,\W, w“,\,\.o.) ¢ Ov %ﬁnvunuff‘ ,..Tvo\.\\r_ox.a“/ﬁ.
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Remarks and Historical Notes. There is a huge literature on decay of Green’s
function and ejgenfunctions for ODEs and PDEs (see especially Agmon [11]). The
approach we use here has its roots in part in the first proof of exponential decay for

-body Schrédinger operators by O’Connor [829]. Combes-Thomas [211] realized
the right language for formulating O’Connor’s result was that of operators analytic
under a group action, a notion Combes and collaborators [12, 76] had used to study
what has come to be called complex scaling. Propositions 10.14.4, 10.14.5, and
10.14.6 are abstractions of the Combes-Thomas approach which has been widely
used. Their use in the context of OPUC is new (not surprising, given that it
relies on the CMV matrix, which is of recent vintage), but should be regarded as a
straightforward import.

The use of analytic vectors in the study of groups is due to Nelson [804].

_In many cases, we expect the quantity 8 in (10.14.3) to go to zero as
(dist(z0, (supp(du\{20}))*/? but, in general, it seems unlikely that one can improve
on the linear bound.

10.15. Counting Eigenvalues in Gaps: The Wﬂﬂmb.mnrémﬁmow Principle

In this section, we want to discuss a situation that compares two sets of Verblun-
sky coefficients, {o{’ oz and {0}, Where |a, — o0 | — 0 with some infor-
matjon on the rate. Suppose that du(® and dy are the associated probability
measures on 9D and that some open interval, I, is disjoint from Gess(du®), and
50 from ess(du) by Theorem 4.3.8. Suppose also that dp(® has only finitely many
pure points in . 'When is the same true for du? If the number of pure points is
infinite, the pure points can only have &I as limit points, and one can ask about
the growth of the number of pure points in {z.] dist(2,6D\I) > e} ase | 0. In
Section 12.2, we will apply this to the case where ot s periodic, but here we will
describe a general framework. :

The analogous problem for Schrédinger operators has been heavily studied (see
the Notes) and the techniques we use are borrowed from there. Indeed, it is not
obvious how to carry the techniques over directly to unitaries, so we will proceed
by using Cayley transforms to reduce to a problem in perturbations of selfadjoint

ovoawdon.éoﬁwcmvmmmb,c%&moammmbmdwhmm#dpaob.,H_pm following preliminary
is useful: ' )

PROPOSITION 10.15.1,Let A and B be two bounded operators on a Banach
space, X. Then .

o(AB)\{0} = o(BA)\{0} : (10.15.1)
PROOF. We claim that if A € p(AB)\{0}, then
, A" 4 A1IB(AB - A4 ©(10.15.2)

is & tw-sided inverse fbt (BA — ) since (BA — X)B = B(AB ~ )), so.
(BA—-2)(10.15.2) = =X~} (BA - \) + X~}(BA) =1

Thus p(BA)\{0} > p(4AB)\]0}, s0 o(BAN{0} € o(AB)\{0}. Interchanging A and
B, we get (10.15.1). . . O

Let Ao > 0 be a bounded selfadjoint operator and let
: A=A4y+B (10.15.3)

auib ciele, RF2
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with B compact and selfadjoint. Thus,
(—00,E) with E < 0, A has only finite
finite multiplicity. Define

q«.uuT»v = Oess(Ao), so in any interval
point spectrum with each eigenvalue of

(10.15.4)

. iplicity. We want to get bounds
on Ng(4), especially ones that give us information as"E 1 0. ¥

Let Ag > 0 and B be compaet and selfadjoint., For
- 4« /

Ay=Ao+)B o (10.15.5)
Let e;()) be the j-th eigenvalue (counting multiplicity) of Ay, counting from the

@oQQSS&\;@mgzems&g &A\/vﬂmﬁ Oess(Ap) = eoo if there are not 7 etgenvalyes.
Then, for X >0, \

() In the region A e < o}, €5 is strictly monotone &81&&.3& and if
B e;(Xo) < eco, €;(A) < e for all A > Ao-
(i) ey <0 is an eigenvalue of Ay, if and only if A1 is an eigenvalue of
Aﬂo - \wOle.W = NWHAQOV . R
(i) ,, :
Ne(A)=#{u|lu>1ue o(K1(E))} (10.15.7)
where we count geometric multiplicities.
(iv) Let B=CUD. Then
Np(4) < Tr((C* (4 - B)TIO1) | U T (D" (4 — E)TIDy) 2 (10.15.8)
foranyp,g>1 andr = (31 g 1)1,

(10.15.6)

Remarks. 1. Since o((Ao—eo) " B)\{0} = o((Ao—eo)~1/2B(A -i/2
0—e .0
and the second operator is selfadjoint, (4y — €0)"1B only has real mmmwwd\&ﬁvm/mﬂuw .

Proposition 10.15.1. An easy extension of the argument.shows that (Ao ~eg)"1B
has no Jordan anomalies, that is,

; the-geometric and algebraic multiplicities of its
eigenvalues are equal.
2. (10.15.8) with U =1 and G = D = [B['/2 and with p = q = r, that is,
Ne(4) < Tr((1B]/2 (40 — B) 1| B|1/2)7) (10.15.9)
is called the Birman-Schwinger bound. .

