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Set up

Γ Riemannian manifold, Ω ⊆ Γ piecewise smooth domain
A : Hs(Γ) → H−s(Γ) elliptic pseudodifferential operator, order 2s

Au = f in Ω,

u = 0 in Γ \ Ω.

Examples:

A = weakly singular or hypersingular integral operator in BEM

A = (−∆)s fractional Laplacian, s ∈ (0, 1)

Goals for this talk:

Fractional problems interesting

Geometric singularities of solutions near edges and corners

Approximation by h, p and hp finite elements

Exponential convergence of hp version on geometrically
graded meshes
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Integral fractional Laplacian

(−∆)su(x) = cn,s

∫
Rn

u(x)− u(y)

|x − y |n+2s
dy = F−1(|ξ|2sFu(x)), s ∈ (0, 1) .

Note: generator of Lévy process and has physical meaning.
Used in probability, PDE, applications.

Recent numerical analysis of (−∆)s :
Acosta, Ainsworth, Borthagaray, Karkulik, Melenk, Nochetto,
Salgado, Schwab . . . (2017 –)

Recent analysis: Caffarelli, Silvestre, Figalli . . . (2007 –)

Recent modeling: Du (continuum mechanics, ICM 2018),
Perthame (cell movement, 2018), Mouhot (kinetic eqns), . . .

Don’t confuse with spectral (−∆)s , the fractional power of
the Dirichlet problem (Banjai, Borthagaray, Nochetto,
Melenk, Otarola, Salgado, . . . ).
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Motivation

(−∆)su = f in Ω,

u = 0 in Γ \ Ω.
Classical Applications:
Finance / option pricing: Tankov (2003)
Continuum Mechanics: Du (2018)

Nonlocal movement of cells and organisms
Perthame, Sun, Tang, ZAMP 2018
Estrada-Rodriguez, HG, Painter, SIAP 2018
Estrada-Rodriguez, HG, Painter, Stocek, M3AS 2019
Estrada, Estrada-Rodriguez, HG, SIAM Review 2020
Estrada-Rodriguez, Perthame 2022

Swarm robotic systems
Estrada-Rodriguez, HG, SIAP 2020
Duncan, Dragone, Estrada-Rodriguez, HG, Stocek,
Vargas, Bioinsp & Biomim 2022
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Set up

Γ Riemannian manifold, Ω ⊆ Γ piecewise smooth domain
A : Hs(Γ) → H−s(Γ) elliptic pseudodifferential operator, order 2s

Au = f in Ω,

u = 0 in Γ \ Ω.

Examples:

A = weakly singular or hypersingular integral operator

A = (−∆)s fractional Laplacian, s ∈ (0, 1)

For Γ = Rn:

(−∆)su(x) = cn,s

∫
Rn

u(x)− u(y)

|x − y |n+2s
dy , s ∈ (0, 1) .
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Relationship to FEM and BEM

(−∆)su(x) = cn,s

∫
Rn

u(x)− u(y)

|x − y |n+2s
dy , s ∈ (0, 1) .

For s = 1 the fractional Dirichlet problem

(−∆)1u = f in Ω ⊂ Rn,

u = 0 in Rn \ Ω.

is equivalent to the Dirichlet problem for the Laplacian.

This is most easily seen from (−∆)su = F−1(|ξ|2sFu).
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Relationship to FEM and BEM

(−∆)su(x) = cn,s

∫
Rn

u(x)− u(y)

|x − y |n+2s
dy , s ∈ (0, 1) .

For s = 1
2 the fractional Dirichlet problem

(−∆)1/2u = f in Ω ⊂ Rn,

u = 0 in Rn \ Ω.

is equivalent to hypersingular integral equation on flat screen:

2Wu = f on Ω× {0} ⊂ Rn+1.

(see HG, Stocek, Urzúa-Torres, Numer. Math. 2021)
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Relationship to FEM and BEM

(−∆)su(x) = cn,s

∫
Rn

u(x)− u(y)

|x − y |n+2s
dy , s ∈ (0, 1) .

For s = −1
2 the fractional Dirichlet problem

(−∆)−1/2u = f in Ω ⊂ Rn,

u = 0 in Rn \ Ω.

is equivalent to weakly singular integral equation on flat screen:

2Vu = f on Ω× {0} ⊂ Rn+1.

