) 
(v) 

0~ " S m'd --4 S m-I=l'd, 

Ofix " Sm'd --+ sm'd,  

Z k : s m , d ~ s  re,d-k, 

~z : sm'O ----+ s m + l ' 0 ,  

Oz : S m'd ~ S m+~'d + S  m'd+1, when d oeO. 

Proof  The statements (i) (iv) follow immediately from the definition. For (v), 
note that applying Oz on S m'd is equivalent to applying OzZ -d on Sm'~ and here 

(~z(Z dp)  = z-dO~p _ d z - d - l p .  [] 

Example 1.2 and (v) show that 0z does not simply map S m'd into S m+l'd 

when d 4= 0. 

L e m m a  1.6. p E sm'd(]Rv,~n,l'), q E sm"d'(IRV',Nn, F) imply p(x ,~ ,#) ,  q(y, 
~, ]J) ~ sm+rn"d+d'(]R v--v', ]R n, F). 

Proof  By the Leibniz formula, 

O{(zd+d'pq) = ~ ( j )  Okz(zdP)i~--k(zd'q), 
O<k <=j 

which belongs to S m+m'+j uniformly in z (Iz] < 1, ! E F),  since 3~z(Zap) E z 

S " - k  and i~-k(za'q) E S m'-j+k uniformly, and S" -kS  m'-j+k C S m+m'-j [] 

L e m m a  1.7. S m3 C S m''d' (with continuous injection) i f  m < m' and d' - 
d E N .  
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m', C since i ~ ( z p ) =  Proo_( Clearly, S m,~ C Sm''~ for m < and zS m'~ S m'~ 
jUz- p + z J z p  is bounded in sm+J-l+sm+J C S m+j. Thus when d - d  E 1N, 

i i 1 ! t i l 
S m'd = z - d S  m'O : z - d  (z  d -dsm'O) C z - d  S m'O C z - d  S m ,0 : a m ,d . [] 

We denote 

( 1 . 5 )  U Sm'd = Sc~'d' N Sm'd = S-CX~'d" 
mE~ mE~ 

Definition 1.8. Let pj (j  E N)  be a sequence o f  symbols in Sm#, where mj "~ 
- ~ .  Then 

p ~ ~ pj  in S ~176 
jEW 

means that p - ~-]o<:j<J PJ E S mJ'~ for  all J. In particular, p - po E S m~'a c 

S m~ so p E sm~ and we also say that p ~ ~-~jEt< PJ in S m~ 

The symbol classes S m,d have the usual property that there is a symbol 
associated with any given asymptotic expansion (proved by standard methods, 
taking the uniformity in z into account): 

Lemma 1.9. When a sequence pj is given as in Definition 1.8, then there 
exists a p E S m~ such that p ,.~ ~ j ~  p in S ~,d. 

Polyhomogeneous symbols in the calculus are defined as follows: 

Definition 1.10. p E S~'d(IR v, I~ n, F) is said to be (weakly) polyhomogeneous 
(wphg) i f  there exists a sequence o f  symbols pj  E S mj-d'd, homogeneous in 
(~,p) for  I~l > 1 o f  degree mj "~ -cxD, such that p ~ ~-~j~o PJ in S ~'d. In this 

~ , o  I~ ;  IR n, F)), C~176 tll~V ]R n, I") (or p ~ ~-~jcN PJ in O w p h g \ U .  , case, we say that p c ,_,wphg~.~. , 
with degrees {mj}jE~ and p-exponent d. In particular, p E S m~ 

Note that homogeneity is not required of the pj in the set {(~,/~) I [~[ < 1}. 
We shall also consider a more restricted class with homogeneity for I~, Pl > 1 
(strongly polyhomogeneous symbols), so the word "weakly" is used when we 
want to distinguish the general type from the special type. 

Example 1.11. When a classical polyhomogeneous symbol p(x, ~) of  degree 
m is considered as a function of (x, ~,p), constant in p C ~,  it belongs to 
Sw~, 0 tn~v IRN, F)  with degrees {m--J}jE~ and p-exponent 0. In particular, phg~. u ~  , 

p E S m'O. 

We shall now show that our symbols have a second asymptotic expan- 
sion, regardless of  whether they are polyhomogeneous or not. Our proof of 
asymptotic trace estimates in Section 2 will use both types of expansion. 
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T h e o r e m  1.12. For p E sm'd(IRV,]R n, F), set 

(1.6) p(d ,k)(x ,~)= 1 k d ~G(z p(x,~, �89 

Then P(a,k) E sm+k(lRV, lR') ,  and for any N, 

(1.7) p(x, 4, #) - }-'~O<k<NpCl-k P(a,k)(X, ~) E sm+N'd-N(]R v, IR n, C). 

Proof In view of  (1.4 iii), we can take d = 0. As usual we ignore the depen- 
dence on x. Let F '  be a closed subsector of  F. By assumption (cf. Definition 
1.1), the k ' th  z-derivative of  p(~, �89 is bounded in S "+k for I z] < l, z in the 

1 
sector F "  = {z I ~ C F'}.  Hence p and its derivatives have limits for z ~ 0 
in F" ,  e.g., if z E IR+ C F" ,  

1 

P(0,0)({) = - l i m  f(c?~p)(~, • + p(~, 1), in S m+l. 
Z IA, Z ~ 11~+ Z r 

Similarly for k > 0, the symbols P(0,k)(~) are well-defined as limits o f  ~?~p(~, �89 ) 
in S m+kql. Moreover, the uniform S m+k estimates of  c?~p(~,~) imply that 

P(0,k)(~) E S m+k. The P(0,k)(~) are in fact the Taylor coefficients o f  p(~, �89 
at z = 0, and (1.7) is a Taylor expansion (note that # - k  = zk). By Taylor 's  
'formula, 

t2N [P(~,P) -- k~-~<N/a--k p(o,k)(~)l =z-N [P(~'z) k< N ] 

I 
1 X--1 N l ) d t ,  = ~ f (1  - t) (~?z P)(~, 

0 

and we want to show that this lies in S m+N'~ as a function of  all the variables. 
That will imply (1.7). 

Let z belong to a ray z = ei~ assume for simplicity that 0 = 0. By as- 
sumption, z H c~Jp(., ! )  is bounded in S m+u for z < 1. Then for any k E N ,  z 

1 1 

~?~ f ( 1  - t)N-I (~N p)(~, 1)dt = f t*(1 - t)N-' (OzN+k p)(~, ~ )dt 
o o 

is bounded in S m§ Since this holds locally uniformly in 0, and the functions 
are holomorphic in z, we obtain (1.7). [] 

Observe the particular feature of  (1.7) that the remainders in the expansion 
lie in spaces that with increasing N grow successively better in /a-decay (for 
I#] --+ oc),  but worse in i -decay (for I~l ~ oc). This same effect is seen more 
directly in the geometric expansion of  the simple example 

1 _ # _ 2 (  1 _ I~12 I~14 
p(x,~,~)-1~12~_~ 7 + ~ " )  
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In this respect, property (1.7) is somewhat reminiscent o f  the transmission 
condition o f  Boutet de Monvel [BM]; but it differs by requiring the asymptotic 
property for # ~ cx~ only on rays (hairlines) whereas the matching for in 
+cx~ and in --+ - 2  is important in the transmission condition. The property 
is also related to semi-classical expansions. (One could study symbol classes 
having a more general expansion with terms za( logz)  j, at the cost o f  more 
elaborate explanations; but the present class is adequate for our immediate 
purposes, and composition rules here follow easily from the standard rules in 
view of  the smoothness for z ~ 0.) 

We shall now consider some important special cases. 

I b y z .  Lemma 1.13. Let m E Z. Denote as usual 
For m < O, [4, #]m and I~, #Im are in sm'~ v, IR n, ~ +  ) N S~ v, IR n, IR+ ), 

and (Z4) m E sm'-m(lR v, IR n, JR+ ) [-1 S~176 v, ]R n, IR+ ). 
For m > O, [4,p] m and ]~,pim are in sm'~ IRn, IR+ ) -t- s~ ) 

and (z4) m E sm'-m(IR ", IR", 1R+ ) + S~176 ~', IR ~, IR+ ). 

Proo f  Let p ( ~ , # ) =  [r It follows from the homogeneity that 

~14,#j  m = O(14,#jm--{~ for all ~, 

so p and I~,#1 m are in S '~ for each fixed # > 0; p is so for # = 0 also. We 
have to show uniformity of  estimates for # > 1 (i.e. z < 1); here 

(1.8) P(4 ,#)  ~- 14,#l m = z--m(}z~[ 2 "Jr- 1) m/2 = z--m(z~) m. 

The case m <= O. Since z m p ( ~ , � 8 9  f ( ~ / # )  with f ( r / ) =  (q)m E S '~ C S ~ 
it follows immediately from Lemma 1.3 that zmp C S ~176 and hence p E S ~ 
Now let us show that p E S  m'~ When [~l < 1 and 0 < z  < 1, all deriva- 
tives o f  (1.8) are bounded (since - m  E N) .  Next, let [~l > 1. Divide IR ~ into 
sectors where 14k[ > I~[/2v/~ for some k = 1 . . . .  ,n. In such a sector, 

P(4 ,# )  #mp(4/#,  1) m Im[ = = ~k [(~k/#) P(4/#, 1)] = :  4'~fk(4/#) 

with f k ( q )  = q~mlp(q, 1) E S~ Moreover, ~ can be extended from {~ E 
�9 -" [ 2v~14kl _-> 141 => 1} to the full space, to give a symbol qk(~) E S m. By 
Lemma 1.3, f k ( 4 / # ) E  S ~176 so after multiplication by qk(~) we obtain p E 
Sm,~ Then by (1.8), (z4) m E S m'-m, as claimed in the lemma. 

The case m > 0. We divide IR" into sectors as above, and write 

I~,#1 ~ = (4~' -~-- #m)(4kn ' ]  # m ) - l { 4 , # [ m  = :  (4k n + # m ) q ( 4 , # ) "  

Then q is o f  the form f ( 4 / # )  with f ( q )  = (r/~' + 1) - I  (~/)m E S O in the appro- 
priate sector, and Lemma 1.3 implies that q E S ~176 there. Clearly, 

4 m sm,~ k -~- #m E -~- S O'm , 

cf. Example 1.1. Then the product rule, Lemma 1.6, gives: 

14, #1 m E (S m'~ + S ~ ~176 C Sm'~ + S ~ [] 

This is used in the following lemma. 
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Lemma 
that for 

morphic 
I f m  

1.14. Let p(x,~,#)  be Coo in (x ,~ ,#)  E lR" x lRn x ( F U  {0}), such 
I~,#[ > 1, p is homogeneous in (~,#) o f  degree m E 7l and holo- 

o 

in #EF.  
O, then p E sm'O(lR v, lR~, F) N sO'm(lR v, lR~, F). 

For general m, p E S m'O ~- S O'm, and ~ ~ S m-I~l,~ 0xc3~p E ~ S ~ when 
t~t >-- m .  

Proof I f  m = 0, we have on each ray # = ~e i~ Q > 0, a symbol of  the type 
considered in Example 1.4, where it was shown to satisfy the estimates for 
S ~176 The estimates are locally uniform in 0, so the lemma follows, for the case 
m = 0, when we moreover note that the estimates of  the radial derivatives give 
estimates of  the z-derivatives in view of  the analyticity. 

When m is general, we write (for each ray # = ~ei~ 

p(x, ~, Qe iO) = [~, Q]m ([~, Q]--m p(x, ~, ~eiO)). 

Now if  m =< 0, [~,Q]m E sm'~ ~ by Lemma 1.5, and [~,~]-mp(x,~,Qei~ 
is o f  the preceding type, homogeneous of  degree 0 in (~,~) for I~,~l > 1; 
hence lies in S ~176 by Example 1.4. The product rule (Lemma 1.6) then gives 
that p r S m'~ A S ~ as a function of  (~, ~o); and the statement extends to the 
function of  (~, #)  in view of  the analyticity and local uniformity in 0. 

I f  m > 0, we use the fact that [~, #]m E Sm'~ + S ~ in a similar way. 

Since vxQp  satisfies the hypotheses with m replaced by m -Ic~l, the last 
statement in the lemma follows from the case m < 0. [] 

Note that smoothness (plus homogeneity) merely for (~ , /0  E lR" •  F 
would not suffice. E.g. #-1(1~12 + #2)�89 is smooth and homogeneous of  de- 
gree 0 for (~ ,#)  E lR n • lR+; but it is not smooth at # = 0, I~1 > 1, and not 
uniformly in S o for # > 1. 

Symbols satisfying the hypotheses in Lemma 1.14 will be called strongly 
homogeneous. More generally, we define: 

Definition 1.15. A symbol p(x, ~, #) is said to be strongly polyhomogeneous 
(sph#) of  degree m E l R  with respect to (~ ,p)  E I R n x ( F U { 0 } ) ,  when 
p(x, ~,#) r C~( lR v x lRn x (F  U {0})) and there is a sequence of  functions 
p / E  Coo(iN" x lR" x (F  U {0})) that for I~,#l ->- 1 are homogeneous in 

(~,#) E lR ~ x F of  degree m - j ,  with p and the pj holomorphic in # E 
and 

axO~a# P--  ~ Pj = O([~,#]m-J-E~l-k) f Or I~,#l >= 1, 
O N j < J  

for all indices, uniformly for # in closed subsectors o f  F U {0}. (One can 
replace ]~,#1 --> 1 by 1~,#1 > cj, with positive ej.) 

This class was studied earlier in Shubin [Sh]. Symbols p ( x , ~ , # ) =  
q(x,(~,#)),  where q(x, r 1 6 2  sm(lR v, IR "+l) is classical polyhomogeneous with 
m E ;g, satisfy Definition 1.15 with F U {0} = lR. 
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Theorem 1.16. Let m E ~. Let p(x, ~, p) be strongly polyhomogeneous of  de- 
gree m in ( r  E IRn• U {0}). Then p E sm'~ + s~ IRn, F), 
and 

O~zO~pESm-I~I'~ IR",F) NS~ for [ ~ I - m  > O, all fl. 

In particular, p E sm'~ v, ]R n, F )  0 s~ v, IN n, I ' )  i f  m <= O. 

As a consequence, classical polyhomogeneous symbols" in n + 1 cotangent 
variables give strongly polyhomogeneous symbols in n cotangent variables, 
when one cotangent variable is replaced by p (here F = IR+ U IR_). 

Proof  Note that O~xO~p satisfies the hypotheses with m replaced by m -[c~l. 

