PDL - Exercises 1

Recap of ordinary differential equations and elementary calculus

Problem 1 Browse through what you have learned in previous courses about ordinary differential equations. In particular, answer the following questions:

a) Let p_0, \ldots, p_{n-1}, g be continuous functions on the interval $J \subset \mathbb{R}$. What does the general solution of the equation

$$y^{(n)} + p_{n-1}(x)y^{(n-1)}\dots + p_1(x)y' + p_0(x)y = g(x)$$
 $(x \in J)$

look like? Given initial conditions $y(0) = y_0, \ldots, y^{(n-1)}(0) = y_{n-1}$, is there going to be a solution? How do you find all solutions if p_0, \ldots, p_{n-1} are constant?

b) Let p, g be continuous functions on the interval $J \subset \mathbb{R}$. Write down an explicit formula (up to integrals) for the general solution of the equation

$$y' + p(x)y = g(x) \qquad (x \in J).$$

Use this formula to solve the initial value problem y' + xy = x, y(0) = 0.

Problem 2 Find the general solution of the following ordinary differential equations:

a) y'' + 2y' + y = 0, b) y'' + y = 0.

For each of the equations, also determine the solution satisfying y(0) = 2, y'(0) = -1.

Problem 3 Find the general solution of the following ordinary differential equations:

a) $y'' + 2y' + y = e^{-x}$, b) $y'' + y = \sin(x) + \cos(x)$.

Problem 4 a) Solve the initial value problem

$$(1-x^2)y'' - 2xy' + 12y = 0$$
 $(x \in \mathbb{R}), \ y(0) = 0, \ y'(0) = 1$

b) Compute the first 10 terms in the Taylor expansion around x = 0 of two linearly independent solutions to $(1 - x^2)y'' - 2xy' + 12y = 0$.

Problem 5 (challenge)

Show that any solution to the ordinary differential equation -2yy'' + y' = -1 satisfying y(0) = 1, y'(0) = 0 is strictly monotonously increasing. If you know any existence theorem for nonlinear ordinary differential equations, argue that this particular problem admits a unique solution on an interval [0, X) for some X > 0. (Actually, there exists a unique solution on $[0, \infty)$.)

Problem 6 This exercise derives the general solution of the one-dimensional wave equation

$$\partial_t^2 u(t,x) - \partial_x^2 u(t,x) = 0 \qquad (t,x \in \mathbb{R})$$

with the help of a clever change of variables. The equation describes e.g. (approximately) the electric current u(t, x) flowing through a point x at time t in a very thin, ideal wire or a water wave with watersurface described by u(t, x) in a narrow and deep canal. All functions in this exercise are assumed to be twice differentiable.

a) Show that L(t,x) := (t+x,t-x) defines an invertible linear transformation $L: \mathbb{R}^2 \to \mathbb{R}^2$ and that L and L^{-1} are infinitely often differentiable (linear algebra!).

b) Given $u: \mathbb{R}^2 \to \mathbb{R}$, find $H: \mathbb{R}^2 \to \mathbb{R}$ such that u(t, x) = H(L(t, x)).

c) For this H, verify that

$$\partial_t^2 u(t,x) - \partial_x^2 u(t,x) = C \ (\partial_w \partial_z H(w,z))|_{(w,z)=L(t,x)}$$

for some $C \neq 0$ (chain rule!).

d) Find the general solution of $\partial_w \partial_z H(w, z) = 0$ (elementary calculus!).

e) Conclude that the general solution of $\partial_t^2 u(t,x) - \partial_x^2 u(t,x) = 0$ is given by u(t,x) = g(t+x) + h(t-x), $g,h:\mathbb{R}\to\mathbb{R}.$

f) Given $f : \mathbb{R} \to \mathbb{R}$, find a solution of the initial value problem

 $\partial_t^2 u(t,x) - \partial_x^2 u(t,x) = 0 \quad (t,x \in \mathbb{R}), \ u(0,x) = f(x), \ \partial_t u(0,x) = 0 \quad (x \in \mathbb{R}).$

Interpret the result!