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We here supply the explanations in [A04] (short for Nakhlé Asmar: “Partial Differen-
tial Equations, with Fourier Series and Boundary Conditions”, 2004) with some further
information.

1. Convergence of Fourier Series and applications

1.1 Convergence questions for the one-dimensional wave equation.

The most important classes of functions considered in Chapter 2 are the periodic func-
tions that are piecewise C1 ([A04] says “piecewise smooth”), and those that are piecewise
C1 and continuous. We recall that a function f on an interval [a, b] is piecewise C1 when
there are points t0 = a < t1 < t2 < · · · < tm < tm+1 = b such that f is C1 on each of the
open intervals ]ti, ti+1[ , with f and f ′ having limits at the endpoints.

Let us introduce the abbreviation PC1C for “piecewise C1 and continuous”.
Recall from [A04, Sections 2.2–3] that when f : R → R has period 2L and is piecewise

continuous, then it has a Fourier series

(1.1) a0 +
∞
∑

n=1

(

an cos(
nπ

L
x) + bn sin(

nπ

L
x)

)

,

where the coefficients are determined from f by:

(1.2)

a0 =
1

2L

∫ L

−L

f(x) dx,

an =
1

L

∫ L

−L

f(x) cos(
nπ

L
x) dx for n ≥ 1,

bn =
1

L

∫ L

−L

f(x) sin(
nπ

L
x) dx for n ≥ 1.

(It is sufficient for this that f2 is integrable on [−L, L], but the book is not very explicit
on this point.)

One can show (see Section 2.8):

Theorem 1.1. If f : R → R has period 2L and is piecewise C1, then its Fourier series
(1.1) converges pointwise, in the sense that for each x ∈ R, the partial sum sN (x) =

a0 +
∑N

n=1

(

an cos(nπ
L x) + bn sin(nπ

L x)
)

converges as follows for N → ∞:

(1.3) sN (x) →
{

f(x), when f is continuous at x,
1
2
(f(x+) + f(x−)), when f has a jump at x.

A better convergence property holds when f is more regular:
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2 PARTIAL DIFFERENTIAL EQUATIONS

Theorem 1.2. Let f : R → R have period 2L and be PC1C. Then the Fourier coefficients
an(f), bn(f) of f , and the Fourier coefficients an(f ′), bn(f ′) of f ′, are related by:

(1.4)
an(f ′) =

nπ

L
bn(f) for n ≥ 1, a0(f

′) = 0,

bn(f ′) = −nπ

L
an(f) for n ≥ 1.

Moreover,

(1.5)
∞
∑

n=1

(|an| + |bn|) < ∞,

and the Fourier series of f converges uniformly (and absolutely) to f .

Proof. (This is taken from the proof of Theorem 2.9.3.) In this case, we see by integration
by parts:

(1.5)

an(f ′) =
1

L

∫ L

−L

f ′(x) cos(
nπ

L
x) dx =

1

L

m
∑

i=0

∫ ti+1

ti

f ′(x) cos(
nπ

L
x) dx

=
1

L

m
∑

i=0

(

∫ ti+1

ti

f(x)
nπ

L
sin(

nπ

L
x) dx +

[

f(x) cos(
nπ

L
x)

]ti+1

ti

)

=
1

L

∫ L

−L

f(x)
nπ

L
sin(

nπ

L
x) dx =

nπ

L
bn(f).

We used in the calculation that the values of f(x) cos(nπ
L

x) at the points ti (where f ′

may have jumps) cancel out in the summation, since f(x) cos(nπ
L x) is continuous and has

period 2L. The proof that bn(f ′) = −nπ
L an(f) is similar.

Bessel’s inequality (Section 2.5) holds for f ′, so

(1.6)

∞
∑

n=1

(|an(f ′)|2 + |bn(f ′)|2) < ∞.

Using (1.4) and the inequality (for real or complex numbers)

(1.7) |AB| ≤ 1
2
(|A|2 + |B|2),

which holds since (|A| − |B|)2 ≥ 0, we find that for all N ,

(1.8)

N
∑

n=1

(|an(f)| + |bn(f)|) =
L

π

N
∑

n=1

1

n
(|bn(f ′)| + |an(f ′)|)

≤ L

2π

N
∑

n=1

(
1

n2
+ |bn(f ′)|2) +

L

2π

N
∑

n=1

(
1

n2
+ |an(f ′)|2)

≤ L

π

∞
∑

n=1

1

n2
+

L

2π

∞
∑

n=1

(|an(f ′)|2 + |bn(f ′)|2) < ∞,
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(convergent series); this implies (1.5).
Then by Weierstrass’ M-test, the Fourier series converges uniformly (and also absolutely,

which means that the convergence holds for the series with the terms replaced by their
absolute values). �

The information in (1.5) is useful more generally in discussions of convergence, when
the separation of variables method is used.

Consider the boxed statement on page 119 in [A04] on the series solution to the wave
equation with initial- and boundary conditions (1), (2), (3). For its full validity, several
aspects must be discussed, such as:

(a) Under what hypotheses does the series (8) converge to a function u(x, t)?
(b) Under what hypotheses can u(x, t) be checked to solve the wave equation (1)?
(c) Is the solution of (1), (2), (3) unique?

We shall not worry here about the uniqueness question, since it is more easily answered
(positively) by other methods. But the first two questions are certainly important.

Take first the case where g = 0, so that all b∗n are zero, and we are considering the
expansion

(1.9) u(x, t) =
∞
∑

n=1

bn sin(
nπ

L
x) cos(

nπc

L
t).

Since | sin(nπ
L x) cos(nπc

L t)| ≤ 1 for all (x, t), the series (1.9) converges uniformly in (x, t) if

(1.10)
∞
∑

n=1

|bn| < ∞.

Here the bn are the coefficients in the sinus-expansion of f(x). Recall from Section 2.4 how
it is constructed: We take the odd extension of f to the interval [−L, L], and extend this
to a function on R with period 2L; let us denote the resulting function f∗. Then the sinus
coefficients of f are precisely the Fourier coefficients of f∗ (whose cosine terms vanish).

Now we can use Theorem 1.2 if f∗ is PC1C. This holds precisely when f is PC1C on
[0, L] with

(1.11) f(0) = 0, f(L) = 0.

In that case, Theorem 1.2 assures that (1.10) holds, so (1.9) converges uniformly (in (x, t))
to a continuous function u(x, t). Moreover, the value of u for t = 0 is f(x) when x ∈ [0, L].

When we want to check the initial condition ut(x, 0) = 0, or the wave equation for u, we
meet new difficulties: Can we perform differentiations by moving them past the summation
sign (so that we can use that the individual terms do satisfy the equations)?

The most demanding question here is whether we can apply second derivatives in x
and t. Recall from the theory of sequences of functions that when hn(x) is a sequence of
C1-functions such that hn(x) → h(x) and h′

n(x) → k′(x) uniformly for n → ∞, then h(x)
is C1 with h′(x) = k(x). For a series of C1 functions this means that if both the series
and its termwise differentiated series converge uniformly, then the sum of the termwise
differentiated series equals the derivative of the function. (In other words: then “termwise
differentiation is allowed”.)
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Termwise application of differentiations to (1.9) gives the series:

(1.12)

∂

∂t
: −

∞
∑

n=1

bn
nπc

L
sin(

nπ

L
x) sin(

nπc

L
t),

∂2

∂t2
: −

∞
∑

n=1

bn

(nπc

L

)2
sin(

nπ

L
x) cos(

nπc

L
t),

∂

∂x
:

∞
∑

n=1

bn
nπ

L
cos(

nπ

L
x) cos(

nπc

L
t),

∂2

∂x2
: −

∞
∑

n=1

bn

(nπ

L

)2
sin(

nπ

L
x) cos(

nπc

L
t).

These series will all converge uniformly if

(1.13)
∞
∑

n=1

n2|bn| < ∞.

Then the wave equation can be verified to hold. We note that the mixed (x, t)-derivative
gives

∂2

∂x∂t
:

∞
∑

n=1

bnc
(nπ

L

)2
cos(

nπ

L
x) sin(

nπc

L
t),

which also converges uniformly when (1.13) holds, so in fact u(x, t) is then a C2-function.
So we just have to look for criteria on f that assure (1.13). Here (1.4) comes in useful

again. It shows that if f∗ is PC1C, then an(f∗′) = nπ
L bn(f∗), and if furthermore f∗′ is

PC1C, then

(1.14) bn(f∗′′) = −nπ

L
an(f∗′) = −(

nπ

L
)2bn(f∗).

Thus

(1.15)
N

∑

n=1

n2|bn(f∗)| =
L2

π2

N
∑

n=1

|bn(f∗′′)|,

so (1.13) is assured if (1.10) holds for f∗′′. This is true when f∗′′ is PC1C, by Theorem
1.2.