By Lemma 1.14, the terms pj in p with j < m are in sm-J'~ S ~ and 
those with j __> m are in sm--j'ON S ~ Then it remains to show that rj = 
P - ~o<=j<J PJ E S m-J'~ f3 S ~ for large J > m, i.e. that 

(1.10) fl c~ k 1 [~x~r z) [  ~ C[~]m-J-I~l+k'  

fl ~ k m - - J  1 la~ezZ rj(x,~,z)l _<_ C[q-I~t+k, 

for all cr k, when 0 < Izl 1, ! in a closed subsector of  F. By hypothesis, 
Z 

Since 

/~ ~ k ~x~Ol~rj(X, ~,]A) = 0([~,#] m-J-I~l-k) for all c~,fl, k. 

1 Ozrj(x,~, z )  = - # 2 ~  rJ(x,~,lJ), with # = �89 

[~,]A] a -< C[~] a, Iz[a[~,~l] a < C, when a _-< O, Izl ~ 1, 

we find for Izl < 1, 1 E N,  

~ k --/ 

ONk'Nk 

~ C' 
ONk~Nk 

= < c t t [~]m-J-I~l  +k§ 

k P t +l+k fl ~ k 

IZ I - k - l - k '  [~, # ]m-J - I~ l - k '  

For l = 0 resp. J - m, this shows the desired estimates. [] 

When a(x,~) is the principal symbol of  a strongly elliptic differen- 
tial operator A, of  order 2, say, then p = ( a ( x , ~ ) - k # 2 )  m/2 is, for any 
m E Z, homogeneous of  degree m and C ~176 in (~, /~)E ( lRnx  ( F U { 0 } ) ) \  
{0,0}, where F =  { ~ E ~ \ { 0 }  I larg~l  < n / 4 + 6 }  for some 6 > 0. It is 
holomorphic in # E  F, and it can be modified for ]r < 1 to 
be C ~176 also at (0,0),  e.g. by multiplication by an excision function 01(1r 
where 

1 (1.11) OI(t) EC~( IR) ,  01( t )= 1 for Itl > 1, 01( t )=O for Itl < 3" 
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Then we get a symbol as in the above theorem (in fact as in Lemma 1.14). 
For example, 

(1.12) (a(x, ~) + ]A2)-�89 01([~,#[) E S -1'~ n S ~ 

It also follows that the full parametrix symbol for the resolvent (A + #2)-1 is 
as in the theorem with m = - 2 .  These symbols are of  regularity +~x~ in the 
terminology of  the book Grubb [G1]. 

In contrast, if  a(x, ~) is truly pseudodifferential, e.g. a = [~], and we con- 
sider a(x, ~) + #, the fall-off for ]A ---* ~ of the higher derivatives exhibited in 
(1.9) (with J = 0) does not hold; e.g. we have only 

~([~]  § = O([~]l--[z~[), ~([~]  § ]A)-I = O([~]l-[x[[~,]A]-2), for ]~[ > 0. 

This difficulty is handled in [G1 ] by the introduction of  symbol classes of  finite 
regularity v E IR. We here take a different point of  view, for the purpose of  
keeping track of  full asymptotic expansions in ]A. 

Theorem 1.17. Let a(x, ~) be homogeneous of  integer degree m > 0 in 
for [~[ > 1 and C ~ in (x,~) E IR v x ~";  and assume that H ( X , ~ ) §  ]A m is in- 
vertiblefor(x,~,]A) E IR v • ~ "  • ( F U  {0}). Set p(x,~,]A) = (a(x,~)+]A") -1. 
Then p E S~ v, lR', F) n S-m'~ ~, IR', F). 

Proof As observed above, (a + ]A m)-I is generally not strongly homogeneous 
as in Lemma 1.14, so another argument must be given. 

To show that p E S ~  consider f ( x ,~ , r )  = prop ~_ z - " p  = (zma § 1) -1 
= (rmei"~ 1) -1,  with z = re i~ 0 < r < 1. As usual, we ignore x; and we 
can take 0 ---- 0 for simplicity. We must show that f E S ~176 We have 

(1.13) f ~- O( (r~)-m). 

This is clear when [~[ < 1, and when [~[ > 1, 

l"ma(~) + II = l a h ( ~ ) +  II => C<r~> m, 

where a h is the homogeneous extension of  a from {[~[ > 1}. This is checked 
separately for r~ small and for r~ large. Next, we observe that if  b E S J, 
j = 1,2 . . . . .  then 

(I.14) a~(tdb) = O((~) -I~I (r#):). 

For, rJa~b = (~)-l~I(rJ<#)l~la~b)= (~)-I~IrYO((~)J)= O((~)-l~l(r4)Y). Now, 
ar f = - (~) - l r "  [(4) a~a]f 2, and generally, 

0 ~ f  = (~)-I,I  ~ rmJb~,jfJ+l with b~,j E S mj. 
l_-<Y<l~l 

Together, (1.13) and (1.14) give 

(1.15) ( ~ f  = (~)-I~lO((r~)-m). 
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Finally, c~rf =-{~)[rnrm-l(~)-laf2] = (~)[rm-lbm_lf2], with bin-1 E S m-~, 
and generally 

(1.16) ~ f  = /z\jv-" rkm-j~ g k + l  skm-j. \~] L-a/<=km<=jm Ukj j , with bk,j E 

By (1.15) and (1.16), ( ~ } l / ~ l - / 0 ~ f  = O((r~)-J-m). This implies that ~ f  E 

S re+j, uniformly in r, for all j ,  so f E S ~176 and hence p E S ~ 
To see that p E S -m'~ we note that 

a /A m 
a p - -  -- 1 -- 1 - f E S  ~176 

a ~- /Am a ~-/Am 

Now since a(x, 4 )  - 1  exists and is homogeneous of  degree - m  for [~[ > 1, a -1 
belongs to S -m c S -m'~ (cf. Example 1.2). Then p = a - l a p  E S -m'~ �9 S ~176 C 
S -m'~ by Lemma 1.6. [] 

The two cases treated in Theorems 1.16 and 1.17 are fundamental for 
the symbol types we need to treat, which often arise from these by taking 
compositions and inverses etc. 

1.2. Rules o f  calculus 

When p(x, y, 3,/A) E sm'd(]R 2n, ]R n, F), one defines the ~,do P = O P ( p )  (which 
depends on the parameter #)  by 

(1.17) O P ( p ) f ( x )  = f ei(X-Y)r y, 4,/A)f(y)dy ~ ,  

with g~ = (2~)-nd~.  The operator is defined for general functions and distri- 
butions under suitable hypotheses on the behavior of  p in x, y and suitable 
interpretations; see e.g. [$4], [H2,3], [T], [Sh]. We think of  lR z" as lR" x IR" 
and use x as the variable in the first copy, y as the variable in the second. 

The rules of  calculus for pseudodifferential operators, shown in each of  the 
mentioned works for slightly different symbol classes, extend to our parameter- 
dependent symbol spaces in a straightforward way, since we are dealing with 
spaces of  symbols with estimates uniform in the parameter z (for ]z I < 1). Let 
us just state the general result, leaving the choice of  the symbol class to the 
applications. 

Theorem 1.18. 1 ~ Let p(x,y,( , /A) E sm'd(]R2n,]Rn, F). Then 

(1.18) OP(p(x ,y ,~ ,p) )  = OP(q(x ,~ ,#) )  = OP(q~(y,~,#)) ,  

where q and ql are is in sm'a(lR n, IR ~, F), and 

q(x,~,#) ~ ~ ~.(-iOy)~O~p(x,x,~,p), 
~EN ~ 

1 iO ~ S m'd. (1.19) ql(Y,~,/A) ~ E ~(  x) r in 
sEN" 
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2 ~ I f p ( x , ~ , p )  E sm'd(]Rn,]Rn, F), then 

OP(p(x, ~,/~))* = OP(p*(y, 4, ~)) = OP(pL(x, ~,/~)), where 

(1.20) pl(x,~,l~) ~ ~ ~(-i~x)~O~p*(x,~,l ~) in S m'd. 
~ C N  n 

3 ~ Let p(x, ~, #) E sm'd(lR ", IR n, F) and p'(x, ~, l~) E S m''d' (IR n, IR", F). Then 

OP(p)OP(p ' )  = OP(q), where 

1 (~c~ ~X (1.21) q(x,~,kt),'~ ~ ~ ~Pt ,~,/~)(-iOx)~P'(X,~,#) in S m+m''d+d'. 
~EN" 

In each of  these rules, the resulting symbol is polyhomogeneous resp. 
strongly polyhomogeneous if  the initial symbols are so. 

The stated identities for the operators hold without restriction for the sym- 
bol classes in [$4] with rapid decrease in x, and for those in [H3, 18.1] with 
global boundedness in x. For the symbol classes in [H2], [Y], [Sh] with local 
boundedness in x, they hold under suitable additional assumptions on rapid 
decrease or compact support (and can be stated more generally as equiva- 
lences modulo smoothing operators). In the formula for the composition of 
two symbols one uses the Leibniz formula as in Lemma 1.6. 

Strong polyhomogeneity is preserved under these rules, since the formulas 
in the strongly polyhomogeneous case agree with the formulas for the corre- 
sponding manipulations with symbols p(x, xn+l, ~, ~,+1 ) (resp. p(X, Xn+I, y, Y~+I, 
~, ~,+1)) on IR "+~, when these are constant in xn+l (resp. (x,+l, Y,+1)), and # 
is identified with ~,+1. 

Definition 1.19. For p and p~ as in Theorem 1.18 3 ~ the resultin9 symbol 
q is denoted p o p~. 

Remark 1.20. With a slight abuse of notation we shall speak of operators as 
being in x-form, in y-form, or in (x, y)-form, when they are written as in (1.17) 
with a symbol p(x, ~, t~), P(Y, ~, I~) resp. p(x, y, ~,/t); in the proof of the above 
theorem one uses the passage from one form to another. This can also be done 
with respect to part of the coordinates only; for example (1.17) with a symbol 
p(x ' ,y , ,  ~,12) (where x t =  (xl . . . . .  X,- l ) )  is said to be "in (x',yn)-form." This 
is useful in the consideration of boundary operators, cf. Lemma A.1. 

Proposition 1.21. When q c S-~'d(IR 2", ]R", F), the Schwartz kernel K(x, y,/~) 
o f  OP(q) has an expansion 

o c  

(1.22) K (x, y, l~ ) ~ ~ Kk(x, y )/t a-k, 
k=0 

where Kk is in C~(IR2"), and K - ~k<xK k l  ~a-k is in C~(IR 2n • F), holo- 

morphic in t~ c F for ]#[ > 1 and 0 ( #  d-N) in closed subsectors, for all N. 
This holds in particular for ~0OP(p)~ = OP(~o(x)p(x, y, ~, kt)~(y)), when 

p C sm'd(IR 2", IR ~, F) and ~o, tp E C ~ ( R  ") with q~ = 0 on the support o f  ~9. 
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Proof By Theorem 1.12, there are symbols q(d,k) �9 S-e~(]R2n, ]Rn) such that 

q(x,y,~,12) - ~ y-kq(d,k)(x,y ,~)  �9 S - ~ ' d - x ,  for all N. 
k<N 

Then 

K(x, y, 12) = fei(X-Y)'~q(x, y, 3,12) ~ ,  Kk(x, y)  = fei(X-Y)~-q(d,k)(x, y, ~) d~, 

are the desired kernels. 
For ~pOP(p)~p = OP(~p(x)p(x, y, 3,12)~(Y)), we have by Theorem 1.18 that 

it equals OP(q(x, ~,12)), where 

q(x,~,12) ~ ~ ~(-i3y)~(cp(x)p(x,y,~,12)~b(y))]y=x in S 'n'd. 
~ E N  ~7 

When ~p ---- 0 on supp ~b, each term in the series is zero, so q �9 S - ~ ' d .  [] 

The operator classes are invariant under coordinate changes (again the proof 
is like the usual one, when one takes the uniform estimates in Iz{ < 1 into 
account): 

Proposition 1.22. L e t  Z : U -~  V be a diffeomorph&m between U and V, 
open subsets o f  JR ~. Let p(x, y, ~, #) �9 sm'd(V X V, IR ~, F) and suppose that p 
vanishes for (x ,y )  outside a compact subset of  V • V. Set 

(1.23) Qf ( x )  = O P ( p ) ( f  oz -1) (z (x) ) ,  x �9 U. 

Then Q = OP(q) with q E sm'd(U • U, IRn, F). 
In fact, i f  �9 = (~bjk)j,k<=, satisfies (Z(x) -- Z(Y),r = ~k,j<=, q~kj(x,y) 

(xk--yk)~j  (SO that 4~(x,x)=?Z/3x, and q~(x,y) is invertible for y 
near x), and we reduce (by Proposition 1.21) to the case where p(x, y, 3, t~) 
vanishes on the set of  (x ,y)  where 4~ is not invertible, then Q = OP(q ' )  
with 

(1.24) q'(x,y,~,12) : p (z (x ) , z (y ) , tq f I (x ,y )~ ,12)J(x ,y ) ,  

where J is a Jacobian factor. 

An interesting question is, o f  course, how to invert operators in this calcu- 
lus. We shall not give a general discussion or formal definition of  ellipticity, 
but just show an important special case, useful in Section 3. 

Theorem 1.23. Let p(x, 3, #)  E S~176 v, IR n, F) be such that p = po + pl with 
Pl E S -~'~ and po 1 in C a and uniformly bounded in (~,p) ,  locally uniformly 
in x and uniformly for 12 in closed subsectors of  F, [121 --> 1. 

For any bounded open set U there exists a symbol q~(x, 3, P) E S~176  v, 
IR n, F)  such that p o qu ~ 1 in S ~176 on U; here qu has an asymptotic expan- 
sion as described below in (1.26). 
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I f  p is polyhomogeneous resp. strongly polyhomogeneous, so are qu and 
the remainder p o qu - 1. 

Proo f  This is modeled on the standard proof. Let q0 = Po  1. By the Leibniz 
formula, 

(1.25) 0 ~(Poqo)  ~ ( ~ )  = _ = ~-~poccqo ,  ~ 
~<=~ 

hence O~qo = -qo  ~ cr poccqo; 

o . - ,  = = ~ poO~qo, 
k<j 

= ~ Po t?z qo. 
k<] k i t /  

Let us show that qo C S ~176 From the first formula we get successively: 

~ :  qo = -qo(O~, Po)qo = O(1 ) 0 ( ( ~ ) - I  )0 (  1 ) = 0 ( ( ~ ) - t  ), 

0 ~ q 0 =  ~ q 0  

fl<a 

~ O ( 1 )  

fi<~ 

This shows that q0 is in S o uniformly in z. From the second formula we get 
similarly 

~zqo - - q o ~  ( J f~  "-k k = ( ~  Po)(t?zqo) 
k<j 

= 0(1) E ( ~ )  O((~}J--k)o((~}k)-~- O((~}J); 
k<j 

this shows a first step in the estimates for the z-derivatives. The full system 
of  estimates is obtained by application of  a more general variant of  (1.25) 

departing from O~O~i~(poqo ) = O. 
Let Z and ;(1 denote C ~  functions that are 1 on U and satisfy •Z1 = X. 

