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PDL — Exercises 6

solving the Laplace equation, energy arguments, non-Cartesian coordinates

Problem 31 Laplace operator and eigenfunctions

Determine the Fourier series solutions of the following Dirichlet problems:

a) uxx + uyy = 0 , u(x, 0) = 100 , u(x, 1) = u(0, y) = 0 , u(2, y) = 100(1− y) ((x, y) ∈ (0, 2)× (0, 1)).
b) uxx+uyy = 100 , u(x, 0) = 100 , u(x, 1) = u(0, y) = 0 , u(2, y) = 100(1−y) ((x, y) ∈ (0, 2)×(0, 1)).

Discuss the convergence of the series you obtain in part a)!

Problem 32 Eigenfunction expansions for the heat equation

Solve the initial value problem for the two–dimensional heat equation ut = uxx+uyy, u(0, x, y) = f(x, y),
u(t, 0, y) = u(t, a, y) = u(t, x, 0) = u(t, x, b) = 0 for t > 0, (x, y) ∈ (0, a) × (0, b) by reducing it to an
eigenfunction problem.

Hint: The coefficients in the eigenfunction expansion should be functions of t.

Problem 33 Energy arguments in higher dimensions: uniqueness and finite speed of propagation

Let U ⊂ R2 be a bounded open set with piecewise smooth boundary ∂U , ∆ = ∂2
x + ∂2

y . Consider the
wave equation

utt −∆u = h , u(0, x, y) = f(x, y) , ut(0, x, y) = g(x, y) (t ≥ 0, (x, y) ∈ U)

with u(t, x, y) = d(x, y) for (x, y) ∈ ∂U .

a) If u is a classical solution to this problem with d = h = 0, show that

E(t) =
1

2

∫
U

ut(t, x, y)
2 dx+

1

2

∫
U

{
ux(t, x, y)

2 + uy(t, x, y)
2
}

dx dy

satisfies E(t) = E(0) for all t.

Hint: You have seen this before in one dimension. Verify that your proof still works! Can you do it in n
dimensions?

b) Conclude that if u1, u2 are two classical solutions, then the energy associated to u1 − u2 is 0 for all
t. Why does this imply that the wave equation has a unique solution?

For simplicity, let now U = R2. Given (x0, y0) ∈ R2, t0 > 0 and τ ∈ [0, t0], consider the balls B(τ) =
{(0, x, y) ∈ {0} × U : (x − x0)

2 + (y − y0)
2 ≤ (t0 − τ)2} and the cone C = {(t, x, y) ∈ [0, t0] × U :

(x− x0)
2 + (y − y0)

2 ≤ (t0 − t)2} in (t, x, y)–space. Define the local energy

e(t) =
1

2

∫
B(t)

ut(t, x, y)
2 dx dy +

1

2

∫
B(t)

{
ux(t, x, y)

2 + uy(t, x, y)
2
}

dx dy (0 ≤ t ≤ t0) .

c) Sketch B and C.



d) Let ∂nu be the directional derivative in the direction of the outward unit normal vector to ∂B(t).
Show

∂te(t) =

∫
∂B(t)

{
(∂nu) ut − 1

2
u2
t −

1

2

(
u2
x + u2

y

)}
dS .

e) Noting that |(∂nu) ut| ≤ |ut|
√
u2
x + u2

y ≤ 1
2u

2
t +

1
2

(
u2
x + u2

y

)
, show ∂te(t) ≤ 0.

f) Conclude that if u = ut = 0 in B(0), then u = 0 in C. How does this relate to the “intervals of
dependence” in one dimension?

Problem 34 different coordinate systems

a) Consider a function u(r, ϕ, θ) in spherical coordinates. Compute ∆u if u is independent of:
a1) ϕ and θ, a2) θ, a3) r .

b) Let f : Rn → R depend only on the radial variable r =
√
x2
1 + · · ·+ x2

n: f(x1, . . . , xn) = Φ(
√
x2
1 + · · ·+ x2

n).
Show that ∆f :=

∑n
i=1 ∂

2
xi
f = ∂2

rΦ+ n−1
r ∂rΦ.

Problem 35 challenge — counting eigenfunctions

The eigenfunctions of the Laplace operator on the square 0 < x, y < a, which vanish on the bounda-
ry, are given by ϕmn(x, y) = sin(mπx

a ) sin(nπya ), m,n ∈ N. The corresponding eigenvalues are λmn =

−π2

a2 {m2 + n2}, i.e. ∂2
xϕmn + ∂2

yϕmn = λmnϕmn. Given λ > 0, let N(λ) be the number of eigenfunctions

ϕmn associated to eigenvalues satisfying |λmn| < λ. Show that limλ→∞
N(λ)
λ < ∞.

Remark: This is called Weyl’s law and holds in a slightly adapted form for any elliptic operator. Physicists
have several names for it, e.g. for the radiation of a black body it is called Rayleigh–Jeans law.