(see HG, Stocek, Urzúa-Torres, Numer. Math. 2021)
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Set up

Fractional Dirichlet problem:

(−∆)su = f in Ω

u = 0 in Rn \ Ω

Variational formulation: Find u ∈ H such that for all v ∈ H

E (u) =
cn,s
4

∫∫
Rn×Rn

(u(x)− u(y))2

|x − y |n+2s
dy dx−

∫
Ω
f (x)u(x) dx ≤ E (v)

Sobolev spaces: H = H̃s(Ω)

H̃s(Ω) =

{
v ∈ L2(Rn) :

∫∫
Rn×Rn

(v(x)− v(y))2

|x − y |n+2s
<∞, v = 0 in Rn \ Ω

}
Lax-Milgram: If f ∈ L2(Ω) ⇝ ∃! minimizer u ∈ H
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Set up

Fractional Dirichlet problem:

(−∆)su = f in Ω

u = 0 in Rn \ Ω
Variational formulation: Find u ∈ H such that for all v ∈ H

E (u) =
cn,s
4

∫∫
Rn×Rn

(u(x)− u(y))2

|x − y |n+2s
dy dx−

∫
Ω
f (x)u(x) dx ≤ E (v)

Finite element approximation: Find uh ∈ Hh ⊂ H s.t for all vh ∈ Hh

E (uh) =
cn,s
4

∫∫
Rn×Rn

(uh(x)−uh(y))
2

|x−y |n+2s dy dx−
∫
Ω f (x)uh(x) dx ≤ E (vh)

⇝ linear system of equations
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Set up

Fractional Dirichlet problem:

(−∆)su = f in Ω

u = 0 in Rn \ Ω

Finite element approximation: Find uh ∈ Hh ⊂ H s.t for all vh ∈ Hh

E (uh) =
cn,s
4

∫∫
Rn×Rn

(uh(x)−uh(y))
2

|x−y |n+2s dy dx−
∫
Ω f (x)uh(x) dx ≤ E (vh)

Lax-Milgram: If f ∈ L2(Ω) ⇝ ∃! minimizers u ∈ H, uh ∈ Hh

Finer information about u ⇝ fast approximation: graded mesh, hp
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Numerical approximation: non-trivial

(−∆)su = 1 in Ω

u = 0 in R2 \ Ω.

For Ω = B1 = {|x | < 1}. s = 1
10

Exact solution: u(x) = (1− |x |2)
1
10
+

Uniform mesh
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Numerical approximation on graded meshes

(−∆)su = 1 in Ω,

u = 0 in R2 \ Ω.

Figure: Algebraically 2–graded mesh for L–shape (left) and numerical
solution with s = 1

2 (right).
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Edge and corner singularities

(−∆)su = 1 in Ω,

u = 0 in R2 \ Ω.
(⋆)

Numerically u(x) ∼ dist(x , corner)λ.
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Edge and corner singularities

(−∆)su = 1 in Ω,

u = 0 in R2 \ Ω.
(⋆)

Numerically u(x) ∼ dist(x , ∂Ω)s .
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Edge and corner singularities

(−∆)su = f in Ω,

u = 0 in R2 \ Ω.
(⋆)

We obtain a precise description of the solution:

Theorem (HG, Mazzeo, Louca / HG, Stephan, Stocek 2022)

For Ω polygon and f ∈ C∞(Ω), the solution u to (⋆) admits an
asymptotic expansion at the edges and corners:

Edge E: u(x) ∼ dist(x ,E )s ,
Corner C : u(x) ∼ dist(x ,C )λ,
Edge-Corner: u(x) ∼ dist(x ,C )λ−s · dist(x ,E )s ,

up to logarithmic terms.

Here, λ relates to the smallest eigenvalue of an elliptic 2nd order
differential operator on S2

+.
Heiko Gimperlein Singularities and high-order FEM for fractional Laplacian



Corner singularity: Dependence on angle and s

s = 1
2 classical: J. A. Morrison, J. A. Lewis ’76, Walden ’74.
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Figure: Corner exponent against opening angle χ, s = 1
2 .
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Corner singularity: Dependence on angle and s

s = 1
2 classical: J. A. Morrison, J. A. Lewis ’76, Walden ’74.

0 0.5 1 1.5 2

0

0.5

1

1.5

2

Figure: HG, Stephan, Stocek 2022:
Corner exponent against opening angle χ for different values of s.

Theorem:
λ(s, χ) > max{s − 1

2 , 0} increasing in s, decreasing in angle χ.
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Classical work: Edge behaviour of solutions

Theorem (Ros-Oton, Serra 2017 / Grubb 2015)

Let s ̸= 1
2 , Ω sufficiently smooth, f ∈ L∞(Ω).