Since q0 E S ~176 

r = 1 - p o ( z ~ q o )  C S -~'~ on the set where Z1 = 1, 

by (1.21) and Lemma 1.5. Now we can iterate and form a symbol 

ru ~ ~ ()if)ok; 
k>l  
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here O~r) ~ stands for (zr)  o (zr)  o . . .  o (Z r) with k factors; it belongs to S -k'~ 
by the composition rule, so ru exists in S -L~ by Lemma 1.9. Now p o (zlqo) o 
r u ~  1 on U, so 

(1.26) qv ~ (Zlq0) o rv ~ (Zlq0) o ~-~k>l(Zr) ~ 

has the desired properties. [] 

qv is a parametrix symbol for p on U. By suitable use of partitions of  
unity, this can be used to construct a parametrix of  the operator with symbol 
p. 

The theorem has consequences for symbols of other orders, e.g. for a sym- 
bol p '  = #d[~,#]m o p, where p satisfies the hypotheses in the theorem. 

2. Kernel and trace expansions on boundaryless manifolds 

2.1. Kernel expansions for weakly polyhomoyeneous tpdo's 

The aim of the theory is to produce asymptotic expansions. We obtain these for 
polyhomoyeneous symbols, cf. Definition 1.10. When a(x, ~, #) is homogeneous 
in (4,#) for [~1 > c, we denote by an(x, ~,#) the function that is homogeneous 
in (4,#)  for all 4+0  and coincides with a(x, 4,#) for 14[ > e. 

~ ' d  tTO" IR ' ,F )  with degrees {mj}jcN Theorem 2.1. Let p ~ EjEN PJ in ~wphg~, , 

and #-exponent d, and assume furthermore that p and the pj with mj - d  > 
- n  are in S m''d' for some m' < -n ,  some d' E IR. Then OP(p) has a kernel 
Kp(x, y ,#)  with an expansion on the diayonal 

(2.1) 
oo oo 

Kp(x,x,#) ~ c j ( x ) #  mj+n ~- E t ~_ , [Ck(X) log # c~l(x)]# d-k 
j=O k=O 

for I#t --~ cx~, uniformly for p in closed subsectors o fF .  The coefficients cj(x) 
and C~a_mj_n(X) are determined by pj(x, 4, t~) for 141 => 1 (are "local"), while 
the c~t(x) are not in 9eneral determined by the homoyeneous parts o f  the 
symbols (are " 9lobal"). 

For those values o f  j such that p/(x, 4,P) is O([4,#]m~+n--~[4] -n+~) with 
e > O, the contribution from pj to the log coefficient c~a_m_n(x) is O, and 
the full  contribution to the coefficient o f  #m~+n is local. 

Proof We can write p(x, 4 , # ) =  #dp'(x, 4,#), where p ' =  p - d p  satisfies the 
hypotheses with d replaced by 0 and mj replaced by m~ = mj - d, ef. Defini- 
tion 1.1. Then it suffices to show the theorem for pt, for an expansion (2.1) 
of Kp, with d resp. mj replaced by 0 resp. m~ gives an expansion (2.1) for 

Kp by multiplication by #d. Thus we can assume that d = 0 in the rest of  the 
proof. 
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The hypotheses assure that all the symbols pj and remainders ra = p -  
Y~'~0__<j<a PJ (including r0 = p)  are integrable in ~ for each/*; hence the oper- 
ators they define have continuous kernels (cf. (1.17) ft.) 

Kp, (x, y, p) = f ei(X-y)qpj(x, 4,12) d4, 

Krj (x, y,/*) = f ei(X-Y)'~rj(x, 4,/*) d4; 
R" 

here Kr0 = Kp. 
Consider first a remainder ra; its kernel on the diagonal is given by 

(2.2) Krj(x,x,/*) = f ra(x, {,/*)d{. 

By Theorem 1.12, 

(2.3) rj(x, 4,/*)= ~ Sv(X, 4)/*--v~-o((4)mj+N/*--N), for any N, 
O<_v<N 

with sv E smJ+v(IR",IR~). For any given N, we can take J so large that 

(2.4) mj + N < -n, 

assuring integrability of  each term for 14] -+ oc. Hence (2.2) and (2.3) give 
an expansion 

(2.5) Krj(x,x,/*) z Z CNJ, v(X)/* -v +O(/*--N) �9 
O<v<N 

" Note that the sum always begins with the power This will contribute to the c k . 
/*0, regardless of  how large N and J are taken. 

Now we analyze the contribution from the homogeneous terms pj. 
Consider pj E S mJ'O, homogeneous in (4,/*) of  degree mj for I~1 > 1. Split 

f~ ,  Py de into three terms: 

(2.6) Kp,(X,X,/*)= f pjd~= f Pjd~ + f pjcl4 + f pjd~. 

First, pj(x, 4,#) may be assumed homogeneous for 14t > 1, so, for 1/.1 > 1, 

(2.7) f pj(x, 4,/*)ql4 =/*"~+" f (I/*]//*)mj+npj(x, 4,/*/]/*])r 
I~l>lul I#l>l 

gives a term in /*mj+n. The coefficient of/*mj+n appears to depend on /*/I/21, 
but if pj is holomorphic it does not; see Lemma 2.3 below. 

For the rest of  f~, pjot~ we use the expansion from Theorem 1.12 again: 

(2.8) pj(x, 4,#)= ~ #-Vqv(x, 4)+R~t(x,~,/*), 
O<v<M 
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where qv(x, ~) = ~.O~p(x, ~, �89 is in S mj+v and homogeneous in ~ for t4l > 
1, and 

(2.9) RM = O((4)mj+M p-M) . 

So the second integral 

(2.10) f pj(x,~,p)d~= ~_~ p-v f qv(x,~)r -M) 
I~L<__1 O<~,<M ir  

gives further contributions to the c~(x)p -~. Note that for each j ,  the series 
begins with #0 again. However, for each choice of N, and consequent choice 
of J such that (2.4) holds, we just have to apply (2.10) with M __> N to the pj 
with j < J. Together with (2.5) this gives J + 1 contributions to each power 
p-v, v < N, with a remainder O(p-N). 

In the third integral 

(2.11) f pjqlr 
l~l~l_-<]~l 

pj is homogeneous since [4[ ~ 1, and so are the q~ in (2.8) and therefore RM. 
So by (2.9), 

(2.12) RM(X, 4, ~) = 141m'RM(X, C/Ir ~/141) 

(2.13) = O(l~-[m~+Mll--M), 141 = 1. 

By extension by homogeneity, (2.13) holds for R~ for all ~=i:0. 
Now expand (2.11) using (2.8) and (2.13), and taking M > -mj  - n .  Be- 

cause qv(x,~) is homogeneous in ~ of degree mj + v for I~1 >-- 1, one finds 
using polar coordinates: 

p-V f qv(X, 4)d~ = p-Vc,(x) f 
l__<lr 1-<r-<[p[ 

= f p-~c'v(x)(lplmJ +v+" - 1) 

[ u-V4(x) log I~1 

and for RhM the homogeneity in (4,/~) and (2.13) imply 

f RhM(X,~,#)r : Ct'(X)~lmJ +n, f RhM(X,~,P)r = O(p--M), 

since mj  + M > - n .  Thus, in view of Lemma 2.3 below, 

f pj(x,~,#)d~ = pmJ+"(c(x) +c'(x)logp) 
l_-<lr 

M--I 
(2.14) + ~ cv(x)#-" + O(p-M), 

v=O 

with c t = 0 unless mj § n is an integer < 0. 

Fmj+v+n-- 1 dr 

if m j + v + n + O ,  

if mj + v + n = 0; 
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Together, (2.7), (2.10) and (2.14) give: 

(2.15) 
M--I 

f p j ~  = Cj(X)# m-'+n § ej(x)# mj+n log# + ~ cj, v (x )# -"+ O(#-M), 
IR" v=O 

where cj(x) and c}(x) are determined from pj for ]~[ > 1 and the Cj, v(X) need 
not be so. 

The expansion (2.1) (with d = 0) is now obtained up to any error 0 (#  -N)  
by choosing J according to (2.4) and expanding the diagonal kernels o f  rj 
and the pj as in (2.5) and (2.15), with M >= N. 

To show the last statement in the theorem, note that when pj is 
O([~, #]mj+n--c[~]--n+c ), 

p~(x, ~ ,#)  = O(lr 

by homogeneity. (For, m / +  n - c < 0, and we can assume that - n  + c < 0.) 
Then 

(2.16) 

f pjd~ = f p ~ d ~ +  f p j d ~ -  f p~r 

= #m;+n f(l#l/#)m;+,p~(X,~,#/f#})dr + o(#m,+n-~) 
IR" 

= aj(x)#mJ +n + o(#mj+n-e), 

in view of  the homogeneity, the integrability at ~ = 0, and Lemma 2.3. Here 
aj(x) is determined from the homogeneous part o f  the symbol o f  pj. A com- 
parison of  (2.15) and (2.16) shows that c~(x) = O, cj,,,(x) = 0 for v < mj + n, 
and aj(x) = cj(x) + Cj,mj+n(x). [] 

Ctt # d-k, Remark 2.2. The l o g #  terms, and the global terms k come from the 
1 When any of  these powers expansions o f  p and the pj in powers o f  z = ~. 

I! are absent, the corresponding coefficients c~ and c k are absent. 

The last statement in the theorem connects the present approach with that 
o f  [G1]; in fact the proof  o f  the statement stems from there, where the estimate 
is satisfied by symbols "of  regularity c - n"; cf. [G1, Def. 3.1.1, Th. 3.3.4 and 
proof]. 

The following lemma was used in the proof: 

Lemma 2.3. I f  f ( z )  is holomorphic in a sector and, as r --+ O, 

f ( re iO ) = c( O )( rei~ ) j log k ( re iO ) + o( r j logk(I /r))  , 

then c(O) is independent o f  O. 



500 G. Grubb, R.T. Seeley 

Proof The function z - j  log-k(z ) f ( z )  = c(O) + o(1) is holomorphic in the 
given sector F. Let ~ be any closed curve in F, and t7 its contraction to- 
ward 0 by the factor t. Then 

= l fc (O)d  z =  1 I f o ( 1 ) d  z f c(O)dz 7 7 f z - J l ~  dz + 7 
7 t7 ty t'~, 

= 0 + o ( 1 )  as t--~ 0 .  

So f~, c(O)dO = 0 for all such ~, and c(O) is a holomorphic function o f  0 alone, 
hence constant. [] 

2.2. The qtlo resolvent on a compact manifold 

The definition of  parameter-dependent ~/,do's is extended to a compact manifold 
M in the usual way: 

Definition 2.4. P r OP(S m'd ) i f  and only if  (oP~ e OP(S m'd ) for all ~p, ~b sup- 
ported in a common coordinate neiyborhood For such P, in each local coor- 
dinate system, the full  symbol a(P) E sm'd(lR n, IR n, 1") is defined in local coor- 
dinates, modulo S -oO,a (cf  (1.5)), and transforms with coordinate changes as 
in Proposition 1.22. OP(S -oO'a) consists of  operators with kernel K(x, y ,#)  
which is Coo in (x,y), holomorphic for It C F (1~1 --> 1), and has an ex- 

pansion K y~Kj(x ,y)p  a-j  with ~ ~ "~ Oxay(K - Y'~-O<j<J KJY  - i )  = O(] ld-J)  f o r  

]#[ -+ oa, uniformly for p in closed subsectors o f  F. 

The operator can map the sections of  a C ~ vector bundle E over M to 
another F.  

Let HS(M,E) (or HS(E)) denote the s-order L2 Sobolev space of  sections 
of  E. It follows from standard results for Odo's on compact manifolds that 
when P r OP(Sm'0), it maps HS(M,E) to Hs-m(M,F) with norm uniformly 
bounded in # for /~ in closed subsectors of  F, 1#1 > 1 (cf. Definition 1.1). 
Since S m'd = #dsm'O, one has when P E OP(Sm'd): 

(2.17) 

[[PII~(m(M,E),m--~(M,F)) is O(Ita), for # in closed subsectors of  F,I#[ >-- 1. 

We now study parameter-elliptic ~9do's. Let m be a positive integer. 

Definition 2.5. A classical polyhomogeneous ~do A of  order m on M (acting 
in a bundle E of  fiber dimension N > 0 over M),  is said to be elliptic with 
parameter It E F i f  it is elliptic of  order m, and the symbol ~r(A)~.. am q- 
am-1 + . . .  in local coordinates is such that am(X,~)q-IAml is invertible for 
# C 1" and ]41 = 1 (i.e., am(X, ~) has no eigenvalues in - -1  TM = { _ # m  I I "1 E 

r } ) .  
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Note that r m = {/~m [/~ < r } cannot be all o f  ~ \ {0}, but excludes at 
least one ray, so that holomorphic noninteger powers of  it = _#m can be de- 
fined there. 

We can (and do) extend am smoothly to I~1 < 1 to have no eigenvalues 
in - F m U  {0}. By a standard procedure (see [Sl], [Sh] or [G1]), we define 
symbols P--m- j  homogeneous of  degree - m - j  in (~,/t) for I~1 --> 1, so that 

(~am-j q- IA m) o ~ P - m - k  ~ l ,  

where o is the symbol composition, cf. Definition 1.19. More precisely, 

p - "  = (am q-/~m)-l for all ~ ,  

and for j = 1,2 . . . . .  P-m-j is a polynomial in P - m  and derivatives of  
a m , . . . , a m - j ,  of  degree > 2 in P-m.  By Theorem 1.17 and Theorem 1.18 
3 ~ , 

P - m  E s-m'~ n, IR n, F) (3 S~ n, ]R n, F)'~ 

(2.18) P - m - j  E s-m-J'~ lRn, l')~sm-j'-2m(lRn,]Rn,l'), j > O. 

Note that P - m - /  is a rational function of  it = _#m with coefficients homo- 
geneous in ~, so that the expansion of Theorem 1.12 gives only integer powers 
o f z "  = _ i t - l :  F o r j  = 1,2 . . . . .  

