PDL - Assignment 3

to be handed in by October 22, 2010, noon

Please note that the final exam is going to be on Wednesday, November 3, 2010, 10 - 12 am in A110.

Problem A 11 The Laplace operator on a rectangle a) Solve $u_{xx} + u_{yy} = 0$, $u(x,0) = \sin(13\pi x)$, u(x,1) = u(0,y) = u(1,y) = 0 $((x,y) \in (0,1) \times (0,1))$.

b) Use eigenfunction expansions to solve

$$u_{xx} + u_{yy} = 3u - 1$$
, $u(x, 0) = u(x, 1) = u(0, y) = u(1, y) = 0$ $((x, y) \in (0, 1) \times (0, 1))$

Problem A 12 Wave equation in a ball

Let α_3 be the third positive zero of the Bessel function J_0 . Solve the wave equation $u_{tt} = u_{xx} + u_{yy}$ on the unit ball $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$ with boundary condition u(t, x, y) = 0 for $x^2 + y^2 = 1$ and initial conditions $u(0, x, y) = J_0(\alpha_3\sqrt{x^2 + y^2}) + 1 - x^2 - y^2$, $u_t(0, x, y) = 0$.

Hint: You may cite intermediate results from non-mandatory exercises or Asmar's book.

Problem A 13 Laplace equation in a ball I

Consider the Laplace equation $\Delta u = u_{xx} + u_{yy} = 0$ in the unit ball $B_1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$ with boundary condition u(x, y) = f(x, y) for $x^2 + y^2 = 1$.

a) Find the Fourier series solution in the case f(x, y) = 100 for 0 < y < x and f(x, y) = 0 otherwise.

b) Does your solution in a) satisfy the boundary condition in all points? Does it converge uniformly in B_1 ? Show that for every c < 1 the series converges uniformly in $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < c\}$ and defines an infinitely often differentiable function there.

Hint: In the lecture we discussed similar questions on the rectangle for general boundary values.

Problem A 14 Laplace equation in a ball II

Consider again the Laplace equation $\Delta u = 0$ in the unit ball $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$ with boundary condition given in polar coordinates by $u(r, \theta) = f(\theta)$ for $r = \sqrt{x^2 + y^2} = 1$. Assume that f is continuous and piecewise smooth. You know from the lecture that in polar coordinates the solution has the Fourier series form

$$u(r,\theta) = a_0 + \sum_{n=1}^{\infty} r^n \left\{ a_n \cos(n\theta) + b_n \sin(n\theta) \right\} .$$

a) Substituting the definitions of a_n and b_n , show that $u(r,\theta) = \frac{1}{2\pi} \int_0^{2\pi} f(\phi) \left(1 + 2\sum_{n=1}^{\infty} r^n \cos(n(\phi - \theta))\right) d\phi$.

b) Prove $1 + 2\sum_{n=1}^{\infty} r^n \cos(n(\phi - \theta)) = \frac{1 - r^2}{1 + r^2 - 2r \cos(\phi - \theta)}$ to obtain *Poisson's integral formula*

$$u(r,\theta) = \frac{1}{2\pi} \int_0^{2\pi} f(\phi) \, \frac{1-r^2}{1+r^2 - 2r\cos(\phi-\theta)} \, d\phi \, .$$

Hint: $\sum_{n=1}^{\infty} r^n \cos(n\alpha) = -1 + \text{Re } \sum_{n=0}^{\infty} (re^{i\alpha})^n = -1 + \text{Re } \frac{1}{1 - re^{i\alpha}}$, the real part of a geometric series!

Problem A 15 More on the Laplace equation

a) Let $f : \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$, n > 2, be a solution to the Laplace equation $\Delta u = \sum_{i=1}^n \partial_{x_i}^2 u = 0$ on $\mathbb{R}^n \setminus \{0\}$ which only depends on the radial variable $r = \sqrt{x_1^2 + \dots + x_n^2} : u(x_1, \dots, x_n) = \Phi(\sqrt{x_1^2 + \dots + x_n^2})$. Verify that $\Phi(r) = ar^{2-n} + b$ for some $a, b \in \mathbb{R}$.

Hint: Exercise 34b). Euler's differential equation was also solved in class, or see Asmar, Appendix A.3.

b) Solve the Laplace equation $\Delta u = 0$ in the quadrant $\{(x, y) \in (0, \infty)^2 : x^2 + y^2 < 1\}$ subject to homogeneous Dirichlet boundary conditions on the subsets of the boundary where x = 0 or y = 0 and Dirichlet boundary condition u(x, y) = 2xy on the boundary part where $x^2 + y^2 = 1$.

Hint: Introduce polar coordinates! Simplify 2xy. Can you even guess the (simple) solution?