PDL - Assignment 3

to be handed in by October 22, 2010, noon
Please note that the final exam is going to be on Wednesday, November 3, 2010, 10 - 12 am in A110.
Problem A 11 The Laplace operator on a rectangle
a) Solve $u_{x x}+u_{y y}=0, \quad u(x, 0)=\sin (13 \pi x), u(x, 1)=u(0, y)=u(1, y)=0 \quad((x, y) \in(0,1) \times(0,1))$.
b) Use eigenfunction expansions to solve

$$
u_{x x}+u_{y y}=3 u-1, \quad u(x, 0)=u(x, 1)=u(0, y)=u(1, y)=0 \quad((x, y) \in(0,1) \times(0,1)) .
$$

Problem A 12 Wave equation in a ball

Let α_{3} be the third positive zero of the Bessel function J_{0}. Solve the wave equation $u_{t t}=u_{x x}+u_{y y}$ on the unit ball $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<1\right\}$ with boundary condition $u(t, x, y)=0$ for $x^{2}+y^{2}=1$ and initial conditions $u(0, x, y)=J_{0}\left(\alpha_{3} \sqrt{x^{2}+y^{2}}\right)+1-x^{2}-y^{2}, u_{t}(0, x, y)=0$.

Hint: You may cite intermediate results from non-mandatory exercises or Asmar's book.

Problem A 13 Laplace equation in a ball I

Consider the Laplace equation $\Delta u=u_{x x}+u_{y y}=0$ in the unit ball $B_{1}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<1\right\}$ with boundary condition $u(x, y)=f(x, y)$ for $x^{2}+y^{2}=1$.
a) Find the Fourier series solution in the case $f(x, y)=100$ for $0<y<x$ and $f(x, y)=0$ otherwise.
b) Does your solution in a) satisfy the boundary condition in all points? Does it converge uniformly in B_{1} ? Show that for every $c<1$ the series converges uniformly in $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<c\right\}$ and defines an infinitely often differentiable function there.

Hint: In the lecture we discussed similar questions on the rectangle for general boundary values.

Problem A 14 Laplace equation in a ball II

Consider again the Laplace equation $\Delta u=0$ in the unit ball $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<1\right\}$ with boundary condition given in polar coordinates by $u(r, \theta)=f(\theta)$ for $r=\sqrt{x^{2}+y^{2}}=1$. Assume that f is continuous and piecewise smooth. You know from the lecture that in polar coordinates the solution has the Fourier series form

$$
u(r, \theta)=a_{0}+\sum_{n=1}^{\infty} r^{n}\left\{a_{n} \cos (n \theta)+b_{n} \sin (n \theta)\right\}
$$

a) Substituting the definitions of a_{n} and b_{n}, show that $u(r, \theta)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\phi)\left(1+2 \sum_{n=1}^{\infty} r^{n} \cos (n(\phi-\theta))\right) d \phi$.
b) Prove $1+2 \sum_{n=1}^{\infty} r^{n} \cos (n(\phi-\theta))=\frac{1-r^{2}}{1+r^{2}-2 r \cos (\phi-\theta)}$ to obtain Poisson's integral formula

$$
u(r, \theta)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\phi) \frac{1-r^{2}}{1+r^{2}-2 r \cos (\phi-\theta)} d \phi
$$

Hint: $\sum_{n=1}^{\infty} r^{n} \cos (n \alpha)=-1+\operatorname{Re} \sum_{n=0}^{\infty}\left(r e^{i \alpha}\right)^{n}=-1+\operatorname{Re} \frac{1}{1-r e^{i \alpha}}$, the real part of a geometric series!

Problem A 15 More on the Laplace equation
a) Let $f: \mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{R}, n>2$, be a solution to the Laplace equation $\Delta u=\sum_{i=1}^{n} \partial_{x_{i}}^{2} u=0$ on $\mathbb{R}^{n} \backslash\{0\}$ which only depends on the radial variable $r=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}: u\left(x_{1}, \ldots, x_{n}\right)=\Phi\left(\sqrt{x_{1}^{2}+\cdots x_{n}^{2}}\right)$. Verify that $\Phi(r)=a r^{2-n}+b$ for some $a, b \in \mathbb{R}$.

Hint: Exercise 34b). Euler's differential equation was also solved in class, or see Asmar, Appendix A.3.
b) Solve the Laplace equation $\Delta u=0$ in the quadrant $\left\{(x, y) \in(0, \infty)^{2}: x^{2}+y^{2}<1\right\}$ subject to homogeneous Dirichlet boundary conditions on the subsets of the boundary where $x=0$ or $y=0$ and Dirichlet boundary condition $u(x, y)=2 x y$ on the boundary part where $x^{2}+y^{2}=1$.

Hint: Introduce polar coordinates! Simplify $2 x y$. Can you even guess the (simple) solution?