(2.19) 

p _ m _ j ( x , ~ , ~ )  = ~ qo(x ,~ )#  -m~ + O((~)mN+m-J~ -Nm) 
2~a<N 

= ~ (__ l )aq~(x ,~ ) i t -~+O((~)mU+m jit--U). 
2~a<N 

(Here (2.19) can be verified e.g. by inserting the binomial expansions of  the 
factors (a - 2) - I  = ( - i t ) - t ( 1  - a/2)  - l  in each term in P-m-j.) The property 
that only the powers #a-v  with v = ma, a integer, have nonzero Taylor coef- 
ficients in the expansions (1.7), is preserved under composition and change of  
variables (cf. Theorem 1.18, Proposition 1.22), so there are similar expansions 
for the various remainders that arise. For example, remainders in S -~176 

have expansions in integer powers i t -2 ,2-3  . . . . .  
By Lemma 1.9, we construct a p E S - " '~  N S o,-" with 

(2.20) 

(2'O 
P ~" ~ P - m - j  in S -m'O (~ S~ here 

j=O 
oo 

P - P - m  ~ ~ P - m - j  in S -m- l '~  (1S  m-l ' -2m . 
j = l  

L e m m a  2 . 6 .  With - 2  = #m, (a - i t )  o p - 1 N 0 in S -m'O A S O'-m. 
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Proo f  
o o  

(a - 2) o p = [(am -- );) + ~ a m - j  m o d S  - ~ ' ~  
1 

~ + ~ P - m - j  mod S-~ ' -2m] .  
1 

Here (am - 2) o S - ~ ' - 2 m  C S - ~ ' - m  and S - ~ ' ~  o p_, ,  c S - ~ ' - m ,  and the other 
terms in the product are better. [] 

Now patch together such local coordinate operators in the usual way. Given 
a cover {U}, form 

P = ~ OP(q~upu)Ou 

where Pu is a symbol p as in (2.20) in the local coordinates in U, 0 < 
~Ou E C ~ ( U ) ,  ~ ~Ou = 1, and Ov E C ~ ( U )  with ~u = 1 in a neighborhood 
of  supp(q~u). In local coordinates in U, 

o(OP(q~ v p v  )t~u ) ~ ~p u P~ 

so by Proposition 1.22 on coordinate changes, we have in any local trivializa- 
tion: 

a(P)  ~ ~ P - m - j  in S -m'~ n S ~ 
o 

a (P)  - P-m ~ ~ p - m - j  in S -m-l '~ A S m-j'-2m . 
1 

By Lemma 2.6, (A - 2)P = I - R with R C O P ( S - ~ ' - m ) .  In particular, the 
L2 operator norm of  R is 0 (2  -1 ) (cf. (2.17)), so I - R  is invertible for large 
# in F, and 

o ~  

(A - 2) -1 = P  + P y'~R j . 
1 

Since R C OP(S - ~ ' - m )  and P E OP(S~ PRJ C OP(S-~ ' -O+/)m) ,  
and so P + P Y ] ~ I < j < j R  j gives an expansion of  ( A - 2 )  -1 in powers o f  

2 - t ,  up to an operator with a C ~ kernel that is O ( 2 - l - J ) .  The 
parametrix P gives the (uniquely determined) "local" terms of  the 
expansion o f  ( A -  2) -1, plus some "global" terms depending on arbitrary 
choices in the construction. The terms PR, PR 2 . . . .  give further global con- 
tributions. 

Theorem 2.1 applies readily to the terms PR j, but to P it applies directly 
only when m > n. When m < n, we study instead a suitable power of  the 
resolvent (or derivative), equally useful in functional calculus. Let k be a 
positive integer such that km > n. Then 

( /' 
(A - ,~)-~ = P + P ~ RJ = pk + ~ eR(O ' 

\ />=~ ] l>=~ 
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where PR(l) is in S -~176 and 

pC = OP(pkm + p,), with 

pk_ m E S -km'O N S O'-km, p~ ~ ~ p} in S -km-l'~ N sm-l'-(k+l)m'~ 
j>l 

the symbols p k  m = ( p _ m )  k and p} being homogeneous in (~,p) of degree 
- k m  resp. -kin - j  for I~[ > 1, and rational functions of 2. 

By Theorem 2.1 and its proof one can now obtain a complete expansion 
of the diagonal kemel and the trace of  (A - 2) -k, in a series of terms )c -j/m, 

2 - t  and 5~ - t  log2. The resulting expansion of ( A -  2) -k has been shown by 
Agranovich in [Agr], where it is deduced from the pole analysis of the zeta 
function of A in [S1]. We shall here show a more general result, taking ad- 
vantage of the fact that the present methods allow a pseudodifferential factor 
Q in front of (A - ~.)-k. 

Theorem 2.7. Let A and Q be classical polyhomogeneous ~do's o f  order m 
(positive inteyer) resp. co E IR in a C ~ vector bundle E over a compact 
n-dimensional manifold M. Assume that A is elliptic with parameter li E 
F. Then for 2 E - F  m and k with - k m  + co < -n ,  the kernel K(x, y, 2) of  
Q(A - 2 )  -g satisfies on the diagonal: 

(2.21) K(x,x,2)  ~ ~ c j ( x ) 2 ~  -k + ~ (c}(x)log2 + cll'(x))2 - t -k ,  
jEN IGN 

for 121 --+ oo, uniformly in closed subsectors of  F. The coefficients cj(x) and 
c~(x) are determined from the symbols' a ~ ~ j ~ N  am-j and q ~ ~ j c N  qo)-j 
in local coordinates, while the c}~(x) are in general 9lobally determined 

I f  Q is" a differential operator (in particular i f  Q = I), C~o(X) = 0 and the 
complete coefficient o f  ;t -~ is locally determined. 

As a consequence, one has for the trace: 

(2.22) TrQ(A - 2) -k ~ Z c / 2 ~ - k  + ~ ( c ~ l o g 2  + e~')2 -k- t  ; 
jEN /EN 

where the coefficients are the integrals over M of  the traces o f  the coefficients 
defined in (2.21). 

Proof The symbol q of Q is in S ~176 and weakly polyhomogeneous, cf. Exam- 
ples 1.2 and 1.11. It follows from the preceding analysis plus the fact that the 
derivatives of pk_~ contain (am -- 2) -1 in powers > 2, that 

Q ( A -  2)-k = ( QPk + t>=I}-]~ QPR(')) ; here 

QPR(I) E OP(S-OO'-(/+1)m), and QP~ = OP(qpk_m + pH) in local trivializations, 

with qpk_ m E S ~~176 n S ~ p" ~ ~ p~/ in S '~176 N Sco+m-l'-(k+l)m; 
j>l 
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where the symbols q~,_tpk_m (I C N )  and py are homogeneous in (~,p) of  
degree ~ -  l -  km resp. ~o-  k m - j  for ] r  1, and depend on p as rational 
functions of 2 = _#m. 

The expansions of qog_lPk_m and pj~ according to Theorem 1.12 are then 
expansions in integer powers of 2 (cf. (2.19) ft.); this also holds for the terms 
QPR(t) and the remainders r j  = p " -  ~-~l~j<J PY" 

Hence, applying Theorem 2.1 to QPR(I), we find for its kernel the asymp- 
totic expansion for [2[ ~ cx~: 

KQp1%(x,x, 2) ,-~ ~ CI,cr(X)2 -(l+k)-a. 
aEN 

There is no difficulty in adding up the estimates for all l obtained in this way, 
since the starting power - ( l  + k) goes to - c ~  for l ~ oe. Since l = 1,2 .. . . .  
the highest power appearing here is 2 -k-1. 

By Theorem 2.1 and Remark 2.2, the kernel corresponding to p " C  
S ~ has an expansion 

Kp,,(x,x, 2) ~ k . . . .  J+" oo = c j (x )2-  " ~ + ~ ( c } ( x l l o g 2  + c}'(x))2 -k- j .  
,/=l j=l 

And qpk_ m C S ~ ' -km gives a kernel with a similar expansion, but starting with 
j = 0 .  

Collecting the various contributions, we find the first statement in the the- 
orem. 

Note that the only contributions to the coefficient of 2 -k log 2, and to possi- 
bly global parts of the coefficient of 2 -k, come from qpk_ m. The homogeneous 
extension of p k  m from I~l > 1 to I~] > 0, ( p k _ m ) h  = (ahm - 2) -k, is contin- 
uous at ~ = 0, so when Q is a differential operator (with polynomial symbol 

q(x, ~) = ~o<=j<__~o qo~-j(x, ~)), 

f qpk m d ~ =  f q(ahm- 2) - k d ~ +  f q [ ( a m - 2 )  - k - ( a h m - 2 )  -~]d~, 

X T M  1~ [ J k+ " J+" where the first integral gives e__~o<=j<=o~,.,j~x),~- , with local coefficients 

bj, and the second integral is O(2-k- l ) ,  since the integrand is so - -  as is 
seen e.g. from the calculation 

1 1 _ y.~ 1 [ 1 I ] 1  
(am -- 2 )  k (ahm -- 2 )  k O<j<k (am -- 2 )  k - j - I  am --- 2 ahm -- 2 (ahm - 2)J' 

where 

1 1 _ ! 2 [ a h m - - a m ] ~  is O(2-Z). 
am - 2 ahm - 2 am - -  a m - -  1. 

= 0 and the coefficient This shows that when Q is a differential operator, c o 
of 2 -k is local. 
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The expansion of  the trace follows since the trace of  the operator is the 
integral in x of  the diagonal value of  the (matrix trace of  the) kernel. [] 

h for all j ,  so all the I f  Q and A are both differential operators, am-j : am_ j 

terms qo,_tpk_m and py  are strictly homogeneous and smooth; the splitting as 
in (2.6) is unnecessary, no logarithms occur, and all coefficients are locally 
determined. This is the most classical and well-known case (see e.g. Agmon 
and Kannai [AK]); here the QPRJ contribute with 0(2 -N ) (any N),  so the 
coefficients in the asymptotic expansion are fully determined from the symbols. 

The expansion in Theorem 2.7 of  the kernel o f  Q(A - 2) -k at x = y deter- 
mines the singularities of  the meromorphic extension of  the kernel o f  QA -s (at 
x = y )  and also, when the eigenvalues of  am(x, ~) all lie in Re2 > 0, gives an 
expansion for the kernel o f  Qe -tA (at x = y )  as t --+ 0. These are obtained by 
use of  the relevant Cauchy integrals (see (3.36) below), as e.g. in [GS1]. The 
logarithmic terms in (2.21) and (2.22) correspond to double poles of  the diag- 
onal kernel resp. trace o f  F(s)QA -~, and to logarithmic terms in the expansion 
for t --, 0 of  the diagonal kernel resp. trace of  Qe -tA. 

3. The resolvent of the APS problem 

3.1. The APS problem 

On a compact n-dimensional C ~ manifold X with boundary 0X = X ~, consider 
a first-order differential operator 

P :  C ~ ( E 1 )  --~ C~176 

between sections of  vector bundles over X. El and E2 have Hermitian metrics, 
and X has a smooth volume element, defining a Hilbert space structure on 
the sections. The restrictions of  the E i to the boundary X '  are denoted El. A 
neighborhood of  X '  in X has the form X = X '  x [0, c], and there the Ei are 
isomorphic to the pull-backs of  the E~. Let x, denote the coordinate in [0, c]. 
Then our P is represented in X r • [0, c] as 

(3.1) P = a(c3~ + A + xnP1 + Po), •n = ~/~x,, 

where a is a unitary morphism from E~ to E~, independent o f  xn, and A is 
a fixed elliptic first order differential operator on C~176 selfadjoint with 
respect to the Hemaitian metric in E '  1 and the volume element v(x', O)dx' on 
X '  induced by the element v(x', x,)dx'dxn on X. The Pj are smooth differential 
operators of  order < j (they can be taken arbitrary near X ' ,  but for larger x, ,  
P1 is subject to the requirement that P be elliptic). Similarly, P* has the form 

(3.2) P* : (--~n q- A q'- xnP'  1 "q- P~)O'*; 

and 

(3.3) (Pu, w)x - (u,P*w)x = - (you,  a*70w)x,, 
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where y0u = Ulx,. ([APS] and many subsequent works, including [GS1], con- 
sider the "cylindrical" or "product" case where the P] and Pj are 0.) 

By V>, V_>_, V< or V< we denote the subspaces of LZ(E~ ) spanned by the 
eigenvectors of A corresponding to eigenvalues which are > 0, > 0, < 0, or 
< 0. We denote by VR the span of eigenvectors belonging to eigenvalues of 
modulus < R, so V0 is the nullspace of A. The corresponding projections are 
denoted /7>, etc. Then FIR is an integral operator with C ~ kernel, and the 
other projections are classical ffdo's of order 0. For example, 

/7> = 1 ( A - c +  I A - ~ I ) I A - ~ 1 - 1 ,  0 < c < 2 1 ( A ) ,  

where 21(A) is the smallest positive eigenvalue of A. The principal symbols 
of these projections are denoted 7rR, Tz>, etc. 

We also define 

(3.4) A , = ( A  2+/fl) �89 f o r p C F 0 = { # C C U \ { 0 }  ]larg#l < ~z/2}. 

To get a well-posed boundary value problem for P, we consider a ~/do B 
in E l of order 0 satisfying: 

Assumption 3.1. B is an orthogonal projection commuting with A, of the form 
B = H> + B0, where B0 acts in VR and vanishes on V~ for some R > 0. 

Since VR is spanned by a finite system of  C ~ sections, B is a classical 
polyhomogeneous ffdo with principal symbol ~>. 

The most customary choice of B is to take H> or /7__> (cf. [APS] and 
subsequent works, e.g. [G2], [Gi] .... ). Another interesting choice is to take 
for B0 a projection onto a subspace of  V0. 

Since the Calder6n projector for P has principal symbol 7z>, B is well- 
posed for P in the sense of [$4, Definition VI.3], and the boundary value 
problem 

(3.5) P u = f  inX, Byou=O o n X ' ,  

defines a Fredholm operator PB going from D(P~) = {u C H~(X, Ea) [ BTou = 
0} to L2(X, E2), with regularity of solutions. (Note that {P,B?0} is overdeter- 
mined elliptic, also called inject• elliptic.) It follows moreover from [$4, 
Ch. VI] in view of (3.3) that the adjoint of P~ (considered as an unbounded 
operator from L2(E1) to L2(E2)) equals (P*)B', where 

(3.6) B t = B •  *, B s = I - B. 