PROOF. () If xp%7 = &;(\)o ) with ¢

) .
X = 1, then eigenvalue perturbati
theory (see [615, 899]) says =1, gen perturbation

d ; .
. &) = (0§, By (10.15.10)
=X () ~ (0, 400))
<0

since e, — Ay < 0.

() (Ao +AB) = ey if and only if (e ~ Ag)~ By = A

H . .
) ; ‘ @ since e — Ag is an
invertible operator. °

AEV.,HEm €;() are continuous and strictly monotone,
€; < E is the number of A with 0 < ) < 1 and ei(Ag+ A
the number of eigenvalues of K1 (B) in (1, c0).

80 the number of j with
B) = ep. By (ii), this is
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{iv) By Proposition 10.15.1, o(K1(eo)) = o'(Ka(eo)) where
Ka(eo) = D(eo — Ao)~1CU
by (10.15.7), for any r > ,H“
Ne(A) =#{u|n>1, p € o(Kaleo))}

(> W) 4

n€a(Kz(eo))
STr(|Ka(e)l”)  (by (1.4.49))
er =B+ a,

.W.wnmoV = ﬁuﬁmo - \wovlu\nzxmo _ \wovlp\nQ_q

by Hélder’s inequality for trace ideals, ’

1#2(e0)ll7 < 1D(eo ~ 40) /2|13, | (e0 ~ Ao)~22C|, U] :
= Tr([D(z0 ~ A0) ™ D*IP) P Tx([C* (20 ~ Ao) 1Y/ || 1

Here are two consequences of this result. For simplicity, we state them with
:D=|B|'/2..

DROPOSITION 10.15.3) Let Ag > 0 and B be compact and selfadjoint.

Suppose that Jor some orthonormal basis, {on}2,, and some p > 1,
wﬁ (n, (1BI2(Ag = €0) 1| B]¥2)205,) = b, (10.15.12)
exists and
o0 .
) N=3"b.<oo (10.15.12)
. n=1
Then
dim P 0)(4) < N (10.15.13)
Suppose that for some r > 0 and p21,
Te([| BI*/*(Ao ~ e0) | BI¥/?]P) < cleg|™ (10.15.14)
Then for any k > r,
> EE<oo (10.15.15)
.@uqu\wv
.m“AO

PROOF. (i) We will only use the case p =1, so we only give the details in that
: whiere monotonicity simplifies the argument.
mFomx_.oNommoAmHAPgmu .

; 0 £ (Ao — o)™ < (Ag — €)1

he left side of (10.15.11

v is monotone FoammmEm.F eo- Thus, for any M and
20, : '

ors

M .
D {0ns (1BIY2(Ao — o)™ [ B¥2) ) < N
n=]

aking M — oo and using (10.15.9), for any E < 0,
Neg(Ad) < N
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which implies (10.15.13).
(ii) By (10.15.9) and (10.15.14), we have

. Ng(4) < B~ (10.15.16)
For any e < 0,

ey
0 W
lef = \ klyl*" dik
e

Thus ) - es ,,“, \
> lest = [ hyt 42 [ el a \
e;<eq € . ez T
or y
€0
> ket s [ n Akl ay /
e;<en e’ 7
20 -
<ck \ ly|*="=1 dy
er
= ck(k — )7 [les|*" — Jeo ¥
Leklk—r) et < 00
since k > r. Now take eg 7 0. - ]

As an example, we have the following:

THEOREM 10.15.4. Let J be a Jacobi matriz and suppose that S nlon|+ (6n —
1)4] < co. Then

. .8
dim Payj-2,2)(F) £ D nfbn| + (4n + 2)(an — 1)+ (10.15.17)
n=1
and, in particular, it is finite. )
Remark. By x4, we mean max(z,0) and T =— min(z, 0).
PROOF. We will prove that
. 0 .
dim Pioo,—2)(J) < Y n(ba)= + (20 + 1) (an — 1)+ (10.15.18)
n=1 :

This and a similar bound on —J yields (10.15.17), Let J be the Jacobi matrix with
an replaced by min(an, 1) and by by —[(ba)= + (an — 1)3 + (an_y ~ 1).). We first

" note that since (b,)- < b, and

- [2(an - D4+Untnt1| < (an — D ([unl® + [unsa]?)
we have that

J>J
Thus B
&E.ﬁﬁloo,lu?.d < &Bﬁ?oo.lnv (J) (10.15.19)
Since
o0
> nl(n)~ + (@n = 1) + (ano1 — 1)4] = RHS of (10.15.18)
n=1

we need only prove the result for J, that is, for J’s with a,, < 1 and b, £ 0.
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Given such a J, let Mo be the .Hpoo_ome.ﬁ.W with the same values of a, but
= 0. Since a,, < 1, we claim that for any e < -2,