To sum up, we get (1.13) when f∗, f∗′ and f∗′′ are PC1C (in other words when f∗ is
C2 with a piecewise continuous f∗′′′). For f itself this holds when f , f ′ and f ′′ are PC1C
on [0, L] with

(1.16) f(0) = f(L) = f ′′(0) = f ′′(L) = 0.

There is no extra condition on f ′ at the endpoints, since f∗′ is even (as the derivative of
an odd function), hence continuous across 0 and L.
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We must also consider the case where f = 0 and g is nonzero in the problem (1), (2),
(3). (The solution for general f and g is found as the sum of the solutions for the cases
with {f, 0} and {0, g}.) Here

(1.17) u(x, t) =
∞
∑

n=1

b∗n sin(
nπ

L
x) sin(

nπc

L
t),

and termwise applications of differentiations give

(1.18)

∂

∂t
:

∞
∑

n=1

b∗n
nπc

L
sin(

nπ

L
x) cos(

nπc

L
t),

∂2

∂t2
: −

∞
∑

n=1

b∗n
(nπc

L

)2
sin(

nπ

L
x) sin(

nπc

L
t),

∂

∂x
:

∞
∑

n=1

b∗n
nπ

L
cos(

nπ

L
x) sin(

nπc

L
t),

∂2

∂x2
: −

∞
∑

n=1

b∗n
(nπ

L

)2
sin(

nπ

L
x) sin(

nπc

L
t)

∂2

∂x∂t
:

∞
∑

n=1

b∗nc
(nπ

L

)2
cos(

nπ

L
x) cos(

nπc

L
t).

These series will all converge uniformly if

(1.19)

∞
∑

n=1

n2|b∗n| < ∞.

Note here that the n’th sinus coefficient of g is λnb∗n = nπc
L b∗n. So when g∗ is PC1C, we

already have that
∑∞

n=1 n|b∗n| < ∞, by Theorem 1.2. We just need also g∗′ to be PC1C to
get (1.19). The conditions on g are then: g and g′ are PC1C on [0, L] with

(1.20) g(0) = g(L) = 0.

The findings are summed up in a theorem:

Theorem 1.3. When f, f ′, f ′′ are PC1C on [0, L] satisfying (1.16), and g, g′ are PC1C
on [0, L] satisfying (1.20), then u(x, t) in (8) is C2 and solves (1), (2), (3).

Such a solution is called a “classical solution”; it verifies the given differential equation
and boundary conditions, applied in the original sense of taking derivatives.

Note that the book [A04] goes on to discuss some examples, which do not satisfy the
conditions in Theorem 1.3! The function f in Example 1 of Section 3.3 is only PC1C, its
first derivative has a jump at x = 1

3 and its second derivative does not have a meaning
there. Also when d’Alembert’s method is applied to this f (Example 2 in Section 3.4),
there is something that is not in order, since it is not two times differentiable (so the
calculations on page 127 are not justified at all points).
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There exists a deeper and more refined theory of differentiation called Distribution
Theory, where the operations can be given a rigorous meaning. It is far beyond our means
at this level (but the interested reader can watch out for later possibilities to learn about
it). The book [A04] has some introductory remarks on it in Section 7.8.

For the moment, we can use the words “generalized solution” to describe functions that
come out of our methods but cannot be completely verified to satisfy the desired equations
and conditions.

The solution formulas of d’Alembert (Section 3.4) make it possible to discuss some
generalized solutions in a more satisfactory way.

Again, when we use the formulas for a given pair of initial values f and g, we must
assume some smoothness of the odd periodic extensions f∗ and g∗ in order to verify that
the differential equation is satisfied, see p. 127. The calculations there are only fully
meaningful when f∗ is two times differentiable and g∗ is differentiable.

But d’Alembert’s method has the advantage that we can see much more clearly what
goes wrong when f∗′′ or g∗′ does not exist.

Consider again the problem with the triangular function f (and g = 0) in Examples
3.3.1 and 3.4.2. The odd 2-periodic extension f∗ is linear, hence C∞, except at the points
2k± 1

3 , k ∈ Z, stemming from one point 1
3 in the original interval [0, 1]. We can follow the

effect in the solution

(1.21) u(x, t) = 1
2 (f∗(x + ct) + f∗(x − ct)),

by thinking of which points (x, t) are influenced by the point x = 1
3

in [0, 1] on the x-
axis. In the first region I (see Figure 4 of Section 3.4), these lie on the two characteristic
lines emanating from ( 1

3
, 0). Higher up in the figure, we reflect these characteristic line

in the vertical boundaries (this corresponds to fetching the information from the point
on the x-axis found by reflecting ( 1

3
, 0) around 0 or 1); still higher up we have reflected

the characteristic lines several times (which corresponds to fetching the information from
points on the x-axis of the form 2k ± 1

3 with more general k).

The fundamental observation is that outside these reflected characteristic lines, u(x, t)
is fine! It can be differentiated as much as we want, and satisfies the wave equation.

So the solution is only singular in a small set compared to where it is regular. At any
given level t = t0, there are at most two points in [0, 1] where differentiation fails.

This demonstrates an important property of the wave equation, the “propagation of
singularities” property: Singularities in the initial data are propagated only along the
characteristics. This is found also in higher dimensional wave equations, for example when
x runs in R

3. Let us just mention, without further explanation, that there is then a cone
in (x, t)-space attached to each (x, 0) (the “future cone” {(x, t) | |x| = ct}) such that a
singularity at x for t = 0, at a later time t = t0 gives singularities at the intersection of
the cone with the hyperplane t = t0 (and not elsewhere).

1.2 Convergence questions for the one-dimensional heat equation.

For the solution to the one-dimensional heat equation with initial- and boundary con-
ditions listed on page 138 in [A04], we can ask exactly the same convergence questions as
we did for the wave equation in the preceding section.



PARTIAL DIFFERENTIAL EQUATIONS 7

Since | sin nπ
L x)| ≤ 1 for all x and |e−λ2

nt| ≤ 1 for t ≥ 0, the series (4) describing u,

(1.22) u(x, t) =
∞
∑

n=1

bn sin(
nπ

L
x)e−λ2

nt,

converges uniformly in (x, t) ∈ [0, L]× [0,∞[ when the odd periodic extension f∗ is PC1C,
i.e. when f is PC1C on [0, L] satisfying (1.11). The initial- and boundary conditions are
then likewise satisfied. For the verification of the differential equation, we calculate the
termwise differentiated series:

(1.23)

∂

∂t
: −

∞
∑

n=1

bnλ2
n sin(

nπ

L
x)e−λ2

nt,

∂

∂x
:

∞
∑

n=1

bn
nπ

L
cos(

nπ

L
x)e−λ2

nt,

∂2

∂x2
: −

∞
∑

n=1

bn

(nπ

L

)2
sin(

nπ

L
x)e−λ2

nt,

where we recall that λn = nπc
L . They converge uniformly when (1.13) holds, so we see that

all conditions are verified by u(x, t) when f is as in Theorem 1.3.
However, the solutions of the heat equation have much more smoothness than the

solutions of the wave equation, as we shall now see. (This is to some extent demonstrated
in Example 3.5.1, but we shall prove the general result.)

Assume just that f is, say, piecewise continuous, so that the Fourier series satisfies the
Parseval identity (converges in the mean to f). The coefficients must then necessarily
satisfy

(1.24) an → 0, bn → 0, for n → ∞,

and in particular there is a constant C so that

(1.25) |an| ≤ C, |bn| ≤ C, for all n.

Now consider u(x, t) for x ∈ [0, L] and t ≥ ε, for some ε > 0. Since

(1.26) e−λ2
nt ≤ e−λ2

nε = e−C′n2

with C′ =
π2c2ε

L2
> 0,

the series in (1.23) will converge uniformly on Dε = {(x, t) | x ∈ [0, L], t ≥ ε} if

(1.27)

∞
∑

n=1

n2Ce−C′n2

< ∞,

and this holds since e−C′n2

goes very fast to zero; in fact, for any k,

(1.28) nke−C′n2 ≤ Ckn−2,
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for a suitable Ck. So u verifies the heat equation on Dε for any ε > 0, under just the
assumption that the sinus coefficients of f are bounded.

We can carry this still further:
Take any termwise (x, t)-derivative of the series for u:

(1.29)
∂j

∂tj
∂k

∂xk
: ±

∞
∑

n=1

bn(−λ2
n)j

(nπ

L

)k sin
cos

(
nπ

L
x)e−λ2

nt;

it converges uniformly on Dε, since

(1.30)

∞
∑

n=1

n2j+ke−C′n2

< ∞.

