PDL - Exercises 6

Abstract

solving the Laplace equation, energy arguments, non-Cartesian coordinates

Problem 31 Laplace operator and eigenfunctions

Determine the Fourier series solutions of the following Dirichlet problems:
a) $u_{x x}+u_{y y}=0, \quad u(x, 0)=100, u(x, 1)=u(0, y)=0, u(2, y)=100(1-y) \quad((x, y) \in(0,2) \times(0,1))$.
b) $u_{x x}+u_{y y}=100, \quad u(x, 0)=100, u(x, 1)=u(0, y)=0, u(2, y)=100(1-y)((x, y) \in(0,2) \times(0,1))$.

Discuss the convergence of the series you obtain in part a)!

Problem 32 Eigenfunction expansions for the heat equation

Solve the initial value problem for the two-dimensional heat equation $u_{t}=u_{x x}+u_{y y}, u(0, x, y)=f(x, y)$, $u(t, 0, y)=u(t, a, y)=u(t, x, 0)=u(t, x, b)=0$ for $t>0,(x, y) \in(0, a) \times(0, b)$ by reducing it to an eigenfunction problem.

Hint: The coefficients in the eigenfunction expansion should be functions of t.

Problem 33 Energy arguments in higher dimensions: uniqueness and finite speed of propagation Let $U \subset \mathbb{R}^{2}$ be a bounded open set with piecewise smooth boundary $\partial U, \Delta=\partial_{x}^{2}+\partial_{y}^{2}$. Consider the wave equation

$$
u_{t t}-\Delta u=h, \quad u(0, x, y)=f(x, y), \quad u_{t}(0, x, y)=g(x, y) \quad(t \geq 0,(x, y) \in U)
$$

with $u(t, x, y)=d(x, y)$ for $(x, y) \in \partial U$.
a) If u is a classical solution to this problem with $d=h=0$, show that

$$
E(t)=\frac{1}{2} \int_{U} u_{t}(t, x, y)^{2} d x+\frac{1}{2} \int_{U}\left\{u_{x}(t, x, y)^{2}+u_{y}(t, x, y)^{2}\right\} d x d y
$$

satisfies $E(t)=E(0)$ for all t.
Hint: You have seen this before in one dimension. Verify that your proof still works! Can you do it in n dimensions?
b) Conclude that if u_{1}, u_{2} are two classical solutions, then the energy associated to $u_{1}-u_{2}$ is 0 for all t. Why does this imply that the wave equation has a unique solution?

For simplicity, let now $U=\mathbb{R}^{2}$. Given $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}, t_{0}>0$ and $\tau \in\left[0, t_{0}\right]$, consider the balls $B(\tau)=$ $\left\{(0, x, y) \in\{0\} \times U:\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2} \leq\left(t_{0}-\tau\right)^{2}\right\}$ and the cone $C=\left\{(t, x, y) \in\left[0, t_{0}\right] \times U:\right.$ $\left.\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2} \leq\left(t_{0}-t\right)^{2}\right\}$ in (t, x, y)-space. Define the local energy

$$
e(t)=\frac{1}{2} \int_{B(t)} u_{t}(t, x, y)^{2} d x d y+\frac{1}{2} \int_{B(t)}\left\{u_{x}(t, x, y)^{2}+u_{y}(t, x, y)^{2}\right\} d x d y \quad\left(0 \leq t \leq t_{0}\right)
$$

c) Sketch B and C.
d) Let $\partial_{n} u$ be the directional derivative in the direction of the outward unit normal vector to $\partial B(t)$.

Show

$$
\partial_{t} e(t)=\int_{\partial B(t)}\left\{\left(\partial_{n} u\right) u_{t}-\frac{1}{2} u_{t}^{2}-\frac{1}{2}\left(u_{x}^{2}+u_{y}^{2}\right)\right\} d S
$$

e) Noting that $\left|\left(\partial_{n} u\right) u_{t}\right| \leq\left|u_{t}\right| \sqrt{u_{x}^{2}+u_{y}^{2}} \leq \frac{1}{2} u_{t}^{2}+\frac{1}{2}\left(u_{x}^{2}+u_{y}^{2}\right)$, show $\partial_{t} e(t) \leq 0$.
f) Conclude that if $u=u_{t}=0$ in $B(0)$, then $u=0$ in C. How does this relate to the "intervals of dependence" in one dimension?

Problem 34 different coordinate systems
a) Consider a function $u(r, \phi, \theta)$ in spherical coordinates. Compute Δu if u is independent of: a1) ϕ and θ, \quad a2) θ, \quad a3) r.
b) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ depend only on the radial variable $r=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}: f\left(x_{1}, \ldots, x_{n}\right)=\Phi\left(\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}\right)$. Show that $\Delta f:=\sum_{i=1}^{n} \partial_{x_{i}}^{2} f=\partial_{r}^{2} \Phi+\frac{n-1}{r} \partial_{r} \Phi$.

Problem 35 challenge - counting eigenfunctions

The eigenfunctions of the Laplace operator on the square $0<x, y<a$, which vanish on the boundary, are given by $\phi_{m n}(x, y)=\sin \left(\frac{m \pi x}{a}\right) \sin \left(\frac{n \pi y}{a}\right), m, n \in \mathbb{N}$. The corresponding eigenvalues are $\lambda_{m n}=$ $-\frac{\pi^{2}}{a^{2}}\left\{m^{2}+n^{2}\right\}$, i.e. $\partial_{x}^{2} \phi_{m n}+\partial_{y}^{2} \phi_{m n}=\lambda_{m n} \phi_{m n}$. Given $\lambda>0$, let $N(\lambda)$ be the number of eigenfunctions $\phi_{m n}$ associated to eigenvalues satisfying $\left|\lambda_{m n}\right|<\lambda$. Show that $\lim _{\lambda \rightarrow \infty} \frac{N(\lambda)}{\lambda}<\infty$.

Remark: This is called Weyl's law and holds in a slightly adapted form for any elliptic operator. Physicists have several names for it, e.g. for the radiation of a black body it is called Rayleigh-Jeans law.