B' is well-posed for P*, and (P*)B, is a Fredholm operator with regularity 
of solutions. One can also replace B t by B" = aB• *, which is an orthogo- 
nal projection in Lz(E~), but B' is convenient for (3.8) below. (The Fredholm 
property and the hypoellipticity of PB and (P*)B, also follow from the con- 
structions carried out below.) 
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Remark  3.2. Of particular interest is the case where, in addition to the above 
hypotheses, a A a * = - A  and a * = - a .  Then in the situation described in 
Douglas-Woiciechowsky [DW, App. 1], the nullspace V0 admits an orthogonal 
decomposition V0 = V0,+ | V0- into two subspaces such that a �9 V0,+ ~ V0,-. 
Denoting the corresponding orthogonal projections by //0,-, we can take 
B0 =//0,+- In this case, a l I > =  l I < a  and all<+ = Ho,-a,  so 

B" = aB• * = a(I  - 1I> - Ho,+ ) ( - a )  = - a ( H <  + H0,-)a 

= II> + Ho,+ = B, 

and thus if P is formally selfadjoint, PB is a selfadjoint realization. 

The two realizations P8 and PB*=  (P*)B' together form a skew-adjoint 
(unbounded) operator ~o~ in Lz(E1 | 

(0 --PB*) therealizationof~,=(0 - P * )  (3.7) ~ 3 =  p~ 0 ' P 0 

under the boundary condition on u = {Ul, u2}, 

L2(E'I ) 
(3.8) ~ ? o u = 0 ,  where ~ = ( B  B ' ) :  x --+L2(E~). 

L2(E~) 

The system {~, ~70} associated with ~ is in fact elliptic in the traditional 
sense, however with ,~ pseudodifferential. (One easily checks that the model 
problem for the principal symbol has existence of solutions in 5P(~+)2N, hence 
also uniqueness for dimensional reasons.) 

Our construction of functions of PB will be based on a study of the resol- 
vent. 

Since , ~  is skew-adjoint, the inverse ( ~  + #)-1 exists (as a bounded 
operator in L2(EI |  for all # E • (cf. (3.4)); it can be written in detail 
as 

(3.9) 

#R1 PB*R2 ) ,  where 
= ( ~  + #)-J  = --PBRI #R2 

R1 = (PB*P8 + t~2) -1, R2 = (PBPB* -k #2)-1. 

(Since most of the operators considered in the following depend on #, we 
shall usually not indicate this explicitly.) In the following, we construct 
from scratch for large p. 

We want to study the asymptotic behavior of 

Tr [~o0~(~  + #)-1], for ]#] -+ oo, # C :kFo, 

where ~0 is a morphism in E1 @ E2, and m is taken > n so that the operator 
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is of trace class (shown below). (Note that 0 ~ ' ( ~  + p)--I = 
( _ l ) m m ! ( ~  + #) -m- l . )  We shall denote 

E1 eE2 =E, e'l e e ;  --E'. 

In order to analyze the inverse (3.9), we shall compare it with the inverse 
in the product case. Define 

(3.10) P ~  P~ = (-On + A)a* , so P~176 = D2 + A 2. 

They have a meaning on X ~ = X'  x IR+; and p0' is the adjoint of the un- 
bounded operator p0 : L2(E10) ~ Lz(EO),  where the E/~ are the liftings of the 

E[ t oX~  and the product measure is used. We denote (0 -e  ~ pO 0 = ~o, and 

observe that 

(3.11) (~i~0 § #)--1 

{ #(D2n + A 2 + #2)--1 (__On + A)(D 2 + A 2 + #2)-~a. '  ~ 
/ 

\ -a(On + A)(D2 + A2 + #2) - j  #a(D2 + AZ + #2) - la  * ] "  I 

An important ingredient in the resolvent ( ~  + # ) - :  is the following Pois- 
son operator 

1 0 (3.12) K ~  ( 0  ) e - X " A " (  B + # - I ( A ~ + A ) B •  ) 
a # - : ( A ~ - A ) B + B  • / " 

Since A commutes with B, a direct calculation shows that 

(3.13) ~70K ~  and ( ~ 0 + # ) K  o = 0 .  

In other words, K ~ : v ~ u solves the semi-homogeneous problem for ~0 + # 
with (~0 § #)u = 0 on the cylinder X ~ and ~y0u = v. 

We shall use K~ together with an interior parametrix Q+, constructed as 

follows. Extend ~ to a bundle E = E1 �9 E2 over X = X U (X' • ] - 1, 0[ ), and 
define a resolvent-parametrix QI in the usual way such that for u in C~(E) ,  

( ~  + #)Qt u = u - 5r 

with 5 ~ of order -c~ .  Since a ( ~ ) O  # is the symbol of a first order elliptic 
differential operator in one more variable, Q~ can be constructed so as to be a 
strongly polyhomogeneous ~do of degree -1  and 5 '~ is strongly polyhomoge- 
neous of  degree - c o  (cf. Theorem 1.16; one can also use Theorem 1.23). In 
particular, 5 r is an integral operator with a smooth kernel that together with 
its derivatives is 0(#  - u )  for all N, on compact sets in X. We can take these 
operators to be holomorphic in • except for a small neighborhood of 0; 
then the estimates hold for # in closed subsectors of • For operators S on 

we generally write 

(3.14) S+u = r+Se+u 
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where e+u is the extension of u with e+u(xt,x~) = 0 for x, < 0, and r + denotes 
restriction to X. Since ~ is a differential operator, 

(g~ + ~)Q+u = u - 5f +u, for u c Coo(E), 

where 5e+ is an integral operator on X with a smooth kernel that together 
with its derivatives is O(l t-N) for all N. Thus for sufficiently large # in each 
closed subsector of  +F0, I - Y+ is invertible with an inverse (I - 5~+)-1 = 

I +  ~-~j>l(~+) j, where 5r = ~j__>l(Se+) j is of the same type as O~ We 
t / take Q+ = Q~_ + Q+5~+ (where ' ' Q+SP+ is of the same type as 50+); it satisfies 

(3.15) ( ~  + / t )Q+ = / ,  for large enough/~. 

Now a rough parametrix for ~ +/~ is 

(3.16) ~ '  = Q+ - xK~ =: Q+ - GI, 

where X is a cut-off function (with X(x,) = 1 for x, < �88 and )~(x,) = 0 for 
x, > �89 say). Indeed, by (3.13), ~ '  maps into the domain of ~ ,  and by 
(3.15), we have for large enough/~, 

( ~  + kt)J/u = ( ~  + #)Q+ - (~@ + u)zK~ 

( 3 . 1 7 )  = I - ( [ ~ ,  z]  + z ( ~  - ~ ~ 1 7 6  = :  I - G2; 

here G2 = ( x n ~  + ~0)K~~ 

with differential operators ~ j  of order j with smooth coefficients vanishing for 
1 Xn > ~c. 

The exact inverse ~ of ~ + # can then be described by 

(3.18) ~ = ~ ' ( I  - G 2 )  - 1  --- (Q+ - GI)(I  - G2) -1, 

whenever I - G2 is invertible. We shall show that this holds for large #, and 
leads to a constructive expression for ~ .  For this purpose, we analyze the 
various factors in (3.16) and (3.17). Let us denote 

( B + #-'(Au + A) B• ) 
Ko = e - x " A ' ,  S~ = l _l(A~ _ A)B + B • 8 ,  TO = 70Q+, 

(3.19) K1 = Z 0 a 0 a 

Here K0 goes from C~(E~) to COO(E~ S~ goes from Coo(U) to Ca(El | 
U1), To goes from C~176 to Coo(U), and K~ and/s go from Coo(E~ ~)E~) 
to Coo(E). Then 

(3.20) G1 = K1S~To, G2 = K2S.~To. 

In the terminology of [BM] and [G1], the Kj are parameter-dependent Pois- 
son operators and To is a parameter-dependent trace operator of  class 0 (trace 
operators of  class 0 are well-defined on L2), but their usage entered elliptic 
theory much earlier, cf. [$2], [H1]. We shall need some general information 
on these operator types. 
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3.2. Polyhomogeneous boundary operators 

The operators Kj and To have the following structure, in local coordinates at 
OX = X ~ (with interpretations as oscillatory integrals), defining Po&son resp. 
trace operators: 

(3.21) (Kv)(x) = OPK(/~)v = f e 'x ~ k(x ,x~,4 ,p)v(4'ld4',  
~xn-- I  

(3.22) (Tu)(x') = OPT(t')u = f e ix''~-' 7t~(x',y~,4',p)fi(4',y~)dynd4 ', 
R . - I  0 

where t k ( 4 ~ , y , ) - - ~ y , ~ , u ( y )  ( ~  is the Fourier transform). Note that with 
respect to the tangential variables these are ~,do's, whereas for the Poisson 
operator K there is a multiplication with a function of x, and for the trace 
operator T there is a scalar product with a function of x, (the dual situa- 
tion). The functions/~(x, ~', p) and/'(x, ~, #) are called the symboLkernels, and 
the functions k(x' ,~,p) and t(xt,4, p) obtained from them by applying 
~x,~r176 + are called the symbols. (Recall that e + denotes extension by 0 for 
x .  < 0 . )  

Our symbols k and t are polyhomogeneous in (4 ' ,4 , ,p)  (for ]4'1 > 1), 
whereas the symbol-kernels/~ and/" have a poly-quasihomogeneity in (xn, ~', #). 

The Poisson and trace symbols and symbol-kernels to be considered here 
are of the strongly polyhomogeneous type where, as in Definition 1.15ft., the 
parameter-dependent symbols are like standard symbols in one more (tangen- 
tial) variable Z,+l E IR, in such a way that they are constant in z~+l but the 
dual variable (,+l plays the role of p. This means that p enters on equal foot- 
ing with the variables in ~,  and e.g. homogeneities hold for 14~,#1 > 1, not 
just 14'1 > 1, and estimates are valid with respect to (if, p), not just (4') alone. 

In comparison, the book [G1] treats irregular boundary symbol classes with 
a complicated distinction betweeen the (4 t, #)-behavior and the ~-behavior. But 
for the present problems, we can formulate our calculations in such a way that 
this distinction is not needed for those operators that reach into the interior of 
X, only for the ~Odo's on X ~. 

Definition 3.3. A strongly poly-quasihomogeneous symbol-kernel with param- 
eter, P(x',xn,4',l~), is a C ~  function o f  (x, ff ,#)  C ~+ • IR n-I • F having an 
asymptotic expansion in functions quasihomogeneous for  [4r,,u[ => 1. Setting 

= (4', ~), this means 

p(x,~)~ Z: Pm-j(X,~), 
jEN 

where 

~ ! Xn a ..~ Pm_j(X, 7, ()=am+l-J~m_j(X',X.,() for a > O, I(] > l ,  
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with 

(3.23) 

sup 10x , O~XnO~x~ Pm_j(X, ~)l ---- O((~) re+l- I~t-k+l), 
Xn 

sup (;~,er D ( x , r  . [ ) m _ j ( X , ~ )  = O ( ( ~ ) m + l - J - - l ~ l - k + l ) ,  
Xn 

for all indices ~ E N ~, ~ E N n-l, k, l ,J  E N. The term [~m & called the prin- 
cipal symbol-kernel, and D is called of  degree m. The estimates are to hold 
uniformly for x ~ in compact subsets of  IR k-1 and t~ in closed subsectors o f  

0 

F, and ~ and ~j are assumed holomorphic in I~ C F, for ]~',#I > 1. 

The degree convention may seem strange at first sight, but it is consistent 
with the degree of  the associated principal symbol pm(X t, ~, ~n) = Fx=-+~.e+ Drn, 
which is truly homogeneous in (~,~=) of degree m for ]~l > 1 (this avoids 
the general ambiguity of how to associate a degree with a quasihomogeneous 
function). We shall call the symbol-kernels satisfying Definition 3.3, and the 
associated symbols, and the operators defined from them by (3.21), (3.22), 
strongly polyhomogeneous (sphg). 

When the estimates hold globally in x ~ C IR "- I ,  the symbol-kernels, sym- 
bols and operators will be said to be globally estimated; these are treated 
systematically in [GK]. See e.g. [G1] for the definition of operators on mani- 
folds. 

We collect some facts on these operators and their composition rules in the 
Appendix. For the operators in (3.19), we find: 

Lemma 3.4. Let m, ml and m2 be integers > O, and let t~ E JcFo. 
The operator A~, = (A 2 + ~2)+ and its inverse are sph# ~9do's on X r o f  

degree 1 resp. -1 .  
The operator O"~To is an sphg trace operator of  class O, of  degree -1  - m. 
Each of  the operators O'~Kj is an sph9 Poisson operator of  degree -1  - m. 
Furthermore, #'~ ToO'~2 Kj is an sphg tpdo on X' ,  o f  degree -1  - m l  -m 2 .  

Proof By the construction in [S1], the symbols of Au and A~ -1 satisfy Defini- 
tion 1.15 with m = 1 resp. - 1 .  

The statement on O~T0 follows from Lemma A.1, (ii) and (vii). 

For K0 we observe that with ~ = (D~ 2 + A 2 + ]2 2 ) -  1 on the cylinder ~0 = 
X t • IR, 

r+~7~ v = r+(D2, +A2 + # 2 ) - 1 ~  v ~-- r+F-lr 1 
42 + A  2 +/~ 2(v 

| 1) 

~,,-.x, Au + i~-----~ + A ,  i~n | 1 

= r+e_X,.% 1 1 
2A V = Ko~-~u v, 
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for v E C~(E[ ), cf. Lemma A.1 (iii). The calculations are similar to those in 
Example A.2, except that we here use simple operator calculus, noting that 
A 2 is selfadjoint > 0 in L2(E~) so that Au has spectrum in a subsector of 
{2E i12 [ larg21 < -~}2 . Then by Lemma a.1 (iii), K02@~ is an sphg Poisson 
operator of degree -2.  Since A, is sphg of degree 1, it follows by Lemma 
A.1 (v) that K0 is an sphg Poisson operator of degree -1 .  The statements on 
derivatives follow from Lemma A.1 (vii). Now 

K1 = r+Z 0 a ~~ ~7~ 

these are treated similarly by Lemma A.1 (iii), (v) and (vii). 
The last rule follows by Lemma A.1 (iv). [] 

Since ~ is x~-independent, the symbol-kernel of K0 can easily be found 
by use of Lemma A.1. The principal symbol of ~ is (~2 + al(x', ~,)2 + #2)-1, 
and then the principal symbol-kernel of K0 is exp(-xn(a 2 +#2)�89 Since 
coincides principally with ~0 on OX = X ~, the principal symbol-kernel of To 
can be found similarly from (3.11). 

The rnapping properties are described in Lemma A.3 and A.4. 
Now consider S~. (OP ~ indicates the ~bdo definition applied with respect 

to x' E IR ~-l, or x ~ E X~.) Recall that/~ C :t:F0. 

Proposition 3.5. The operator Se in (3.19) is in the class OP'(S ~176 of  Section 
1, ~'~S~ is in OP'(S-m'~ N S ~ for  m integer > O, and they are weakly 
polyhomogeneous. 