So in fact, u(x, t) is C∞ for t > 0, under quite weak assumptions on f !
Also the boundary conditions u(0, t) = 0, u(L, t) = 0, are verified for t > 0.
We have shown:

Theorem 1.4. The function u(x, t) in (1.22) is C∞ for (x, t) ∈ [0, L]× ]0,∞[ and satisfies
the heat quation and the boundary conditions there, when f is merely piecewise continuous.

Observe that there is a radical difference from the situation of the wave equation: For
the wave equation, singularities in the initial data were kept alive when t was increasing
(however in a controlled way). For the heat equation, singularities in the initial value are
killed immediately, as t becomes larger than 0.

Another difference is also worth pointing out: The series in (1.22) will very rarely be
convergent when t < 0, for then the powers in the exponential functions are positive and
the values grow very fast for n → ∞. Briefly speaking: The “backwards heat equation”
does not have good solvability properties! (If one does not worry about convergence, one
might not get this point.)

In contrast with this, we could easily take t < 0 in the wave equation; both the Fourier
series solution and d’Alembert’s solution can be discussed in the same way for t < 0 as for
t > 0. So the backwards wave equation has similar solvability properties as the forwards
wave equation.

1.3 Convergence questions for the Laplace equation on a rectangle.

For the Laplace equation on a rectangle D = [0, a]×[0, b] one poses a boundary condition
on all four sides. The variable t is called y here since it enters on equal terms with x. Note
that in contrast with heat and wave equations we pose a condition both at y = 0 and at
y = b. There is no extra factor c2.

The basic case to treat is where a function f2(x) is prescribed at y = b and the solution
is required to be 0 on the other edges. The resulting formula is (2) on page 165:

(1.31) u(x, y) =
∞
∑

n=1

Bn sin(
nπ

a
x) sinh(

nπ

a
y),

where the Bn are determined by

(1.32)

Bn =
1

sinh(nπ
a b)

2

a

∫ a

0

f(x) sin(
nπ

a
x) dx

=
1

sinh(nπ
a b)

bn;
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bn being the n’th sinus coefficient of f2.
For y = b,

(1.33) u(x, b) =

∞
∑

n=1

bn sin(
nπ

a
x) = f2(x),

converging as in Theorems 1.1 or 1.2 when f∗
2 (the odd 2a-periodic extension of f2) satisfies

the hypoteses there. We find moreover that if f2 is as f in Theorem 1.3 (with L = a), the
series (1.31) converges in C2 on D.

For y < b, we can do better, much like for the heat equation: Let y ∈ [0, b− ε] for some
ε > 0. Then we have the inequalities

(1.34)

0 ≤ sinh(nπ
a y)

sinh(nπ
a b)

=
e

nπ
a y − e−

nπ
a y

e
nπ
a b − e−

nπ
a b

= e
nπ
a (y−b) 1 − e−2 nπ

a y

1 − e−2 nπ
a b

≤ e−
nπ
a ε 1

1 − e−2 π
a b

,

0 ≤ cosh(nπ
a

y)

sinh(nπ
a b)

=
e

nπ
a y + e−

nπ
a y

e
nπ
a b − e−

nπ
a b

≤ e−
nπ
a ε 2

1 − e−2 π
a b

.

So, with C′ = πε
a and C′′ = 2

1−e−2πb/a , we have that

(1.35)
sinh(nπ

a y)

sinh(nπ
a

b)
and

cosh(nπ
a y)

sinh(nπ
a

b)
≤ C′′e−C′n for all n, when y ∈ [0, b − ε].

Then on Dε = [0, a] × [0, b − ε], the series for u has the majorizing series

∞
∑

n=1

|bn|C′′e−C′n,

which converges when merely the sequence of |bn| is bounded. Application of derivatives
∂j

∂xj
∂k

∂yk to (1.31) gives series

(1.36) ±
∑

(nπ

a

)j+k bn

sinh(nπ
a b)

sin
cos

(
nπ

a
x)

sinh
cosh

(
nπ

a
y)

where cos resp. cosh is used when j resp. k is odd. In view of (1.35) they have majorizing
series

(1.37) const.

∞
∑

n=1

nj+k|bn|e−C′n,

for (x, y) ∈ Dε, which are all convergent when |bn| is bounded. (This holds e.g. when f2 is
piecewise continuous.)

We conclude that the Fourier series solution converges, with all its derivatives, to a C∞

function for y ≤ b − ε, any ε, under very mild hypotheses on f2.
For the solution on page 168, where nonzero functions are given on all four edges, we

conclude that there is uniform convergence of all derivatives on compact subsets of the
interior D◦ = ]0, a[× ]0, b[ . We have hereby obtained:
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Theorem 1.5. The series in [A04, (9) p. 168] converges to a C∞-function u(x, y) on
]0, a[× ]0, b[ and satisfies the Laplace equation there, when f1, f2, g1 and g2 are merely
piecewise continuous (in fact, all the derived series converge uniformly on compact subsets
of ]0, a[× ]0, b[ ).

The series converges uniformly on [0, a] × [0, b] to a continuous function satisfying the
boundary conditions, when f1, f2, g1 and g2 are PC1C and are zero at the endpoints.

So when all the conditions in the theorem are satisfied, u is a classical solution (it is
customary to require verification of the differential equation only in the interior of the
domain). Uniform convergence on D can also be obtained when the functions on the
boundary are allowed to have other values in the corners, as long as they match to define a
continuous function on the boundary, since this case can be reduced to the case where the
corner values are zero by subtraction of a suitable function of the form c1+c2x+c3y+c4xy.

When the functions on the boundary are piecewise C1 and take the mean values at
the jumps, one can also view the solution as a classical solution (however with different
qualities of the convergence at the various points). When the functions on the boundary
are merely piecewise continuous, their value is assumed in a square mean sense on each
edge; this is better viewed as a generalized solution.

E1. Exercises

Exercise E1.1. Consider the function

hk(x) = xk(1 − x)k, x ∈ [0, 1],

where k is a positive integer.
For the boundary value problem for the wave equation [A04, 3.3.(1)–(3)] with L = 1,

c = 1 and initial data f = hk, g = 0, find out for which values of k the solution is seen to
be classical, when it is constructed by:

(1) the Fourier series method (separation of variables)?
(2) d’Alembert’s method?

Explain your argumentation.
Find the value of the solution at the point (x, t) = ( 1

2 , 1).

Exercise E1.2. Same questions as in Exercise E1.1, now with initial data f = 0, g = hk.

Exercise E1.3. Find the series solution of the boundary value problem for the heat
equation [A04, 3.5.(1)–(3)] with L = 1, f(x) = x(1 − x), and discuss its convergence.

Exercise E1.4. Show that any function c1+c2x+c3y+c4xy satisfies the Laplace equation
on R

2.

Exercise E1.5. Show that the Dirichlet problem in Figure 1 on page 164 in [A04] has a
classical solution, when

a = b = 1, f1(x) = x2, f2(x) = 1, g1(y) = y2, g2(y) = 1,

and find the solution.
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2. Fourier expansions in higher dimensions

2.1 Multiple Fourier series.

The theory of Fourier expansions extends readily to higher dimensions. Here the com-
plex formulation is advantageous, because it gives simpler formulas (allowing a better
overview than when multiple products of cosines and sines occur everywhere).

Before presenting this, let us underline the fact that is put forward in [A04, Section
2.5], that any 2p-periodic function f that is square integrable on the interval [−p, p] can be
expanded in a Fourier series, with coefficients determined by the Euler formulas on page
39. Moreover, the Bessel inequality and Parseval identity hold for f . Special cases are
piecewise continuous functions, or just bounded (measurable) functions. It can be seen
directly from the Euler formulas that the Fourier coefficients are bounded in n, but the
Bessel inequality gives a still better information, namely that an → 0 and bn → 0 for
n → ∞.

Now recall the complex formulation in one variable: It is based on the Euler identity,
for x ∈ R:

(2.1)
eix = cos x + i sin x, hence

cos x = 1
2
(eix + e−ix), sin x = 1

2i
(eix − e−ix).

In the Fourier series of a 2p-periodic function f(x),

(2.2) f(x) = a0 +
∞
∑

n=1

(

an cos(nπ
p

x) + bn sin(nπ
p

x)
)

,

we can insert the replacements

(2.3)
cos(nπ

p x) = 1
2 (ei nπ

p x + e−i nπ
p x),

sin(nπ
p

x) = 1
2i

(ei nπ
p x − e−i nπ

p x);

then

(2.4) sN (x) = a0 +

N
∑

n=1

(

an cos(nπ
p x) + bn sin(nπ

p x)
)

=

N
∑

m=−N

cmei mπ
p x,

with

(2.5) c0 = a0, cn = 1
2(an − ibn), c−n = 1

2 (an + ibn).

This justifies writing (2.2) as

(2.6) f(x) =

∞
∑

n=−∞
cnei nπ

p x.

