## PDL - Exercises 1

Recap of ordinary differential equations and elementary calculus

Problem 1 Browse through what you have learned in previous courses about ordinary differential equations. In particular, answer the following questions:
a) Let $p_{0}, \ldots, p_{n-1}, g$ be continuous functions on the interval $J \subset \mathbb{R}$. What does the general solution of the equation

$$
y^{(n)}+p_{n-1}(x) y^{(n-1)} \ldots+p_{1}(x) y^{\prime}+p_{0}(x) y=g(x) \quad(x \in J)
$$

look like? Given initial conditions $y(0)=y_{0}, \ldots, y^{(n-1)}(0)=y_{n-1}$, is there going to be a solution? How do you find all solutions if $p_{0}, \ldots, p_{n-1}$ are constant?
b) Let $p, g$ be continuous functions on the interval $J \subset \mathbb{R}$. Write down an explicit formula (up to integrals) for the general solution of the equation

$$
y^{\prime}+p(x) y=g(x) \quad(x \in J)
$$

Use this formula to solve the initial value problem $y^{\prime}+x y=x, y(0)=0$.

Problem 2 Find the general solution of the following ordinary differential equations:
a) $y^{\prime \prime}+2 y^{\prime}+y=0$,
b) $y^{\prime \prime}+y=0$.

For each of the equations, also determine the solution satisfying $y(0)=2, y^{\prime}(0)=-1$.

Problem 3 Find the general solution of the following ordinary differential equations:
a) $y^{\prime \prime}+2 y^{\prime}+y=e^{-x}$,
b) $y^{\prime \prime}+y=\sin (x)+\cos (x)$.

Problem 4 a) Solve the initial value problem

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+12 y=0 \quad(x \in \mathbb{R}), y(0)=0, y^{\prime}(0)=1
$$

b) Compute the first 10 terms in the Taylor expansion around $x=0$ of two linearly independent solutions to $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+12 y=0$.

Problem 5 (challenge)
Show that any solution to the ordinary differential equation $-2 y y^{\prime \prime}+y^{\prime}=-1$ satisfying $y(0)=1$, $y^{\prime}(0)=0$ is strictly monotonously increasing. If you know any existence theorem for nonlinear ordinary differential equations, argue that this particular problem admits a unique solution on an interval $[0, X)$ for some $X>0$. (Actually, there exists a unique solution on $[0, \infty)$.)

Problem 6 This exercise derives the general solution of the one-dimensional wave equation

$$
\partial_{t}^{2} u(t, x)-\partial_{x}^{2} u(t, x)=0 \quad(t, x \in \mathbb{R})
$$

with the help of a clever change of variables. The equation describes e.g. (approximately) the electric current $u(t, x)$ flowing through a point $x$ at time $t$ in a very thin, ideal wire or a water wave with watersurface described by $u(t, x)$ in a narrow and deep canal.
All functions in this exercise are assumed to be twice differentiable.
a) Show that $L(t, x):=(t+x, t-x)$ defines an invertible linear transformation $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and that $L$ and $L^{-1}$ are infinitely often differentiable (linear algebra!).
b) Given $u: \mathbb{R}^{2} \rightarrow \mathbb{R}$, find $H: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $u(t, x)=H(L(t, x))$.
c) For this $H$, verify that

$$
\partial_{t}^{2} u(t, x)-\partial_{x}^{2} u(t, x)=\left.C\left(\partial_{w} \partial_{z} H(w, z)\right)\right|_{(w, z)=L(t, x)}
$$

for some $C \neq 0$ (chain rule!).
d) Find the general solution of $\partial_{w} \partial_{z} H(w, z)=0$ (elementary calculus!).
e) Conclude that the general solution of $\partial_{t}^{2} u(t, x)-\partial_{x}^{2} u(t, x)=0$ is given by $u(t, x)=g(t+x)+h(t-x)$, $g, h: \mathbb{R} \rightarrow \mathbb{R}$.
f) Given $f: \mathbb{R} \rightarrow \mathbb{R}$, find a solution of the initial value problem

$$
\partial_{t}^{2} u(t, x)-\partial_{x}^{2} u(t, x)=0 \quad(t, x \in \mathbb{R}), u(0, x)=f(x), \partial_{t} u(0, x)=0 \quad(x \in \mathbb{R})
$$

Interpret the result!