Proof Write S e = S,)N, where 

S~ = ( B + It-t(Au + A) B• ) 
#-I(A i, - A)B + B • " 

Then it suffices to show that S) has the properties stated in the proposition. For 
is p-independent and classically polyhomogeneous of order 0, hence in S ~176 

and weakly polyhomogeneous by Examples 1.2 and 1.11, and the composition 
rule in Theorem 1.18 can then be applied. Also B and B • have the properties 
stated in the proposition. Now 

l~-l(A~ + A)B l = tJ-I(A~ + A)(11<__ - B o ) ,  

t~-l(Au - A)B = i~-l(A~ - A)(//> +B0), 

where B0 acts in VR, vanishes on V~ and commutes with A; it can be 
expressed as a matrix acting on the eigenvectors in V~. Let a be an eigen- 
value for A with la[ < R, then O~(a2z 2 + 1)�89 is uniformly bounded when 
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Izl < 1 (z in a closed subsector), and the eigenvectors of A are C ~ Then 
C'~zk[(A2z2 + 1)�89 •  is uniformly in S - ~ ,  so 

#- I (A;  • A)Bo C OP'(S-~176 

For the remaining parts we observe: 

#-1(A;  + A)H<= = # - l ( A ;  + A)(Aj, - A)(A~ + IAI)-I H <= = #(A~ + IAI)-l//=<, 

#-I(A u - A ) H >  : # - I ( A ,  - A ) ( A ,  + A ) ( A ;  + IA[)-IH> = #(A~, + IAI)- 'H>. 

Since H> and H__< are in S o C S ~176 and wphg (cf. Examples 1.2 and 1.11), 
we need only consider #(A u + IAI) -I  = (#A~1)At,(Ao + ]A[) - t .  Here Ao and 
A~ -I are sphg by Lemma 3.4, and IAI is wphg. 

Now A;(A u+IA[ )  -1 = C  -~, where C = I + ~  has symbol in S ~176 by 

Example 1.2, Theorem 1.16 and the product rule. Its principal symbol 1 + 
[[a/[](a 2 +#2)- �89 has a bounded inverse (for # in closed subsectors of • 
I#1 > 1), so Theorem 1.23 applies to show that C has a wphg parametrix C' 
with symbol in S~176 here CC' = 1 - 5Pl with 6#1 in S -~ '~  On the other hand, 
the inverse C - t  may be written 

C_ l _  A~ _ A~(A~ - IAI) _ 1 + # 2 - A u I A I )  ' 
A~ + IAI A~ - IAI  2 # 2(A2 

SO it is a ~bdo with symbol in S z' 2 § S0,0 § S1,-l, by the various rules. Then 

C -1 - C' = C - I ( C C  ' + 5 P l ) -  C-~CC ' = C - 1 J 1  

has symbol in (S 2'-2 + S ~176 + S 1,-1 ) - S -~176 C S ~176 so C -1 has symbol in S ~176 
Since A~ -1 E OPr(S -1'~ fq S ~ ), then (A; + [AI) -I  = A~1C -1 E OPt(S -1'~ n 

S ~ ); it is wphg. Now 

m ( # ) = ~ cjkl(Au • IAI)-JA~ k#l, 
0~ A~, + IAI S+k--t=m 

with j , k , l , m  ~ O. Writing l = 11 + 12 with 0 < ll < j and 0 < lz < k, we 
have 

(Au + IAl)-JA~k#tl+12 = Au + t A] k , • J  (A,, + ]Al)l'-JAt~ 2-k 

C OP' (S  ~176 �9 (S t'-j'~ n S ~  (S t2-k~ N S~162 C OP'(S -m'~ A sO'-m). 

Thus O~(#(Au + ]A I) -1 ) C OP'(S -m'~ ~ S ~ and is wphg; this concludes the 
proof. [] 

The properties of the O~S~ are needed because we take a derivative of  the 
resolvent to get an operator of trace class; they are not implied by Lemma 
1.5. 

The mapping properties of the various operators are as follows. 
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P r o p o s i t i o n  3.6. The operators Q+, ~ ' ,  Kj, SB and To (c f  (3.16)-(3.20)) and 
their p-derivatives satisfy, for  m E IN, s >= O, 

~ Q+ and m t ---+ m ~u~  : Lz(E) Hm+I'~(E), 

~ T o  " HS'V(E) ~ Hs+m+�89 

(3.25) O~S~ :HS+�89 t) ---+ Hs+m+�89 I Q El),  

O~K1 and O~K2 : H~+�89 G E~I) ~ HS+l+m'~(E); 

uniformly for  # in dosed  subsectors o f  ~Fo, lit I > r (depending on the sub- 
sector). 

Proof  It is standard tha t  ~lO~Qk~2 : L 2 ( E )  ---* Hm+k'~(E,), uniformly in/~, when 

Qk is an sphg ffdo in E of degree - k ,  and 01 and Q2 E C0X~(X); this implies 
the statement for Q+ constructed before (3.15). 

By Lemma 3.4 and Proposition 3.5, O~Kj is an sphg Poisson operator 
of  degree - 1  - m ,  O~S~ is in OP~(S -m'~ ~sO'-m), and 0~T0 is an sphg trace 
operator of  degree - 1  - m. Then the statements in (3.25) follow from Lemmas 
A.3 and A.4 (applied in local trivializations). The property for ~ = Q+ - Gi 
follows since G~ = K~S~To. [] 

3.3. The resolvent o f  the A P S  problem 

Recall (3.18). In the construction of ~ ,  we shall use the elementary 

Lemma 3.7. Let  ~ : V ~ W and ~P : W ~ V be linear mappings. 
I - ~ 7  j : W --~ W is bijective, then I - ~q~ : V ~ V is bijective, with 

( I  - ~qO) - t  = I + 7J(I  - O l / / ) - I  ~ .  

Proof  One just has to check: 

if  

( I  - 7 J ~ ) ( I  + ~u(I - ~ 7 J ) - ~ 4 ~ )  = I  - ~ P ~ +  71(1 - ~ t / / ) - l ~  

_ tpq0tp( I _ q ~ t p ) - ~  

= I - ~ + ~ ( I  - ~ 7 , ) ( i  - ~ ) - ~ a ~  = L 

with a similar calculation for the left composition. [] 

The lemma is applied with 

= x2  : u'+k,"(e'~ �9 e'~ ) -~ u ' , . ( e ) ,  

7 t = S~To :HS'U(E) ---* Hs+�89 |  
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s > 0. This replaces the construction of  the inverse o f  I -  4 ~  = I -  G2 by 
the construction of  the inverse of  I -  ~ q ) =  I -  SeToK2; so that 

( 1  - G2) - l  = I - 1(2(1 - $I )- lS~To,  with 

(3.27) SI = S~ToK> 

The advantage of  this reduction is that I -  Sl is a pseudodifferential operator 
on the boundaryless manifold X ' .  Application of  Lemma A.1 (iv) to S '  = 
ToK2, and of  Theorem 1.18 3 ~ to S~ and S',  shows that SI is a weakly 
polyhomogeneous ~do of  order - 1 ,  with symbol in S - I ' ~  S ~ 

Now we shall use Proposition 3.6 to show: 

Theorem 3.8. The operator S1 = S~ToK2 is continuous f rom HS+�89 �9 E' 1 ) 
to Hs+3'~(E'  1 | E~ ), and satisfies 

(3.28) II&ll ~ , , - - o ( ~ - ~ ) ,  
5O(H , (E IOE I)) 

on the rays in +Fo. For each closed subsector F o f  +Fo take rr so that 
SJl defining I for  IPl > rr, p E F. Then the series $2 = ~ j = l  , the norm is < ~ = 

(I - SI )-1 = I § $2, converges in y (HI ,u (E~  �9 E' 1 )). 
The operator $2 is a wphg ~do with symbol in S -I'~ A S  ~ and 0~$2 is 

a wphg ~do with symbol in S - " - L ~  N S ~ for  each m E N. 

Proof  The continuity of  $1 follows from (3.25), and then (3.28) holds in view 
of  (a .7) ,  so $2 = ~j=>l S~ is defined as a bounded operator in H�89 l | E~) 
for [p] > rr .  The derivatives 

mt m2 m3 ~ S ,  = ~'~(S~,ToK2) = ~ C,n,,mi,,n3(6qU S~ Ou T0~p~3~ /(2) 
ml+m2+m3=m 

have symbols in S -m-l ,~ A S  ~ by Lemma 3.4, Proposition 3.5 and the 
m J s - m - j - l , O  s O , - m - j - I  rules of  calculus, and similarly, ~uS1 has symbol in N . 

~ S 1 converges in operator norm, since For each m, the series a~S2 = Y~'~j=I m J 

I I~S,  m Jllse(H�89 . . . .  < CI]S, II~7(H �89 < C'2 - j ,  for j > m, I/~] > rr, 

by the Leibniz formula. To see that $2 E O P ' ( S - k ~ 1 7 6  we note that 
since 1 + Sz for each fixed /~ is the inverse of  I -  &,  it follows from the 
standard calculus of  Odo's  that I + $2 is a Odo of  order 0; and since I - $1 
has estimates uniform in # (in the considered truncated sector), so does 1 + $2, 
so its symbol satisfies the first requirement for belonging to S ~176 The Leibniz 
formulas for l > 1, 

q-S2)) = ~ ( l ' )63~-k( I - -S1)~k(1-} -82)  0 = ~ ( ( I - S I ) ( I  
k~ l  

= - ~z $1 
k<l 

imply 0~$2 = ( I + S 2 ) ~ ( l ) 3 z l - k s 1  ~ ( I  + $ 2 ) ,  
k<l \ n /  
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from which we conclude successively that alms2 has symbol in S m with uniform 
estimates. Thus I + $2 belongs to OPt(S~176 Then since $2 = Sl(I  + $2), it is in 
OPt(S -~'~ (3 S ~ ~176 C OU(S -1'~ N S ~ ). For the derivatives we can 
now use the above formulas (with /~ instead of z) to conclude successively 
that ~ S  2 C OPt(S -1-m'O f-) S 0'-l-m) for m > 0. [] 

Inserting the formula for ( I -  $1 ) - I  in (3.27), we have in view of (3.18), 
(3.20): 

~ = ( Q + - K I S ~ T o )  I + K 2  S~To 

(3.29) = Q+ - KIS~To + Q+K2 ~ S{S~To - K1S~ToK2 ~ S{S,,To 
j=0 j=0 

= Q+ - (K1 - Q+K2)(I § S2)S.~To 

= Q+ - (K1 - K3)(1 + $2)S~ To, with K3 = Q§ 

/(3 is an sphg Poisson operator of  degree - 2  by Lemma A.1 (vi), and 
(1 + $2)S~ is a wphg ffdo of degree 0. In view of the properties of $2 shown 
in Theorem 3.8 we have: 

Theorem 3.9. For each closed subsector F of  • one can find rr > 0 so 
that the resolvent ~ = ( , ~  +10 -1 for t~ E F with I~'1 --> rr is of  the form 

(3.30) ~ = Q+ + KSTo, 

where K resp. To are a strongly polyhomogeneous Poisson resp. trace opera- 
tor o f  degree - 1  (with O~K and O~To ~ph9 o f  degree -1  - m for all m), and 
S is a weakly polyhomogeneous ~do on X',  with O~S E OP'(S -m'O f~ S O'-m ) 
and wph9 for all m. 

In detail, ~ is described by (3.29), with entries defined in (3.16-20) and 
Theorem 3.8. 

The operators ~ �9 L2(E) --~ Hm+I"~(E) are bounded, uniformly in # E F 
for I#1 --> rr. 

Remark 3.10. We could also have described ~ by use of the Calder6n con- 
struction. Assume that Q is an inverse of  ~ + #  (for large p in the sector) 
defined on a compact n-dimensional manifold X without boundary, in which 
X is smoothly imbedded (e.g. the double of  the manifold extended by a cylin- 
drical piece). Set 

a 0 ' -- 7~ 

here P+ is the Calder6n projector for ~ + p, and K + is the associated Poisson 
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operator (cf. [$2], [H1], [G3]). In view of the invertibility of  ~ +/~, ~ P +  
has a right inverse 5 '~ ,  i.e. 

~P+5/',~ = I. 

Then the Poisson operator solving ( ~  +/a)u = 0, ~70u = q), equals K~ = 
K+SP~, and the resolvent equals 

(~& § ~)--1 = Q+ _ KsN)'oQ+ = Q+ - K+ Sa~sNTo. 

Here K + and To are an sphg Poisson resp. trace operator, and ow~ can be 
constructed such that 5P~.M has properties like those of  S in Theorem 3.9. 
The proof is related to the preceding development, which however takes more 
direct advantage of the comparison of ~ with ~0 near X' .  

3.4. Trace calculations 

Consider N = ( ~ e  +/~)-1,  as described in Theorem 3.9. Since the injection 
of Hs(X)  into L2(X) is trace class for s > n, the terms in ~ ' N  are trace class 
when m > n. 

Theorem 3.11. Let ~o be any morphism in E = E1 @ E2, and let m > n = 
dimX. Then 

oo 

(3.31) Tr(~or +kt)  - l )  ~ ao#  n - m - I  § ~ ( a j  + bj)lt . . . .  1-j 
j = l  

o<3 

+ ~ ( c j  l o g #  + c j ) #  - m - I  - J ,  a s  I#1 ~ oo,  
j = 0  

for It in closed subsectors o f  +Fo. The coefficients aj, bj and cj are integrals', 
fx  aj(x)dx, fx' bj(x')dx'  and fx' cj(x')dx', o f  densities locally determined by 
the symbols of  P and B, while the cj. are in general globally determined. The 
coefficients co and c' o are the same as for the case where, in (3.1) and (3.2), 
the Pj and Pj are zero (the "cylindrical" case). 

Proof We find from (3.29): 

m m m 
q)Olt ( ~ o ~  § [2)--1 = @Obt Q+ __ q)Ol a [KIS~To]  - (p~[(KIS2 - -  1s + S2))S~To].  