One has that

(2.7) cn =
1

2p

∫ p

−p

f(x)e−i nπ
p x dx for all n ∈ Z,
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which holds also when complex-valued functions f(x) are allowed (still with x ∈ R). The
Parseval identity is:

(2.8)

∞
∑

n=−∞
|cn|2 =

1

2p

∫ p

−p

|f(x)|2 dx.

Theorem 1.2 says in the complex formulation that when f is PC1C with period 2p,
then:

(2.9)

(i) cn(f ′) = i
nπ

p
cn(f) for all n ∈ Z,

(ii)
∞
∑

n=−∞
|cn| < ∞,

and (iii) the Fourier series converges uniformly (and absolutely) to f .
It is not hard to extend the ideas to higher dimensions. For simplicity in the formulas

we now let p = π and leave to the reader to do the scaling when other lengths are needed.
On R

k with points denoted x = (x1, . . . , xk) we consider functions f(x) that have period
2π in each variable x1, . . . , xk. They are completely determined by their values on the cube
[−π, π]k. The elements of Z

k will be denoted n = (n1, . . . , nk), with length

(2.10) ‖n‖ =
√

n2
1 + · · · + n2

k .

The functions

(2.11) ein·x = ei(n1x1+...nkxk), n ∈ Z
k,

are 2π-periodic in each variable xj and satisfy

(2.12) (ein·x, eim·x) =

{

0 if n 6= m,

(2π)k if n = m,

when we use the scalar product (inner product)

(f, g) =

∫ π

−π

∫ π

−π

· · ·
∫ π

−π

f(x1, x2, . . . , xk)g(x1, x2, . . . , xk) dx1dx2 . . . dxk

=

∫

[−π,π]k
f(x)g(x) dx.

Indeed,

(ein·x, eim·x) =

∫ π

−π

ein1x1e−im1x1 dx1 · · ·
∫ π

−π

einkxke−imkxk dxk;

here if nj 6= mj for some j, the integral in xj gives a factor 0; on the other hand if nj = mj

for all j, each integral over [−π, π] contributes with a factor 2π.
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It is shown on the basis of the one-dimensional result that a square integrable function
f(x) on ]−π, π]k, extended to be 2π-periodic in each variable x1, . . . , xk, can be expanded
in a Fourier series

(2.13)

f(x) ∼
∑

n∈Zk

cnein·x, where

cn =
1

(2π)k

∫

[−π,π]k
f(x)e−in·x dx,

in such a way that the partial sum

(2.14) sN (x) =
∑

max{|n1|,...|nk|}≤N

cnein·x

converges in the mean to f(x), in the sense that

(2.15)

∫

[−π,π]k
|f(x) − sN (x)|2 dx → 0 for N → ∞.

Here the following Parseval identity holds:

(2.16)
∑

n∈Zk

|cn|2 =
1

(2π)k

∫

[−π,π]k
|f(x)|2 dx.

As a corollary to the Parseval identity we see that |cn| → 0 for ‖n‖ → ∞; this holds
under the mere assumption that f is square integrable on [−π, π]k. We give below some
information on uniform convergence.

For k = 2, the formulation with cosine and sine is found from the above by noting that

ei(n1x1+n2x2) = (cosn1x1 + i sin n1x1)(cos n2x2 + i sin n2x2).

For n1 and n2 ∈ N we can use this in the four terms

c(n1,n2)e
i(n1x1+n2x2) + c(n1,−n2)e

i(n1x1−n2x2)

+ c(−n1,n2)e
i(−n1x1+n2x2) + c(−n1,−n2)e

i(−n1x1−n2x2)

and regroup them as a linear combination of cosn1x1 cos n2x2, cos n1x1 sin n2x2,
sin n1x1 cos n2x2 and sinn1x1 sin n2x2. This is somewhat unmanageable, but it becomes
more manageable when we restrict the attention to functions that are odd in x1 as well as
x2; they only have sine terms

(2.17)
f(x) ∼

∑

n1,n2∈N

bn1,n2
sin n1x1 sinn2x2, with

bn1,n2
= −c(n1,n2) + c(n1,−n2) + c(n1,−n2) − c(−n1,−n2),

since, in the calculation of (2.13), a cosine factor cosnixi integrated together with f in the
xi-variable gives 0. Here

bn1,n2
=

4

π2

∫ π

0

∫ π

0

f(x1, x2) sin n1x1 sin n2x2 dx1dx2.

Note however that when one differentiates a sine series, cosine comes in again.
There is a general result:
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Theorem 2.1.

1◦ If f(x) is 2π-periodic in each coordinate, and C1, then for all n ∈ Z
k,

(2.18) cn
( ∂f

∂xj

)

= injcn(f), j = 1, . . . , k,

and the Parseval identity for the derivatives implies

(2.19)
∑

n∈Zk

‖n‖2|cn(f)|2 < ∞.

Moreover, if f is Cl for some l ≥ 1, then

(2.20)
∑

n∈Zk

‖n‖2l|cn(f)|2 < ∞.

2◦ For k = 2 or 3, if f(x) is 2π-periodic in each coordinate and Cl+2, then

(2.21)
∑

n∈Zk

‖n‖l|cn(f)| < ∞.

The estimate (2.21) implies that the Fourier series and it termwise differentiated series up
to order l are uniformly convergent.

Indications of proof. In 1◦, the identity in (2.18) is shown by integration by parts (in the

xj-variable) in the formula for cn( ∂f
∂xj

). Then the Parseval identity for ∂f
∂xj

implies the

convergence of the series
∑

n
|nj|2|cn(f)|2. When we sum over j we find (2.19). When f

is Cl, this can be applied for any succession of l partial derivatives, showing that
∑

n∈Zk

|p(n1, . . . , nk)|2|cn(f)|2 < ∞

for any polynomial p of degree l. Since ‖n‖2l is bounded by a sum of squares of such
polynomials, the result (2.20) follows.

For 2◦, note that it is here a question of series with |cn| in the first power only. One
can show that the series

∑

n∈Zk\{0} ‖n‖−4 is convergent for k = 2 and 3 (this is related to

the fact that
∫

|x|≥1
|x|−4 dx < ∞ in dimensions < 4; see also Exercise E2.3). Then we can

do a trick as in the proof of Theorem 1.2:
∑

‖n‖≤N

‖n‖l|cn| =
∑

0<‖n‖≤N

‖n‖−2‖n‖l+2|cn|

≤ 1
2

(

∑

0<‖n‖≤N

‖n‖−4 +
∑

0<‖n‖≤N

‖n‖2(l+2)|cn|2
)

≤ C,

for all N , where we for the last series use that (2.20) holds with l replaced by l + 2.
The estimate (2.21) implies uniform convergence of the termwise differentiated series

up to order l, since |ein·x| = 1, and

(2.22)
∂

∂xj
ein·x = inje

in·x,

so (2.21) (times a constant) is a majorizing series for all those termwise derived series. �
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Remark 2.2.

(a) There is a result along the lines of 2◦ also in higher dimensions. One can show

that for general k, the series
∑

n∈Zk\{0} ‖n‖−2k′

is convergent when 2k′ > k. Then when

the Fourier coefficients of f satisfy the estimate (2.20) with l replaced by l + k′, they will
satisfy (2.21), by a version of the above trick.

This is actually an example of Sobolev’s Theorem — prominent in the more advanced
theory — that says that functions with finite Sobolev norm of order l +k′, some k′ > k/2,
are in Cl (here the squareroot of (2.20) plays the role of the l’th Sobolev norm).

(b) In part 1◦ of Theorem 2.1, the formulas (2.18)–(2.19) can be shown under slightly
weaker assumptions. It suffices that f is continuous with square integrable first derivatives
defined in some reasonable sense. For example, if [−π, π]k is divided into a finite number of
polyedric subdomains, and the first derivatives of f are defined in each of these subdomains
and extend to continuous functions on their closures, then (2.18) and (2.19) hold. We can
call such derivatives piecewise continuous (although the notion could be defined also in
more general situations). Similarly, if f is Cl−1 and the l’th order derivatives are piecewise
continuous, then (2.20) holds.

In Theorem 2.1 2◦, it is then sufficient for (2.21) that f is Cl+1 with piecewise continuous
derivatives of order l + 2.

2.2 The wave equation with initial data on a rectangle.

Using Theorem 2.1, we can justify the solution formula for the two-dimensional wave
equation in [A04, Section 3.7] as follows (using the notation (x, y) for a point in R

2):

Theorem 2.3. 1◦ When f(x, y) is C2 and g(x, y) is C1 on M = [0, a]× [0, b], and f and
g are zero on the boundary ∂M = { (x, y) ∈ M | x = 0 or a, y = 0 or b }, then

(2.23)

∞
∑

m=1

∞
∑

n=1

(|Bmn| + |B∗
mn|) < ∞.

