PDL - Exercises 5

convergence questions, solving the 1- and 2-dimensional heat equations with various boundary conditions

Problem 28 Classical solutions of the wave equation
Consider the wave equation

$$
u_{t t}=u_{x x}, u(t, 0)=u(t, L)=0, u(0, x)=x^{k}(1-x)^{k}, u_{t}(0, x)=0 \quad(0<x<1, t \in \mathbb{R}, k \in \mathbb{N})
$$

For which values of k is the solution classical? Answer the question using first d'Alembert's solution and then the representation of the solution as a Fourier series. What happens if we replace the initial conditions by $u(0, x)=0, u_{t}(0, x)=x^{k}(1-x)^{k}$?

Problem 29 Various boundary conditions

a) Solve the nonhomogeneous boundary value problem for the heat equation

$$
u_{t}(t, x)=u_{x x}(t, x), \quad u(t, 0)=100, \quad u(t, 1)=100, \quad u(0, x)=50 x(1-x) \quad(0<x<1, t>0)
$$

Does the Fourier series converge for $t<0$?
b) Using the ideas behind the solution of the nonhomogeneous boundary value problem for the heat equation, solve the corresponding problem
$u_{t t}(t, x)=c^{2} u_{x x}(t, x), \quad u(t, 0)=A, \quad u(t, L)=B, \quad u(0, x)=f(x), \quad u_{t}(0, x)=g(x) \quad(0<x<L, t>0)$
for the wave equation.
Hint: You should replace the steady state solution from the case of the heat equation by $v(x)=\frac{B-A}{L} x+A$.
c) Use separation of variables and Fourier series to solve the heat equation with insulated ends,

$$
u_{t}(t, x)=u_{x x}(t, x), \quad u_{x}(t, 0)=u_{x}(t, L)=0, \quad u(0, x)=f(x) \quad(0<x<L, t>0)
$$

d) For the heat equation with a radiating end, we encountered generalized Fourier series $\sum_{n=1}^{\infty} c_{n} \sin \left(\mu_{n} x\right)$, where the μ_{n} are the positive solutions of $\tan (\mu L)=-\frac{\mu}{\kappa}$. For $m \neq n$, verify the orthogonality relation

$$
\int_{0}^{L} \sin \left(\mu_{m} x\right) \sin \left(\mu_{n} x\right) d x=\frac{1}{\mu_{n}^{2}-\mu_{m}^{2}}\left\{\mu_{m} \sin \left(\mu_{n} L\right) \cos \left(\mu_{m} L\right)-\mu_{n} \cos \left(\mu_{n} L\right) \sin \left(\mu_{m} L\right)\right\}=0 .
$$

Problem 30 2-dimensional heat equation

Find the Fourier series solution of the two-dimensional heat equation

$$
\begin{aligned}
& u_{t}(t, x, y)=u_{x x}(t, x, y)+u_{y y}(t, x, y), \quad u(t, x, 0)=u(t, x, 1)=u(t, 0, y)=u(t, 1, y)=0, \\
& u(0, x, y)=x(1-x) y(1-y) \quad(0<x, y<1, t>0) .
\end{aligned}
$$