First, Tr(q~?~Q+) contributes the well-known expansion ~ o  aJ [ 2 n - m - l - j "  

For the other terms we can use the invariance of the trace under cyclic 
permutation of the operators, to reduce to a study of operators on X' .  For the 
middle term we have: 

Tr(q)cYff[K1S~To]) = 
ml 4-m2 +m3 =m 

= 

ml +m2 +m3 =m 

ml m3 Cm,,m2,m3 Tr( q)~3u KI ~2 S~ ~ ~ To) 

m2 m3 ml Cml,rn2,m3 Tr( ~l~ S~ Ot~ To(o~tt KI), 
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m3 rnl where the expressions 0 r T0~p0~ K1 are sphg ~bdo's on X '  o f  degree 
- m 3  - m l  - 1, by Lemma 3.4. Then by Theorem 1.18 and Proposition 3.5, 
0~2S~ O'~3To~pO'~K1 is a weakly polyhomogeneous ~bdo on X '  o f  degree 
- m -  1, with symbol in S-re-1'~ N S ~ 

To this we can apply our general Theorem 2.1, after a reduction to local 
trivializations by use of  a partition of  unity. Since the symbol has degrees 
- m  - 1 - j ,  j > 0, and #-exponent d = - m -  1, we get an expansion in a 
series of  locally determined terms bk, l# -m-i+(n-l)-k,  k >= 0, together with a 
series of  terms (cj, l l og#  + c~.,1 )#-m-l--j ,  j >= 0, with cj, l locally determined. 

The third term is treated similarly; here 

Tr(0~[(KIS2 - 1s + S2) )S~To]) = Tr(O~[S2S~ToK1 - (I + S2)S~ToK3]), 

m3 ml with related formulas when a nontrivial ~p enters; and we use that OF, T0~p0~ K1 
ra3 ml  and ~ Tor /(3 are sphg ~bdo's of  degree - m 3  - ml - 1 resp. -m3  - ml - 2, 

together with the information on the weakly polyhomogeneous factors. We 
find that the operator whose trace is to be calculated has symbol in S -m-2'~ N 
S ~ polyhomogeneous with degrees - m  - 2 - j ,  j => 0, and p-exponent 
d = - m  - 2, so Theorem 2.1 here gives an expansion in a series of  locally 
determined terms b~,2# -m-2+(n-1)-k, k _>_ 0, together with a series o f  terms 

/ ~ - - m - - l - - j  : (cj,2 l og#  4- c),2) # , j > 1, with ci,2 locally determined. 

Taken together, this gives the expansion (3.31). 

Now observe that the terms (co log#  + C'o)p -m-l  in (3.31) come only from 
Tr(~o0~[KiSe~T0]). This implies the last statement in Theorem 3.11. For, Ki 
and S~ are the same as for the case where the Pi and P~ are 0. The third factor 

To = 7oQ+ uses the symbol o f ( ~  + #) -1  evaluated at x, = 0. The leading term 
o f  this is the same as for the case where Pj and P~ are 0, and the lower order 

terms contribute ultimately an operator in OP'(S -m-2,~ A S~ The first 
possible nonlocal and log contributions from this are the terms with # -m-2  
and p-m-2 log #. [] 

It is easy to draw conclusions from this on asymptotic expansions for 
q~(PB*P~ - 2) -1 and q~Ps(P~*Ps - 2) -1 etc., in view of (3.9). 

Corollary 3.12. Let q~kl : El --+ Ek be morphisms, for  k, l = 1,2. 

The traces Tr(~P110m(PB*Pz~ - 2) -1 )  and Tr(q)220~(PBPe* - 2) -1 )  have 
asymptotic expansions (for k = 1 resp. 2): 

(3.32) aO, kk(--2) ~-m-I 4- ~ ( a j ,  kk 4- bj, kk)(--2) "~2 -m-1 
j=l 

c' v 2 ~ ~ - ~ - 1 .  ~-S-'~,~. 1 ~,~-_~,~j,~.o~,.~_ j, kkJ~-- J 
j=0 
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and Tr((OI20mpa(PB*Pa - 2) -1) and Tr((O21dmPB*(PBPB * - 2) -~) have asymp- 
totic expansions (for {k,l} = {1,2} resp. {2, 1}): 

n-- I O0 n--J--I 
(3.33) a0,k/(-2) -T-m + Y~(aj,~l + bj, u ) ( - 2 )  ~ - "  

j = l  

+ ~-~(cg, k~ log 2 + cj, k~)(-2) 
j=O 

with coefficients described as in Theorem 3.11. 
The coefficients Co, hi and Co,' u are the same as those for the cylindrical 

case. 

Proof Using (3.9), take 

(O__ ((O~I 00) ' (00 (O022), (00 (O~2), resp" ((o021 ~ ) ,  

in Theorem 3.1 1, and divide by p in the first two cases. Now replace # by 
(-2)�89 and note that ~;, = (2#)-~3,. [] 

These results yield asymptotic expansions of the traces of heat opera- 
tors 9911 e-tPe*PB, (OlZPB e-tPS*PB, etc., and power operators (OlI(PB*PB) -~ --: 
(O11Z(P~PB,s), (OI2PB(Ps*PB) -s, etc., by use of the transition formulas in 
[GS1]: 

Theorem 3.13. There are coefficients aj, kl, /~j, kt, cj, kt, cs, m related by suitable 
gamma factors to those in Corollary 3.12 (see the proof below for further 
details) such that, with va = Tr((OlIH0(PB)), v2 -----Tr((Oz2H0(P~*)), the zeta 
and eta functions have singularity structures described by: 

(3.34) r(s)Xr((okkZ(PB*eB,  s ) )  ~ --vk + ao,k  + 
+ 

n- - j  
S S 2 j = l  S 2 

F(s)Tr((OlzPBZ(PB*PB,S)) resp. F(s)Tr((O21Pa*Z(PsPB*,s)) 

~ n+-------V+ + + 
S 2 j = l  S 2 -- ( S @  S ~ - ~  - ~ j  

The heat traces have the asymptotic behavior for t ~ O: 
0 ( 3  ~ j - - n  

(3.35) Tr((okke -tP;P~) ~ ~o, kkt-~ + ~ (aj, kk + bj, kk)tT 
j = l  

~ J ~ 1  L 
+ ~ (--cj,kkt~ log t + cj,kkt~ ), 

j=O 

Tr((O12PBe -tPB*PB ) resp. Tr((o21P~*e -tPSPB* ) 
n+l 0(3 ~ j--n--] 0<3 ~ J - - I  ~1 J--] 

aoglt--~- + E(fij, u + bj, kl)t 2 + E ( - c j ,  klt--r- logt +cj, kff 2 ). 
j=1 j = 0  
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The  ~ri, kj and  vk are in general  globally  defined, while the other c o e ~ c i e n t s  are 

local. The coeff icients Co,kl and  cos 1 are  the s a m e  as those f o r  the cyl indrical  
case. 

P r o o f  Recall that the resolvent, power function and exponential function of  a 
selfadjoint operator S ~ 0 with compact resolvent are related to one another 
by the formulas 

(3.36) Z ( S , s )  = S - "  = f : u ( s  - 
C 

_ t i f 2m-s~,~](S _ 2)-1 d,~. 
( s - - 1 ) . - . ( s - m )  2n 

C 

e - t S ( I  - n o ( S ) )  = ~ f e - t ; ' (S  - 2)-1 d2 
C 

1 = ~ i  f t - s z ( S , s ) F ( s )  ds,  c > 0; 
Re s=c  

here S -~ is taken to be zero on the nullspace o f  S, and C is a curve 

Co,to = { 2 = rei~ l oe  > r >= ro } + { 2 = roei~ l O > O' > - 0 }  

+{)~ = re i(2~-0) ! ro <= r < ec  }, 

with 0 < 0 < n, and r0 chosen so that (S - 2) -1 is holomorphic on 0 < ]2[ < 
We this to S PB*PB r0. In the second formula, one must take 0 < ~. apply = 

and PBPB* and compose with a differential operator D; by taking traces we 
then get similar formulas relating the traces o f  D ~ m ( s -  2) -1, D Z ( S , s )  and 
D e  - t s ,  provided that Re s and m are taken large enough. 

To obtain the first expansion in (3.34), let r (2 )  = Yr(qot ~ t?m(P~*PB -- 2) -1) ,  
and note that besides having the asymptotic expansion (3.32) for 2 - - ,  ec in 
$6 = {Ire - arg21 < 6}, any 6 < n, r (2)  is meromorphic at 0 with 

r (2 )  = v i m ! ( - 2 )  - m - I  + r0(2), vl = Tr(~ollH0(PB)), r0(2) holomorphic at 0. 

Let ~(s) = Tr(q~IIZ(PB*PB,s)) .  By [GS1, Prop. 2.9], relating the zeta poles to 
the asymptotic properties of  the resolvent, it follows that the function 

O(s)  = n ~ ( s ) ( s  - I ) . ,  . ( s  - m)  _ rc i f 2 m _ s ~ ( p B . p  B _ )~)-I d), 
sin ~ s - -  sin ns 2-n c 

has the singularity structure 

O(S) ~ v im!  j~>=o bj + aO,l__._~ln 
s s - m - j - 1  s - ~  

+ ~-~ aj, ll + hj, ll ~-~( Cj, ll c~,ll ~. 

j = l  S 2 2 



Atiyah-Patodi-Singer problems 521 

here the bj are the coefficients in the power series r0(2) = E j > = o  b J ( - 2 )  ] (con- 

vergent near 0). Since 7r(sin us) - I  = F(s)F(1  - s), 

O(s) O(s) 
r ( s K ( s )  = = 

( s -  l ) . . . ( s - m ) F ( l  - s )  ( - 1 ) m F ( m  %. 1 - s ) '  

We can assume that m is even. The poles of  F(m + 1 - s)  cancel the poles in 

the sum ~j__> 0 bj s - m - j - l '  so we are left with the singularities 

(3.37) F(s)~(s)  ~ ---vl + ao,11 
s r ( m  + 1 + ~)(s - ~) 

oc a j ,  l 1%_ bj ,  l 1 

%'j~_i F(m %. l %, ~-J- _ ~J- ) 

OC f 

7 - f  )2 %" - - =  " / :o  F(m + 1 )(s + ~ r ( m  %. 1 - ~)(s + J)  

This shows the first expansion in (3.34), for k = 1. The first expansion in 
(3.35) is obtained from (3.37) by use o f  [GS1, Prop. 5.1], that relates the zeta 
poles to the asymptotics o f  the heat trace at zero. This gives: 

a o I i  n (3.38) Tr(cplle-tes*Pe(I -- Ho(PB)))  "~ --V1%" .... t : r ( m + l + ~ )  

--n ~ t 

r (m+t+~)  C(m+l-~) r(m+ l -  ~ ) t ~ . " ) 
+ 

j = l  j=0 

In view of  the definition o f  vl, this shows the first expansion in (3.35) for 
k = l .  

The other expansions are obtained in a similar way, using also (3.33). [] 

For the cylindrical case, the coefficients were determined exactly (in terms 
of  the zeta and eta functions o f  A) in [GS1], for cases where B0 is a projection 
in V0, cf. Assumption 3.1. Thus we find from [GS1, Cor. 2.7-2.8], in the case 
Bo = Ho(A): 

, O A A 2  (_l)~C,-l t~P,k , ) 
F o r  n even ,  6o, k, = 4 v / -  ff , 

c / - o A A 2" ] 
~1 [ ~ / @ 1 0 (3.39) Co, kk = (--1)  k n-ltq)kk ' ) + gYr(rpkkH0(A)) . 

l 

~1 ) ~ [q(q)kk,A, O) + Tr((p~ 1)]. F o r  n odd ,  c o , ~  = O, Co,kk : ( - - 1  k 1 0 

Here qo~ is the restriction o f  (Pkk to OY, and I 0 2 1 0 2 sen-l(q)kkA,A ) + c,_l(gokkA,A ) 
are the first Laurent terms o f  F(s  %, i o 2 g)q(rpkk,A, s)  at s = 0. (This extends the 
result o f  [G2] for the case (Pkk = I,  where c,_1 = 0 and c~,_~ = vFff~/(A,0).) 
Similarly, we get from [GS1, Cor. 4.3], for the singularity of  
Tr(q)lzPBZ(PB*PB,S)) at s = 1 (Bo = H0(A)): 
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For n even, c'0,12 = lcn-l(q~ol2ffA,A2), 

(3.40) c0,12-' : ~en_ I I t  (q~O2o.A,A2) § +Tr(q~O2o.Ho(A)). 

~' ' [q(~p~ A,O) + Tr(~o~ For n odd, go,12 = 0, c0,12 = 

Similar formulas hold for the singularity of Tr(~o21Ps*Z(PBPB*, s)), just with 
q~~ replaced by ~*~o~ 

Special results for some other choices of Bo are likewise easily inferred 
from [GS 1 ]. 

The considerations in [GS1, Sect. 4.3] on the variation at 0 of the eta 
function of P~ in certain selfadjoint cases can be generalized to the present 
situation. 

Remark 3.14. Similar considerations allow the calculation of T r ( D 0 ~ )  when 
D is an arbitrary differential operator on X, for m > n + d, d = the order of 
D. One finds that 

(3.41) T r ( D 0 ~ )  ~ ao(O,P)# "-m+d-I 
O(3 

+ ~-~(aj(D,P) + bj(D, PB))p "-m+a-~-j 
j = l  

OQ 

+ ~(c j (D,P~)  log p + cS.(D, Pg))p -m+a-l-j 
j = 0  

(the primed coefficients global, the others local); and consequences are drawn 
as above for the corresponding zeta and eta functions and exponential traces. 

Appendix 

The composition rules for operators as in (3.21)-(3.22) with strongly polyho- 
mogeneous symbol-kernels (see Definition 3.3 ft.), taken together with differen- 
tial operators and resolvent parametrices, follow directly from the composition 
rules for "classical polyhomogeneous" operators in one more variable, treated 
in [BM], [G1]. To make the present paper reasonably selfcontained, we show 
the rules in the #-dependent framework in some detail below. 

Weakly polyhomogeneous boundary operators can also be constructed, but 
with more complicated composition rules, so since they are not needed for the 
present purposes, they are not included here. 

Lemma A.1. Suppose that." 
Q = OP(q(x, 4,1~)) is the resolvent parametrix of an elliptic differential 

operator A = OP(a(x, 4)) on IR n of deoree ms with am~(X, 4) - #m~ invertible 
for # r F. 

D = OP(d(x, 4)) is a differential operator on IR n of  degree m2. 
K = OPK(/~(x, ~', #)) is an sph9 Poisson operator on ~+, of  degree m3. 
T = OPT(~(x, ~t,#)) is an sph9 class 0 trace operator on ~+, of degree 

m4. 
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S --- OP'(s(x',~',#)) is an sph9 ~bdo o f  degree m5 on ~n- l .  
Then." 
(i) 70K is an sphg ~kdo o f  degree m3 +1 on IR n-l, with symbol 

~(x', o, ~', ~). 
(ii) 70Q+ is an sphg trace operator of  degree - m l  and class O, with 

symbol-kernel r + ~ ~. ~ _  y, q(x ', O, 4, P ). 
(iii) r+DQ~ is an sphg Poisson operator of  degree m 2 -  mi; here 7"~ 

denotes the adjoint of  the "two-sidec?' trace operator ~o 'u  ~-~ ulx.=0 (go- 
ing from C~(IR ~) to C~(IR"-I)) ;  it can also be written as ~ : v(x')~--~ 
v(x') | 6(Xn). When DQ is written in (x' ,y,)-form (cf  Remark 1.20), DQ = 
OP(ql(x', Yn, ~, I~)), then the symbol-kernel of  the Poisson operator r+DQ,7~ 
is r + ~ x ,  ql(X',O, ~,#). 