Then the series in (4) converges uniformly on M×[0,∞[ to a continuous function u(x, y, t)
satisfying the boundary condition u = 0 for (x, y) ∈ ∂M and the first initial condition u = f
for t = 0.

2◦ When furthermore f(x, y) is C4 and g(x, y) is C3 on M , and

(2.24)
∂2f

∂x2
,
∂2f

∂y2
,
∂2g

∂x2
and

∂2g

∂y2
are 0 on ∂M,

then

(2.25)
∞
∑

m=1

∞
∑

n=1

(m2 + n2)(|Bmn| + |B∗
mn|) < ∞,

and u(x, y, t) is C2 on M × [0,∞[ and satisfies the wave equation and the initial- and
boundary conditions.

Proof. When f and g satisfy the hypotheses in 1◦, they extend to functions f∗ resp. g∗ on
R

2 that are odd in x with period 2a, and odd in y with period 2b, such that the extended
functions are in C1 on R

2 and the second derivatives of f∗ are piecewise continuous. The
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Bmn are the coefficients in the sine expansion of f in two variables as in (2.17), so by
Theorem 2.1 2◦ with l = 0 and Remark 2.2(b), the series

∑

m,n |Bmn| is convergent. The
B∗

mn satisfy

(2.26) B∗
mn =

b∗mn

λmn
,

where the b∗mn are the coefficients in the sine expansion of g in two variables. By 1◦ of
Theorem 2.1,

(2.27)
∑

m,n∈N

(m2 + n2)|b∗mn|2 < ∞.

Since λmn = cπ
√

m2

a2 + n2

b2 clearly satisfies

(2.28) c1(m
2 + n2)

1
2 ≤ λmn ≤ c2(m

2 + n2)
1
2

with positive constants c1 and c2, we conclude from (2.26) and (2.27) that the series of
|B∗

mn|2 satisfies

(2.29)
∑

m,n∈N

(m2 + n2)2|B∗
mn|2 < ∞.

From this we deduce as in the proof of Theorem 2.1 2◦ that

(2.30)
∑

m,n∈N

|B∗
mn| < ∞.

This completes the proof of (2.23), which implies uniform convergence as stated.
When furthermore the hypotheses of 2◦ are satisfied, the extensions f∗ and g∗ are C3

on R
2 and the fourth derivatives of f∗ are piecewise continuous. It follows from Theorem

2.1 2◦ and Remark 2.2(b) that

(2.30)
∑

m,n

(m2 + n2)|Bmn| < ∞,
∑

m,n

(m2 + n2)
1
2 |b∗mn| < ∞.

Using again (2.26) and (2.28) we conclude that (2.25) holds. Then the termwise differen-
tiated series up to order 2 converge uniformly on M × [0,∞[ , since each differentiation in
x or in y essentially gives a factor n or m, and each differentiation in t gives a factor λmn.
Thus the differential equation and the remaining initial condition can be verified. �

The conditions on f and g in the theorem are sufficient conditions — one can weaken
them a little and still get solvability — but at least they give some firm ground for the
claim that the described procedure gives a solution of the problem posed. (For example,
in Theorem 2.3 2◦, one can allow the fourth-order derivatives of f and the third-order
derivatives of g to be piecewise continuous on M .)

In Example 3.7.1, h(x) = x(1 − x) extends to an odd, 2-periodic function h∗ whose
first derivative is a continuous triangular function, and the second derivative is piecewise
constant, having jumps at the period points 2n, n ∈ Z. Then the odd, 2-periodic extension
of f(x, y) is C1 with piecewise continuous (in fact piecewise constant) second derivatives.
Here Theorem 2.3 1◦ gives that the series for u(x, y, t) converges uniformly (which is also
clear from the formulas), but (2.24) is not satisfied, and the differential equation holds
only in a generalized sense. (In a more advanced theory one will find that the solution
is smooth in large areas, but that the irregularities in the initial value propagate along
characteristic cones when when t increases.)



PARTIAL DIFFERENTIAL EQUATIONS 17

2.3 The heat equation with initial data on a rectangle.

The solution formulas for the heat problem [A04, page 161] can be checked in a similar
way. Here we find, as for the one-dimensional heat equation, that the solution becomes
C∞ as soon as t becomes positive.

Theorem 2.4. 1◦ When f(x, y) is C2 on M = [0, a]× [0, b], and f is zero on the boundary
∂M , then

(2.31)
∑

m,n∈N

|Amn| < ∞,

and the series in (13) converges uniformly on M×[0,∞[ to a continuous function u(x, y, t)
satisfying the boundary condition u = 0 for (x, y) ∈ ∂M and the initial condition u = f
for t = 0.

2◦ Assume merely that f(x, y) is square integrable on M . Then the series in (13)
and all the termwise differentiated series of arbitrarily high order converge uniformly on
M × [ε,∞[ , for any ε > 0. In particular, the differential equation (11) and the boundary
condition (12) are verified for t > 0.

Proof. Part 1◦ is shown in the same way as in Theorem 2.3; the expansion coefficients of f
are now called Amn, and the hypotheses assure that the odd periodic extension of f is C1

with piecewise continuous second derivatives, so that (2.31) holds and defines a majorizing
series for (13).

For part 2◦, we observe that when t ≥ ε, then

(2.32) e−λ2
mnt ≤ e−λ2

mnε ≤ e−c2
1ε(m2+n2),

cf. (2.28). For any j, k, l ≥ 0, application of ∂j

∂xj
∂k

∂yk
∂l

∂tl termwise gives a series

(2.33) ±
∑

m,n∈N

Amn

(mπ

a

)j (nπ

b

)k
λ2l

mn
sin
cos

(
mπ

a
x)

sin
cos

(
nπ

b
y)e−λ2

mnt.

Since the |Amn| are bounded by a constant (cf. (2.16)ff.), this is majorized by a convergent
series

(2.34)
∑

m,n∈N

c′(m2 + n2)
1
2
j+ 1

2
k+le−c2

1ε(m2+n2) < ∞,

where the convergence follows e.g. since (m2 + n2)
1
2
j+ 1

2
k+le−c2

1ε(m2+n2) ≤ c′′(m2 + n2)−2.
Thus u is C∞ for t > 0. �

When f is merely square integrable, one can say that the initial condition is verified in
the sense that the series (13) for t = 0 converges in the mean to f on M .

2.4 The Poisson equation with zero boundary data.

For the solution of the Poisson equation on a rectangle put forward in [A04, Section
3.9], sufficient conditions for convergence can likewise be found from Theorem 2.1 ff. The
discussion goes rather similarly to that in Theorems 2.3–4:
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When the odd periodic extension f∗ of f is C1 with piecewise continuous second deriva-
tives, the sinus coefficients Amn of f satisfy (2.31). Then since Emn = −Amn/λmn, one
has that

(2.35)
∑

m,n∈N

(m2 + n2)|Emn| < ∞,

so the differential equation can be verified by termwise differentiation, and u(x, y) is indeed
a solution of the problem; it lies in C2(M).

The solution found in Example 3.9.1 is a generalized solution, and the calculations in
Example 3.9.2 are quite formal (the series for u does not satisfy our criteria for termwise
differentiation of order 2).

In more advanced treatments of the various differential equations, the theory of Sobolev
spaces provides a more satisfactory framework than the spaces of Cl-functions.

2.5 Convergence analysis for the Laplace equation on a disk.

Consider the series solution established in [A04, Section 4.4] for the Laplace equation
on a disk with radius a, with a prescribed boundary value f . We shall show that when f
is merely square integrable, the series and all termwise differentiated series converge uni-
formly on the disks with the same center and radius < a. For simplicity in the formulation,
let us take a = 1 and leave the scaling to the general case to the reader.

When f(θ) is square integrable on [0, 2π], its Fourier coefficients are bounded:

(2.36) |an| ≤ C, |bn| ≤ C, for all n.

Let ε ∈ ]0, 1[ . Then the series for u,

(2.37) u(r, θ) = a0 +
∑

n∈N

rn(an cos nθ + bn sin nθ)

has the majorizing series, when r ≤ 1 − ε:

(2.38)
∑

n≥0

C(1 − ε)n.

We can check termwise derivatives in r and θ, showing that each differentiation essentially
gives a factor n, so that the series after k differentiations is majorized by a series

(2.39)
∑

n≥0

C′(1 + n)k(1 − ε)n.

Why is this convergent? Apply for example the quotient criterion, or note that
(1 − ε)n = e−sn, where −s = ln(1 − ε) < 0; here since the exponential function wins
over any polynomial, (1 + n)ke−sn ≤ C′′(1 + n)−2 (as we have used before).