[(Jo =€) nn < [(Jo — €)Y (10.15.20)
epting this, we finish the proof by noting dr.mﬁ by (1.2.24),
: . 1 lim (s=) — A=1[ _ 2
i, [(Jo = &) = lim ~(7 — 2)3{1 - 27
=n

by (10.15.20),
W.B.u Q..E _.w.l .Nzo_u\wn.w.o - vaH_M - .w.o_p\nw.:v < SA@:vl
eT—

By Proposition 10.15.3(i) and (10.15.19), we have proven {10.15.18) as required.
To prove (10.15.20), we use a maximum principle argument. If Up)n =
)*en, then UJU-! = —J, so it suffices to prove for e > 2, then

lle = o) nn < [(e — J6) Ynn v (10.15.21)

e flfoll €2, |71 <2, (e~ Jo) ™t = T2 s e~F1(J,)* shows that for all n,m,
= J0)™Ynm > 0. Since
8

o, Heo = J0) " nn = 2(e0 — Jo) 72 (e0 — I}t

sonclude (o — Jp) is monotone in each @k, 50 (10.15.20) holds. O

Remark. We could use Proposition 10.15.3(i) to show that if Ylan—1]+ by <
then 3, (BE —|2[)f < oo for all p > %, but we will not provide the details
e we will prove a stronger result in Theorem 13.8.10.

Next, we want to discuss what happens when Ay is no longer nonnegative but
a finite number of eigenvalues in (—co, 0). Since we will only use p=g=1r =1

pplications, we only state the result in that case, although there is a general
Ut.

SITION 10.15.5.)Suppose Ag is a selfadjoint operator so that P 00,0y (Ao)
nite rank and Ag has m negative eigenvalues By < By < --- < E,<0. Let B
ompact and selfadjoint, and A = Ag + B. Suppose that

B=CUD (10.15.22)
Ng(A) be dim P_q, gy(A) for Em < E < 0. Then
Ne(4) < m+ ||U|[cM/2q1/2 (10.15.23)
re 7 . :
¢=Tr(C*(4o — E)™'C) + 2| B — E|"'Tx(C*C) (10.15.24)
d="Tr(D(4o — B)#D") + 2|E, — E|~'Tx(DD") (10.15.25)

In particular, if

limsup |Tr(D(4g — E)~*D*)| + |Tx(C*(4o — E)~1C)| < o0 (10.15.26)
ET0

v dim P oo, 0)(A4) s finite, and if .
ITr(D(4o — E)™'D*)| -+ |Tr(C* (4o - E)~1C)| < C|E|*
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for some r > 0, then (10.15.15) Rolds for any k> r.
PRrOOF. The eigenvalues e;(A) of Ag+ AB are no longer monotone in A; but it

is still true that to increase the number of sigenvalues below B, there must be \s
with 0 < X'and e;()\) = E. Since eigenvalues can m&¥e in either direction across

- E, the number of such )’s may overcount, but it will always be an upper bound,

that is, . ) /
No(4) < #{u> 1] € (B - 4)25)) /
Thus, following the proof of Proposition 10.15.2, we obtain (10.15.23) where
¢=C*(40 —e)~*C| (10.15.27)
and a similar formula for d (with -l =Tx(-])). /
Let P_ = Plco,0)(A) and Py =1 — P_. Then ‘

- e2[C(4o ~ E)TIPLCYly + [|C* (A — E)y=P_Clly
=Tr(C*(4o — E)™'C) - 2Tx(C* (4o — E)'P_C)
so (10.15.23) follows from (10.15.27) and b .
~T(C" (4o ~ E)™'P_C) < Tr(C|E - 4, [72P_CC™PL|E — Ay1/2) (10.15.28)
<|E- En|TTr(C*C) :
where we used Proposition 10.15.1to get (10.15.28).

,H_ngo.f.bvmusoamioobowﬁmoﬁ H,ozosmnoB (10.15.23) by repeating the
arguments in the proof of Proposition 10.15.3. _ D

Now, we want to consider two unitaries Uy and U so U — Up is compact. Even-
tually, they will be CMV matrices associated to two sets, {a Yoo and {on}2,,
of Verblunsky coefficients. Consider 383D G N Gess (U) = Tess(Un) and suppose Uy
has only finitely many eigenvalues in . By replacing U, U by ey, e U, we
can suppose'1 is in the gap and 1 ¢ o(Up) Uo(U). Thus, G = {&¥ | -, < § < 62},
and we will focus on eigenvalues in & = {e¥0<6< 62}. By replacing Uy, U by
Ug,U*, we can also analyze what happens on {€¥]~-8, <0< 0}.

Define Cayley transforms: ’

t0= 2T 4 o (%) (10.15.29)
A= «.%u.%vv +cot Amluv (10.15.30)
The map '
T
fle) = MAHHM.M_.QVV + cot Amwan

0 LN
- ooﬁAmv + OO&AWV

maps {e | 6, < § < 2} to [0,00) and G to (=00,0), so Plco,0)(40) = Pg(Up) is
finite-dimensional and Proposition 10.15.5 applies to control the number of eigen-
values of U in {e | 0 < § < @, — ¢} for each & > 0, and perbaps as ¢ | 0.

We define B= A4 — Ag. Since

i(l+2) L2
1-2z IIs+HIN