(iv) TK is an sph9 ~kdo of  degree m4 + m3 + 1 on lR n- l, with symbol 

7 i(x',xn, ~', #) o' lc(x',x,, ~', p)dxn, 
o 

where d denotes symbol composition (c f  Definition 1.19) with respect to the 
x ~ variable. 

(v) k x.KS is an sphg Poisson operator of  degree - k  + m3 + ms, with 
symbol-kernel x~/c(x, ~', p) o' s(x', ~', I~ ). 

(vi) Q+K is an sphg Poisson operator of  degree - m l  + m3, with symbol- 
kernel described in the proof  below. 

(vii) Ou preserves strong polyhomogeneity and reduces the degree of  any 
of  the operators by 1. 

The rules extend to operators on manifolds. 

Proof  As usual, the compositions may need precautions: for symbols with local 
estimates in x ~ as in [BM], [G1], one factor should be properly supported, but 
for globally estimated symbols the compositions are generally defined as in 
[GK]. 

The proofs of (i), (iv), (v) and (vii) are straightforward. 
For (ii), let 

(A. 1 ) ~(x, z,, ~', #) = ~ ~  ~, p). 

(So Q has the "symbol-kernel" ~ ( x ' , x , , x , -  y , , ~ , p ) ,  when one replaces the 
~9do action in the n'th variable by an integral operator action.) Then 

[7oQ+u](x') = 7o r+ f eiX~q(x, ~, U)e+u(~) r 
N" 

0r 

= 7or + f e ix''# f~(x' ,xn,xn - yn,~',IZ)fi(r 
F. "-~ 0 

O0 

= f e ~x'r f4(x ' ,O,-y . ,~ ' , l~) f i (~ ' ,y . )dy .d~' .  
~ n - - I  0 

This shows that 70Q+ is a trace operator as in (3.22), with symbol-kemel ? = 
r+~(x~,0,-y~, ~,p) .  For this function, the properties in Definition 3.3 (with 
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m = -ml  ) follow easily from the fact that q has an asymptotic expansion in 
homogeneous functions which are rational in (~, p), with denominators that are 
powers of the elliptic polynomial det(am~ -#m~ ). 

For (iii), let 

(A.2) ql (x', y. ,  zn, ~', #) = ~ . ~ z . q l  (x', y., ~, p); 

then DQ has the "symbol-kernel" ~l(x', y . ,x .  - y . ,  ~, #). Now 

[r+ Q~v](x) = r + f ei(X'-Y')'~-' +i(x"-Y")~"ql(x', y., ~, p)[v(y') | &(y.)] d yd(  

= r + f eiX"r176 O, ~, I013(~') d( 
R" 

= r  + f eiX"r O, Xn,~t,#)V(~t)q~t , fo rx .  > 0; 
~ n -  1 

this is a Poisson operator as in (3.21) with symbol-kernel r+~l(x% O,x., ~, #). 
(The formulas must be suitably interpreted; one can use an approximation of 
&(y.) by smooth functions.) The properties of the symbol-kernel follow as in 
(ii). 

For (vi), recall that Q+ = r+Qe +, cf. (3.14) ft. Write K in terms of a 

symbol-kernel/~' in J-form: 

Kv(x) = f ei(X'-Y')'~-'fc'(y%Xn,~',p)v(y')dy'd~' 
~2n 2 

(by Theorem 1.18 1 ~ applied with respect to the boundary variables), and 

introduce the associated symbol k'(y', ~, #) = ~ x . ~  e+ f /(y ' ,x . ,  ~', #); then 

(A.3) e+Kv(x)= f ei(X'-Y')'~'+ix~162 
~, 2~-  I 

Consider a Taylor expansion of q(x, ~,p) in x.: 

(A.4) q(x ,~ ,p)= ~ ~XJ~x.q(x',O,~,p)+xNrN(x,~,p). 
j < N  " 

For each j one finds: 

r+OP(i~.q(x ', O, ~, #) )e+Kv 

= r + f ei(X-:)'~O~.q(x ', O, ~, I~)(e+Kv)(z) dzd~ 
~ 2n 

: r + f 
~ 4 n -  1 

: r + f 
~ 3 n -  1 

~2n - -  I 

• g jv ,  

�9 ~ �9 t r t �9 �9 I e '(x-:)r -Y )~ +~:"~"~ a(x O, ~,p)k'(y', rl ,#)v(y')djdqdzd~ 
Xn"l \ 

, "~f~ ' - - - I  ktt, t ei(X-:)'~O~.q(x ', O, ~,t.,t ,--.(z'-y',z.) ~-~, q, #)]v(y')  dy'dzd~ 

i x t t t . �9 / e ( -y ).r +~xd.~ ~ x  x.qt , O, ~, #)k'(y',  ~, p)v(y') dy'd~ 
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where Kj is the Poisson operator with symbol-kemel in (xr, y')-form: 

(A.5) ]r y ' ,Xn ,~ t ,# )  = r+~-f ~.~xo[~.q(x',O,~,#)k'(y',~,#) ]. 

One can show that the remainder in (A.4) gives an operator with order going 
to - o c  in the appropriate sense for N ~ oc, so it is altogether found that 
the composed operator Q+K is a Poisson operator with a symbol-kernel /~ in 
(x/, y')-form described by 

(A.6) h(x ' , f f ,x , ,~ ' ,#)  ~ ~ ~.xJk~.(x',y',xn,~',#). 
j>=o 

This is reduced to a symbol-kernel in x'-form by Theorem 1.18 3 ~ 
The strong poly(quasi)homogeneity property (Definition 3.3) of/~ carries 

over to a similar property of/~', which is reflected in a suitable polyhomo- 
geneity property of k'. Multiplication by the symbols ~ .q  (that are series of 
rational functions as described under (ii)) preserves this kind of polyhomogene- 
ity, which then translates back to a strong poly(quasi)homogeneity property of 
the /~j in (A.5); and it is found altogether that the symbol-kernel of Q+K is 
as in Definition 3.3 with m = m3 - -  mj. [] 

More details can be found in [G1], [GK]. 

Example A.2. A simple example of an sphg symbol-kernel of degree -1  is 
,~ = e -x~ with principal part P-1 = e-X"W'u] (cf. (1.1)), and with asso- 
ciated symbol p = ( (~ ,#)  + i~n) -1, whose principal part ([~t,#] + i~n) -1 is 
clearly homogeneous of degree -1  in (~', ~n, #) for [r > 1. To illustrate (ii) 
and (iii) above, we observe that for the symbol q(r o f ~  = (1 - A + p2)-1, 

1 1 ( 1 , ) 
q(~ '# ) - -  l+ l~12q  -#2 -- 2(~1,#) (~, ,#)+i~n + (~ ' ,#) - i~n  ' 

its inverse Fourier transform in ~n is ~ (x , ,~ ' , # )=  ~ e  -Ix~ so 

r+q(-x, ,~ ' ,#)  and r+q(x~, ~',#) are both equal to ~ e  -x~ 

The construction in (iii) is in a certain sense dual to the construction in 
(ii) (when D = I). This kind of Poisson operator entered in a crucial way 
already in the introductions of ~kdo methods into the theory of differential 
elliptic boundary problems (defining the Calder6n projector), in Seeley [$2, 
Th. 5] and Hrrmander [H1, Lemma 2.1.3]. 

One could allow a factor D in (ii), but it will generally give rise to trace 
operators of class > 0, that we do not need to deal with systematically here. Q 
can be replaced by more general Odo's satisfying the transmission condition, 
cf. [BM], [G1], [GK]. Products KT belong to the so-called singular Green op- 
erators; we shall not here need the general type G entering in the full calculus. 

The sphg operators are "of regularity +ec"  in the terminology of [G1], 
[GK]. The mapping properties of these operators are covered by the general 
rules of  [G1, Sect. 2.5], [GK, Sect. 4], but for completeness we shall include 
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elementary proofs for the cases used here�9 Introduce the parameter-dependent 
normed Sobolev spaces 

Hs'~(IR ") = {v r S ' (~, ' )  I (~,#}~(~) r L2(IRn) }, with norm [[(~,]A)sullL2, 

H~'"(~+) = r+HS'~(IR~), with norm [[U[tHs,.(~+) = inf{[Jvl[H~.,,(~.) I u = r+v}, 

with the usual generalizations to vector bundles E over manifolds X (notation 
H~'~(X,E) or just Hs"(E));  note that 

(A.7) (~>~IlulIL= + IlUIIH" ~--IlulIH',,', for s > 0; 

(~,>llullH..,, <= Gllull..+,,. for s e IR. 

We write 

OP' ((~', p)s) = (D',/~)s. 

Lemma A.3. When K is a globally estimated sphg Poisson operator of  degree 
m C 7Z, then it is bounded 

(A.8) K : H'+m+�89 HS'~'(~+ ), uniformly in # , f o r  s c lR. 

When T is a globally estimated sph# trace operator o f  degree m c Z and 
class O, then it is bounded 

(A.9) T " HS'~(~+) --~ Hs-m-�89 uniJormly in #, for s E ~+. 

Proof. Consider an s phg Poisson operator K of degree m, written as in (3.21) 
with symbol-kernel k(xr,Xn,~',#). It satisfies (cf. Definition 3.3) 

sup ]D~, ( 1 + (~', p)x. )/~(x r, x., ~',/~)1 = O((~', #)m+ l ), all fl, 
X 

and hence 

N O P t ( ( r  1 J r  (r ~t,l~))I[~(L2(~"-'))= O ( 1 ) ,  

uniformly in x~ E IR+ and p. It follows that 

11Kv[[22(~) = f lOP r (/~(x',x~, r ~))vl 2 dx~dx~ 

= f 7 IOP'([c(x"Xn, g ' ,P) (~ ' ,#) -~- l (  1 + (~',#)Xn)) 
~. . -J  0 

�9 o p ' ( ( r  + ( r  a & . d x  r 
O O  

< C f f [OP'((~',p)m+l(1 + ( r  , 
R , - j  0 

= C f f J(~',p)m+l(1 + (~',p)x.)-l~(~')12dx. 4~ ' 
nt . - I  0 

- C ' I [ ( D ' ,  \m+�89 2 
- -  # ]  L2(F.n-l) ' 
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In other words, K is uniformly bounded from Hm+�89 "-j  ) to Lz(IR~_). 

One finds similarly (or by duality) that when T is an sphg trace operator of 
degree m and class 0, written in the form (3.22), then it is uniformly bounded 
as an operator from L2(IR~_) to H-m-�89 "-1 ). 

This shows (A.8) and (A.9) for s = 0. To include general s, we can use 
the uniform homeomorphisms 

(A.10) ((Dr, l z) - iD,~)+ "HS'U(~+) ~ HS-"" (~+) ,  t C Z , s  E IF(, 

cf. [GK]; other variants of order-reducing operators from earlier works could 
likewise be used. Those in (A.10) are not classical ~bdo's in n variables, but 
compose nicely with the above Poisson and trace operators anyway; in fact, 
((Dr,#) - iD,)t+K is an sphg eoisson operator of degree m + t for any t �9 2g, 
and T((Dr,#)  - iD,)~+ is an sphg trace operator of order m + t and class 0 
when t < 0. Application of the preceding result gives: 

((Dr,#) - iD.)t+K :Hm+t+�89 " - l )  --+ L2(IP-.+), for t �9 77; 

T((D',I~) - iD,)t+ " L2(IR~) -+ nm+t+�89 for t __< 0. 

By use of (A.10) we get from this the statements in the lemma for integer 
values of s, and they extend to s �9 IR resp. s �9 IR+ by interpolation. [] 

Such mapping properties hold in much more general situations (in [G1], 
[GK], regularity > 0 suffices), and (A.9) extends to s > -�89 There is an 
order convention linked with these mapping properties, slightly different from 
the degree convention, cf. [BM], [G1]. 

For operators on the boundary we observe: 

Lemma A.4. Let S E OP' (S-k'~ "-1 , IR "-1, IR+) • S~ "-l, ~ , - 1 ,  ~+) )  
for  some integer k >= O, with global estimates in x ~. Then for  all s C IR, 
S is bounded, 

(A.11) S" HS'~(~ n-1 ) --+ HS+k'U(lR'-l), uniformly in It. 

Proo f  For M C N, 2M > k, we have that 

(A.12) S(Dr,#)  k-2M and (Dr, Ij)k--2Ms G OPr(S -2M'00 S0'-2M), 

by Lemmas 1.6 and 1.13. Composition of (A.12) to the right or left with 
(1 - A ' )  M (where A ' =  ~2 + ... + ~2_1) gives operators in OP'(S~176 in view 
of Definition 1.1 and the standard composition rules for ~9do's. Multiplication 
of (A.12) by ,/./2M gives operators in OPt(S~176 likewise in view of Definition 
1.1. Thus 

(A.13) ((1 -- J ) M  § #2M)s(Dt,#)k-2M and 

(D', [z)k-2Ms((1 -- A')M +/t2M) E OP'(S ~176 
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It follows from the standard mapping property o f  ~kdo's that the operators in 
(A.13) are continuous in L2 ( IR ' - I ) ,  uniformly in #. Then since 

(Dr, ].1) k-2M : Hs'u(IR n-  l ) ~ HS-k+2M,,U(lR n-  1 ), 

(1 -- At)  M + ]2 TM : Hs'u(IR " -1)  & Hs-2M't~(]Rn-1), 

for any s E IR, uniformly in #, one concludes by suitable choices o f  s that 

S :H2M-k'#(]R n-1 ) ---+ H2M'#(]R n-I  ) and 

S :H-2M'~(Fx n-1 ) ---+ Hk-2M'~(]R n-1 ), 

uniformly in /~. Since M can be taken arbitrarily large, it follows by interpo- 
lation that (A. 11 ) holds for all s E IR. [] 

The lemma applies to 5e~ and its derivatives. They are o f  regularity 0 
in the terminology of  [G1], [GK]. The rules in Lemma A.3 and A.4 extend 
to operators on the sections o f  vector bundles over compact manifolds with 
boundary, by use o f  local trivializations. 

Acknowledgements. We thank Peter Gilkey for his interest and encouragement in pursuing 
this. 
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