However, if we treat the (r, θ)-derivatives of u, we still have to worry about how the
information carries over to the (x, y)-derivatives (in the original coordinates), especially
how things fit together at r = 0. But there is another point of view that gives the (x, y)-
behavior directly:
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When the Fourier series of f is written in the complex form

(2.40) f(θ) =

∞
∑

m=−∞
cmeimθ,

we get the series for u in the complex form, that we can reformulate further:

(2.41)

u(r, θ) =
∑

m∈Z

r|m|cmeimθ

=
∑

m≥0

cm(reiθ)m +
∑

m′>0

c−m′(re−iθ)m′

=
∑

m≥0

cm(x + iy)m +
∑

m′>0

c−m′(x − iy)m′

,

with bounded coefficients. Here, when (x, y) lies in the disk with radius 1 − ε, x + iy
and x − iy both have absolute value ≤ 1 − ε. Termwise differentiations in x and y give
polynomials in m resp. m′ as factors. Then we can again use series of the type in (2.39)
as majorizing series, and find that all termwise derived series are uniformly convergent on
the smaller disk. Thus u is C∞ there and satisfies ∆u = 0.

E2. Exercises

Exercise E2.1. Consider the cosine-sine formulation of the Fourier expansion of a func-
tion f(x1, x2) that is 2π-periodic in each variable. You are asked to express the coefficients
of the functions cos n1x1 cos n2x2 and cos n1x1 sin n2x2 in terms of the coefficients cn in
the series in (2.13). What is the constant term?

Exercise E2.2. Answer Exercise 3.8.12 in [A04], with the additional point:
(d) Show that the differential equation is verified for z < c, when f(x, y) is square inte-
grable.

Exercise E2.3. In the following, we identify Z
2 with a subset of R

2, namely with the
points with integer coordinates (n1, n2).

(a) For each l ∈ N, show that there are 8l of these integer points (n1, n2) on the boundary
of the square [−l, l]× [−l, l], and that they satisfy

n2
1 + n2

2 ≥ l2.

(b) Show that there is a constant c such that

∑

|n1|≤l,|n2|≤l,(n1,n2)6=(0,0)

1

(n2
1 + n2

2)
2
≤

∑

1≤j≤l

c

l3

(c) Show that the series
∑

(n1,n2)∈Z2\{(0,0)}

1

(n2
1 + n2

2)
2

is convergent.
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3. Integral transforms

3.1 On Fourier transformation in one variable.

In modern treatments of the Fourier transform one often introduces a space of functions
where all rules work without problems, the Schwartz space S(R) (named after Laurent
Schwartz, who introduced it in his treatise on Distribution Theory):

(3.1) S(R) = { f ∈ C∞(R) | xjf (k)(x) is bounded for all j, k ≥ 0 }.

Note that when f ∈ S(R), then all the derived expressions xjf (k)(x) are in S(R). Moreover,
they are all integrable, since

∫ ∞

−∞
|f(x)| dx =

∫ ∞

−∞
(1 + x2)−1(1 + x2)|f(x)| dx ≤ C

∫ ∞

−∞
(1 + x2)−1 dx < ∞,

with C = max |(1+x2)f(x)|. So we can take the Fourier transform of any of these functions,

(3.2) f̂(ω) = 1√
2π

∫ ∞

−∞
f(x)e−ixω dx = F(f)(ω),

and this clearly results in a bounded function:

(3.3) |f̂(ω)| ≤ 1√
2π

∫ ∞

−∞
|f(x)e−ixω| dx = 1√

2π

∫ ∞

−∞
|f(x)| dx.

Let us denote

(3.4) 1√
2π

∫ ∞

−∞
f(x)e+ixω dx = F(f)(ω),

the conjugate Fourier transform. When applied to functions of ω, F , acts as an inverse
of the Fourier transform. Indeed, it is accounted for in [A04] that for piecewise C1 and
integrable functions f(x),

(3.5) lim
N→∞

1√
2π

∫ N

−N

f̂(ω)e+ixω dω = 1
2 (f(x+) + f(x−)).

This applies in particular when f ∈ S(R), giving back f(x).

We shal show that F maps S(R) into S(R), so that the mention of limN→∞
1√
2π

∫ N

−N

can be replaced by
∫ ∞
−∞ in (3.5). In fact, we shall see that F is a bijection from S(R) to

S(R) with inverse F−1 = F .
First, the rule that differentiation goes into multiplication by a polynomial,

(3.6) F(
dk

dxk
f) = (iω)kf̂(ω),

is shown as in [A04, Th. 7.2.2].
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Remark 3.1. Everywhere in the statement of Theorem 7.2.2, the words “piecewise smooth”
should be replaced by “piecewise smooth and continuous” (what we call PC1C). Otherwise
there can be contributions from jumps of f that do not cancel out in the integration by
parts in the proof, which is very similar to the proof of our Theorem 1.2. This error has
been confirmed by the author Nakhlé Asmar by email correspondence.

For f in our class S(R), (3.6) implies that ωkf̂(ω) is bounded for all k, cf. (3.3).
Secondly, the rule that multiplication by a polynomial is carried over to a differentiation,

(3.7) F(xjf(x)) = (i
d

dω
)j f̂(ω),

is easily shown for f ∈ S(R) by the proof of Th. 7.2.3, since passing d
dω through the

integration sign is indeed allowed for these functions. Thus, when f ∈ S(R), the Fourier

transform f̂ is infinitely differentiable and all derivatives are bounded. Finally, using the

two rules successively, we see that ωj dk

dωk f̂ is well-defined and bounded for all j, k, so

f̂ ∈ S(R).
Note that complex conjugation of (3.2) gives

(3.8) F(f) = F(f),

so since f ∈ S(R) implies f ∈ S(R), we see that also F maps S(R) into S(R).

Note moreover that Ff can be viewed as the Fourier transform of the reflected function
f(−x), or as the reflected version of the Fourier transform (whichever point of view one
needs):

(3.9) F(f(x))(ω) = F(f(−x))(ω) = F(f(x))(−ω);

this observation is elaborated in Exercise 7.2.10. Clearly, f(x) ∈ S(R) implies f(−x) ∈
S(R).

Theorem 3.2. F defines a bijection of S(R) onto itself, with inverse F−1 = F .

Proof. Since an element f of S(R) is C1 with f and f ′ integrable and with f̂ integrable,
(3.5) shows that F(Ff) = f . We also need the information that F(Ff) = f . It follows
for example by conjugation from

FFf = FFf = f.

Or, one can use (3.9). Then F and F act as each other’s inverses on S(R). �

Note that for any a > 0,

(3.10) e−ax2 ∈ S(R),

since differentiations of this function just lead to polynomials times e−ax2

, where the
exponential function “wins over” any polynomial for x → ±∞.
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Convolution is well-defined for Schwartz functions f and g, and since F(f ∗g) = f̂ · ĝ is a

Schwartz function (use the Leibniz rule for the product), we see that also f ∗ g = F−1(f̂ ĝ)
must be one.

There one more important rule for Fourier transforms, that is mentioned in [A04] in
Section 11.3 (page 590), the Parseval-Plancherel theorem:

(3.11)

∫ ∞

−∞
f(x)ḡ(x) dx =

∫ ∞

−∞
f̂(ω)¯̂g(ω) dω;

∫ ∞

−∞
|f(x)|2 dx =

∫ ∞

−∞
|f̂(ω)|2 dω.

The proof given there works very well for Schwartz functions. In fact, the formula can
be used to extend the Fourier transform and its inverse to square integrable functions
by approximation in square mean by Schwartz functions, and here (3.11) remains valid.
Because of this rule, the square integrable functions — and certain derived concepts, e.g.
Sobolev spaces — play an important role in the applications of Fourier transforms to PDE.

Remark 3.3. The book [A04] gives some basic ingredients of distribution theory in Sec-
tion 7.8 with applications in Sections 7.9–7.10. Much of this is instructive and consistent
with the advanced theory that would be needed for a rigorous deduction. Just one word
of warning: One cannot just divide by ω as in the argumentation for formula 7.8(14).
Indeed, x · δ0 = 0, so the equation x · u = 1 has many distribution solutions u. In fact,
the function 1

x is not acceptable as a distribution (since it is not locally integrable), but

there is a certain distribution called PV 1
x

serving its purpose. (For completeness, let us
mention that PV stands for “principal value” and refers to the fact that the number that
comes out of applying PV 1

x to a test function f is defined to be

(3.12) 〈PV
1

x
, f〉 = lim

ε→0

∫

|x|≥ε

f(x)

x
dx,

which exists since f can be written as f(x) = f(0) + xf1(x) with a C∞ function f1.) The
Fourier transform of the Heaviside function is not − i√

2π
PV 1

ω , as indicated in 7.8(14); it

is

(3.13) F(U0) = − i√
2π

PV 1
ω +

√

π
2 δ0.

