## PDL - Assignment 2

to be handed in by October 8, 2010, noon

Problem A 6 Solving the wave equation
Consider the wave equation $u_{t t}=u_{x x}, t>0, x \in(0,1)$, with homogeneous boundary conditions $u(t, 0)=u(t, 1)=0$ for $t>0$ subject to the initial condition $u(0, x)=2 x$ for $0<x \leq \frac{1}{2}$ and $u(0, x)=2(1-x)$ for $\frac{1}{2}<x<1, u_{t}(0, x)=0$ for $x \in(0,1)$.
a) Solve the equation in two ways, using first Fourier series and then d'Alembert's solution.
b) Does your solution really satisfy the wave equation for all $(t, x) \in \mathbb{R} \times(0, L)$ ?
c) Find the characteristic lines of the equation in $(t, x)$-space. What is the interval of dependence of the point $\left(t_{0}, x_{0}\right)=(0.2,0.5)$ ? For which $(t, x)$ can you use intervals of dependence to compute the solution in terms of the initial conditions alone? I.e. determine all $(t, x)$ such that $u(t, x)$ does not depend on the imposed boundary conditions.

Problem A $7 \quad$ Periodic solutions for the wave equation
Use d'Alembert's solution for the wave equation

$$
u_{t t}=c^{2} u_{x x}, u(t, 0)=u(t, L)=0, u(0, x)=f(x), u_{t}(0, x)=0 \quad(0<x<L, t \in \mathbb{R})
$$

to show that $u$ is $\frac{2 L}{c}$-periodic.

## Problem A 8 Energy in the heat equation

The energy at time $t$ of a solution to the heat equation

$$
u_{t}(t, x)=u_{x x}(t, x), \quad u(t, 0)=u(t, L)=0, \quad u(0, x)=f(x) \quad(0<x<L, t>0)
$$

is defined as $E(t)=\frac{1}{2} \int_{0}^{L} u^{2}(t, x) d x$.
a) Show that $\int_{0}^{L} \int_{0}^{t} \partial_{s}\left\{\frac{1}{2} u^{2}(s, x)\right\} d s d x=-\int_{0}^{L} \int_{0}^{t}\left(\partial_{x} u(s, x)\right)^{2} d s d x$.
b) Deduce $E(t) \leq E(0)$ for all $t \geq 0$.

## Problem A 9 Solving the heat equation

a) Find the Fourier series solution to the heat equation

$$
u_{t}(t, x)=u_{x x}(t, x), \quad u(t, 0)=u(t, 1)=0, \quad u(0, x)=x(1-x) \quad(0<x<1, t>0)
$$

b) Discuss the convergence of the Fourier series solution obtained in a). Does it also converge for $t<0$ ?
c) Use your solution from a) to solve the nonhomogeneous boundary value problem $u_{t}(t, x)=u_{x x}(t, x), \quad u(t, 0)=1, \quad u(t, 1)=0, \quad u(0, x)=(x+1)(1-x) \quad(0<x<1, t>0)$.

Problem A 10 2-dimensional heat equation
Find the Fourier series of the solution to the two-dimensional heat equation

$$
\begin{aligned}
& u_{t}(t, x, y)=u_{x x}(t, x, y)+u_{y y}(t, x, y), \quad u(t, x, 0)=u(t, x, 1)=u(t, 0, y)=u(t, 1, y)=0, \\
& u(0, x, y)=\sin (\pi x) \sin (\pi y) \quad(0<x, y<1, t>0)
\end{aligned}
$$