It is the sign function sgnx that has a Fourier transform as in 7.8(14), namely

(3.14) F(sgn(x)) = −i
√

2
π PV 1

ω ;

note that sgnx = 2U0 − 1. This information on the sign function is consistent with the
solution indicated for Exercise 7.8.31, and formula 27 on page A67.
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3.2 Multiple Fourier transformations.

We can introduce the Fourier transformation for functions of several variables simply
by applying the one-dimensional definition with respect to each variable. Again it is
convenient to formulate things for the appropriate Schwartz space and make generalizations
afterwards.

Here we define, denoting ∂
∂xj

= ∂j ,

(3.15) S(Rn) =

{ f ∈ C∞(Rn) | xα1

1 . . . xαn
n ∂β1

1 . . . ∂βn
n f(x1, . . . , xn) is bounded for all indices ≥ 0 }.

On this space we define the Fourier transform F by

(3.16)

f̂(ω) = 1
(2π)n/2

∫ ∞

−∞
e−ixnωn · · ·

∫ ∞

−∞
e−ix2ω2

∫ ∞

−∞
e−ix1ω1f(x1, . . . , xn) dx1 . . . dxn

= 1
(2π)n/2

∫

Rn

e−ix·ωf(x) dx = F(f)(ω),

with the usual notation for R
n (x · ω = x1ω1 + . . . xnωn, |x| = (x · x)

1
2 ). The inversion

formula can be checked using the one-dimensional case for each variable, and we get again
F−1 = F , where

(3.17) F(f)(ω) = 1
(2π)n/2

∫

Rn

f(x)e+ix·ω dx.

As usual, there are rules for differentiation and multiplication. Consider for example
the case n = 3, here they are:

F(∂α1

1 ∂α2

2 ∂α3

3 f) = iα1+α2+α3ωα1

1 ωα2

2 ωα3

3 f̂(ω),

F(xα1

1 xα2

2 xα3

3 f) = iα1+α2+α3∂α1

1 ∂α2

2 ∂α3

3 f̂(ω);

they are useful in the proof that F maps the Schwartz space bijectively to itself with
inverse F−1 = F . For general n it is more convenient to use the multi-index notation:

(3.18)
α = (α1, . . . , αn), ∂ = (∂1, . . . , ∂n),

∂α = ∂α1

1 . . . ∂αn
n , xα = xα

1 . . . xαn
n , |α| = α1 + · · · + αn.

Then the rules become

(3.19) F(xα∂βf) = i|α|+|β|∂α(ωβ f̂(ω)).

Let us state the bijectiveness result for the n-dimensional case:

Theorem 3.4. F defines a bijection of S(Rn) onto itself, with inverse F−1 = F .

The Gaussian functions are defined in n variables as

(3.20) e−a|x|2 = e−a(x2
1+···+x2

n) = e−ax2
1 . . . e−ax2

n ,
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with a > 0. Since such a function is simply a product of one-dimensional Gaussian func-
tions, the transformation rule follows straightforwardly from the rule in one variable:

(3.21) F(e−a|x|2) =
1

(2a)n/2
e−|ω|2/4a.

We also have that

(3.22) F(e−a|x|2) =
1

(2a)n/2
e−|ω|2/4a, and

∫

Rn

e−|x|2 dx = πn/2.

The definition of convolution extends to functions on R
n. Consistently with [A04], we

shall here write it

(3.23) (f ∗ g)(x) = (2π)−n/2

∫

Rn

f(x − y)g(y) dy,

although the convention with a factor (2π)−n/2 is non-standard. One finds by application
of the rule in one dimension to each variable:

(3.24) F(f ∗ g) = f̂ · ĝ.

Now the definition of the Fourier transform F in (3.12), and the conjugate Fourier
transform F , make good sense also for functions f that are just integrable on R

n, and
(3.3) extends:

(3.25) |f̂(ω)| ≤ 1
(2π)n/2

∫

Rn

|f(x)e−ix·ω| dx = 1
(2π)n/2

∫

Rn

|f(x)| dx.

The rule that f = F(f̂) holds for such functions in a generalized sense (that we shall not
explain further here, but just mention for completeness: in the distribution sense), and
it holds more concretely under additional hypotheses on f . One also has the Parseval-
Plancherel theorem:

(3.26)

∫

Rn

f(x)ḡ(x) dx =

∫

Rn

f̂(ω)¯̂g(ω) dω,

∫

Rn

|f(x)|2 dx =

∫

Rn

|f̂(ω)|2 dω,

which is easy to verify for functions in S(Rn), and which allows an extension of the defi-
nition of the Fourier transform to functions that are square integrable on R

n, by approxi-
mation by Schwartz functions.

The rule (3.19) extends to “sufficiently regular” functions. Using distribution theory, one
can extend the rule to very general situations (including all integrable or square integrable
functions).

In the following we shall give some applications of the Fourier theory to PDE, giving
proofs in some cases where they are manageable on the present basis, and giving informa-
tion and references in other cases.
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3.3 The n-dimensional heat equation.

The n-dimensional heat problem

(3.27)

∂

∂t
u(x, t) = c2∆xu(x, t), x ∈ R

n, t > 0,

u(x, 0) = f(x), x ∈ R
n,

is solved just as easily as the one-dimensional problem, thanks to the nice properties
of Gaussian functions. Fourier transformation in the x-variable carries this over to the
problem

(3.28)

∂

∂t
û(ω, t) = −c2|ω|2û(ω, t), ω ∈ R

n, t > 0,

û(ω, 0) = f̂(ω), ω ∈ R
n,

which we solve for each fixed ω. This gives

û(ω, t) = f̂(ω)e−c2|ω|2t,

and hence

u(x, t) = f(x) ∗ g(x, t) for t > 0,

where

g(x, t) = F−1(e−c2|ω|2t) = (2c2t)−n/2e−|x|2/(4c2t),

cf. (3.22). Recalling the convention (3.23) for the convolution, we find the formula:

(3.29)

u(x, t) = (4πc2t)−n/2

∫

Rn

f(y)e−|x−y|2/(4c2t) dy

= (4πc2t)−n/2

∫

Rn

f(x − y)e−|y|2/(4c2t) dy.

The cases n = 2 and n = 3 are of course the most physically interesting.
The deduction makes good sense for functions f ∈ S(Rn), but once we have the formula

(3.29), we can apply it to more general functions, getting a solution also then. For example,
if f is bounded and continuous — or just piecewise continuous as defined in Remark 2.2
— the integral (3.29) is well-defined for t > 0. In the first line of (3.29), differentiations
can be carried under the integral sign to show that the function satisfies the heat equation.
The initial condition can be verified as follows, using the second line in (3.29):

Theorem 3.5. Let f be bounded and piecewise continuous on R
n, and define u(x, t) by the

integral (3.29). Then u(x, t) → f(x) for t → 0, when x is a point where f is continuous.

Proof. (It is recommended to go through the proof with n = 1 in a first reading.)
Consider a point x where f is continuous. We have to show that for any ε > 0 there

is a t0 > 0 such that |u(x, t) − f(x)| ≤ ε for 0 < t ≤ t0. Let M be a constant such that
|f(x)| ≤ M on R

n.
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The basic information we shall use is the last equation in (3.22), which gives by scaling,
with v = 1

2ct
1
2

y:

(3.30) (4πc2t)−n/2

∫

Rn

e−|y|2/(4c2t) dy = π−n/2

∫

Rn

e−|v|2 dv = 1.

We multiply this complicated formula for 1 with f(x) and subtract this from u(x, t), getting

(3.31) u(x, t) − f(x) = (4πc2t)−n/2

∫

Rn

(f(x − y) − f(x))e−|y|2/(4c2t) dy.

Then, with a similar scaling as in (3.30),

(3.32)

|u(x, t) − f(x)| ≤ (4πc2t)−n/2

∫

Rn

|(f(x − y) − f(x))|e−|y|2/(4c2t) dy

= π−n/2

∫

Rn

|f(x − 2ct
1
2 v) − f(x)|e−|v|2 dv

= IN + I ′
N ; with

IN = π−n/2

∫

|v|≤N

|f(x − 2ct
1
2 v) − f(x)|e−|v|2 dv,

I ′
N = π−n/2

∫

|v|≥N

|f(x − 2ct
1
2 v) − f(x)|e−|v|2 dv.

For a given ε, consider first I ′
N . It satisfies

(3.33) I ′
N ≤ 2Mπ−n/2

∫

|v|≥N

e−|v|2 dv → 0 for N → ∞,

by definition of the convergent integral. Then we choose N so large that I ′
N ≤ ε/2, and

keep N fixed in the sequel. Next, consider IN ; it is estimated as follows:

(3.34) IN = π−n/2

∫

|v|≤N

|f(x − 2ct
1
2 v) − f(x)|e−|v|2 dv

≤ sup
|x′|≤2ct

1
2 N

|f(x − x′) − f(x′)|π−n/2

∫

v∈Rn

e−|v|2 dv = sup
|x′|≤2ct

1
2 N

|f(x − x′) − f(x′)|.

The continuity of f at x means that for any ε′ > 0 there is a δ > 0 such that

(3.35) |f(x − x′) − f(x)| ≤ ε′ when |x′| ≤ δ.

Take ε′ = ε/2 and take a δ that satisfies (3.35), and now fix t0 by

(3.36) t0 = (δ/2cN)2.

Then when t ≤ t0, the x′ satisfying |x′| ≤ 2ct
1
2 N also satisfy |x′| ≤ δ. It follows from

(3.35) that

(3.37) IN ≤ ε/2 for t ∈ ]0, t0].

Hence IN + I ′
N ≤ ε for such t, which completes the proof. �
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3.4 The Laplace equation in a half-space or a ball.

Consider the Dirichlet problem

(3.38)

∂2

∂x2
u(x, y) +

∂2

∂y2
u(x, y) = 0, x ∈ R, y > 0,

u(x, 0) = f(x), x ∈ R.

The argumentation in [A04, Sect. 7.5] shows that by the Fourier transform method, dis-
carding unbounded solutions, one obtains Poisson’s formula for a solution:

(3.39)

u(x, y) =
y

π

∫ ∞

−∞

f(s)

(x − s)2 + y2
ds

=
y

π

∫ ∞

−∞

f(x − s)

s2 + y2
ds.

As in the case of the heat equation, one can insert quite general functions f in the formula
and get solutions, for example bounded piecewise continuous functions f . When checking
that the equation ∆u = 0 holds for t > 0, one uses the first line in (3.39), whereas the
second line is useful in a proof that u(x, y) → f(x) for y → 0 at a point of continuity for
f . The proof can be formulated very similarly to Theorem 3.5 and is left to Exercise E3.1.

The solution of (3.38) is not unique without a suitable boundedness condition. There
are many unbounded solutions; for example, one can add any of the functions

(3.40) v1(x, y) = y, v2(x, y) = xy, v3(x, y) = sin x sinh y, or v4(x, y) = sinhx sin y,

to u and still have a solution of (3.38). Precise statements on unique solvability can be
made in terms of general function spaces (such as Sobolev spaces) that belong to the more
advanced theory.

In higher dimensions, there are similar formulas for solutions of the Dirichlet problem

(3.41)

∂2

∂x2
1

u(x) + · · ·+ ∂2

∂x2
n

u(x) = 0, x1, . . . xn−1 ∈ R, xn > 0,

u(x1, . . . , xn−1, 0) = f(x1, . . . , xn−1), x1, . . . , xn−1 ∈ R.

Denote (x1, . . . , xn−1) = x′, and denote the Fourier transformation with respect to the
x′-variable by

û(ω′, xn) = Fx′→ω′u(x′, xn).

Then we can write the problem as

(3.42)
−|ω′|2û(ω′, xn) +

∂2

∂x2
n

û(ω′, xn) = 0, ω′ ∈ R
n−1, xn > 0,

û(ω′, 0) = f̂(ω′),

when the functions allow Fourier transformation. This is solved by

(3.43) û(ω′, 0) = f̂(ω′)e−|ω′|xn ,
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which is the unique solution at each ω′, if we require boundedness for xn → ∞. One can
show that for xn > 0,

(3.44) (2π)−n/2F−1
ω′→x′e

−|ω′|xn =
2

nα(n)

1

(|x′|2 + x2
n)n/2

,

where α(n) denotes the volume of the unit ball in R
n:

(3.45) α(n) =
πn/2

Γ(n
2 + 1)

.

see for example Strichartz’ book on distribution theory [S94, Example 4.2.4]. Then we get
the Poisson integral formula for the solution:

(3.46) u(x′, xn) =
2xn

nα(n)

∫

Rn−1

f(y′)

((x′ − y′)2 + x2
n)n/2

dy′

(and the similar formula with y′ and x′ − y′ interchanged). Another proof of (3.46) can
be found in Evans’ book on PDE [E98, Section 2.2] (and it enters of course in many other
books on PDE).

The solution formula for the Dirichlet problem for the Laplace equation on a disk can
also be written as an integral formula (likewise called Poisson’s formula), see Exercises
4.4.28–29 in [A04].

This formula has a generalization to higher dimensions too. The solution u(x) of the
problem for the ball of radius r in R

n centered at 0,

(3.47)
∆u(x) = 0, |x| < r,

u(x) = f(x), |x| = r,

is:

(3.48) u(x) =
r2 − |x|2
nα(n)r

∫

|y|=r

f(y)

|x − y|n dS(y),

where dS(y) stand for the measure on the sphere {y ∈ R
n | |y| = r} that is used in polar

coordinates. A proof can for example be found in [E98, Sect. 2.2].

There is another equation related to Lapace’s equation that is worth mentioning here,
the Helmholtz equation

(3.49) (m2 − ∆)u(x) = f(x), x ∈ R
n,

m > 0. It is very easy to solve using Fourier transformation. In fact, Fourier transformation
of (3.49) gives

(3.50) (m2 + |ω|2)û(ω) = f̂(ω),
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which has the unique solution

(3.51) û(ω) = (m2 + |ω|2)−1f̂(ω),

hence

(3.52) u = F−1( 1
m2+|ω|2Ff) = F−1( 1

m2+|ω|2 ) ∗ f.

Here, when f ∈ S(Rn), it is easily checked that û and hence u is in S(Rn), but the formula
can be used in much more general situations.

The case of (3.49) with m = 0 is much harder to discuss; this is linked with the fact
that ∆u = 0 has many solutions on R

n (harmonic functions), recall for example (3.40).
We shall not bother to give a general formula for F−1 1

m2+|ω|2 , but will just mention

that

(3.53)

F−1 1

m2 + |ω|2 =

√
2π

2m
e−m|x|, when n = 1,

F−1 1

m2 + |ω|2 =

√
2π

2m2|x|e
−m|x|, when n = 3;

the first formula is as in [A04, (7) on page A56]. The formulas in other dimensions involve
a Bessel function; more on this in Laurent Schwartz’ book on distributions [S66, Ch. VII]
(first published in 1959).

3.5 The higher dimensional wave equation.

Whereas the Fourier transformation applied to the 1-dimensional wave equation just
gives the d’Alembert formula known from other methods, it plays a more important role in
the study of higher dimensional wave equations. We shall here consider the 3-dimensional
case. The initial value problem

(3.54)

∂2

∂t2
u(x, t) = c2∆xu(x, t), x ∈ R

3, t > 0,

u(x, 0) = f(x), x ∈ R
3,

ut(x, 0) = g(x), x ∈ R
3,

gives by Fourier transformation in x

(3.55)

∂2

∂t2
û(ω, t) = −c2|ω|2û(ω, t), ω ∈ R

3, t > 0,

û(ω, 0) = f̂(ω),

ût(ω, 0) = ĝ(ω),

which we solve for each fixed ω, obtaining

(3.56) û(ω, t) = f̂(ω) cos c|ω|t + ĝ(ω)
sin c|ω|t

c|ω| .



30 PARTIAL DIFFERENTIAL EQUATIONS

The inverse Fourier transform

(3.57) h(x, t) = F−1
( sin c|ω|t

c|ω|
)

is worked out for example in [S94]. Since ∂
∂t

sin c|ω|t
c|ω| = cos c|ω|t, we see that the inverse

Fourier transform of cos c|ω|t is ∂
∂t

h(x, t), so we can write

u(x, t) = f(x) ∗ ∂
∂th(x, t) + g(x) ∗ h(x, t)

= ∂
∂t

(f(x) ∗ h(x, t)) + g(x) ∗ h(x, t).

The resulting formula is

(3.58) u(x, t) =
∂

∂t

( 1

4πc2t

∫

|y|=ct

f(x + y) dS(y)
)

+
1

4πc2t

∫

|y|=ct

g(x + y) dS(y),

known as Kirchhoff’s formula (actually due to Poisson). One can deduce from this a
formula for the case n = 2 by considering functions of (x1, x2, x3, t) that are constant in
x3 (the method of descent).

A proof attacking (3.53) directly is given in Weinberger’s classical textbook [W65, §72],
other formulations are found in Evans [E98, Sect. 2.2] and Strauss [S92, Sect. 9.2].

E3. Exercises

Exercise E3.1. Consider u(x, y) defined by (3.39) for y > 0, with f(x) bounded and
piecewise continuous on R. Show that for the points x where f is continuous, one has that
u(x, y) → f(x) for y → 0.
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