Then u(x)
dist(x ,∂Ω)s ∈ Cα for some α > 0.

Logarithmic corrections for s = 1
2 .

Theorem (Acosta, Borthagaray 2017)

Let Ω convex polyhedron. Then quasi-optimal convergence on
β−graded meshes:

∥u − uh∥Hs ≲ hmin{β
2
,2−s}−ε.
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Classical work: Edge behaviour of solutions

Theorem (Ros-Oton, Serra 2017 / Grubb 2015)

Let s ̸= 1
2 , Ω sufficiently smooth, f ∈ L∞(Ω).

Then u(x)
dist(x ,∂Ω)s ∈ Cα for some α > 0.

Logarithmic corrections for s = 1
2 .

Theorem (Acosta, Borthagaray 2017)

Let Ω convex polyhedron. Then quasi-optimal convergence on
β−graded meshes:

∥u − uh∥Hs ≲ hmin{β
2
,2−s}−ε.

Borthagaray, Nochetto, et al.: Graded meshes using Besov space
estimates
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Classical work: Edge behaviour of solutions

Theorem (Ros-Oton, Serra 2017 / Grubb 2015)

Let s ̸= 1
2 , Ω sufficiently smooth, f ∈ L∞(Ω).

Then u(x)
dist(x ,∂Ω)s ∈ Cα for some α > 0.

Logarithmic corrections for s = 1
2 .

Theorem (Acosta, Borthagaray 2017)

Let Ω convex polyhedron. Then quasi-optimal convergence on
β−graded meshes:

∥u − uh∥Hs ≲ hmin{β
2
,2−s}−ε.

Today:
Geometric singular analysis,
approximation on graded meshes, hp and exponential convergence.
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Edge and corner singularities

(−∆)su = f in Ω,

u = 0 in R2 \ Ω.
(⋆)

We obtain a precise description of the solution:

Theorem (HG, Mazzeo, Louca / HG, Stephan, Stocek 2022)

For Ω polygon and f ∈ C∞(Ω), the solution u to (⋆) admits an
asymptotic expansion at the edges and corners:

Edge E: u(x) ∼ dist(x ,E )s ,
Corner C : u(x) ∼ dist(x ,C )λ,
Edge-Corner: u(x) ∼ dist(x ,C )λ−s · dist(x ,E )s ,

up to logarithmic terms.
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Resolving geometric singularities: Graded meshes & hp

−(−∆)su = f in Ω

u = 0 in Rn \ Ω

Theorem (HG, Stephan, Stocek 2022)

Quasi-optimal convergence of finite elements on β-graded meshes:

∥u − uh∥H̃s ≲ hmin{β
2
,2−s}| log∗(h)| .

related work on BEM: von Petersdorff, Stephan 1990
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Resolving geometric singularities: Graded meshes & hp

Theorem (HG, Stephan, Stocek 2022)

Quasi-optimal convergence of finite elements on β-graded meshes:

∥u − uh∥H̃s ≲ hmin{β
2
,2−s}| log∗(h)| .
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Resolving geometric singularities: Graded meshes & hp

Theorem (HG, Stephan, Stocek 2022)

Quasi-optimal convergence of finite elements on β-graded meshes:

∥u − uh∥H̃s ≲ hmin{β
2
,2−s}| log∗(h)| .

Theorem (HG, Stephan, Stocek 2022)

Doubled convergence rate of p-version on quasi-uniform mesh:

∥u − uhp∥H̃s ≲

(
h1/2

p

)
| log∗(h/p2)| .

BEM: Bespalov, Heuer 2005 – 2010
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Resolving geometric singularities: Graded meshes & hp

Theorem (HG, Stephan, Stocek 2022)

Doubled convergence rate of p-version on quasi-uniform mesh:

∥u − uhp∥H̃s ≲

(
h1/2

p

)
| log∗(h/p2)| .
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Resolving geometric singularities: Graded meshes & hp

Theorem (HG, Stephan, Stocek 2022)

Quasi-optimal convergence of finite elements on β-graded meshes:

∥u − uh∥H̃s ≲ hmin{β
2
,2−s}| log∗(h)| .

Theorem (HG, Stephan, Stocek 2022)

Doubled convergence rate of p-version on quasi-uniform mesh:

∥u − uhp∥H̃s ≲

(
h1/2

p

)
| log∗(h/p2)| .
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Exponential convergence of hp version

Theorem (HG, Stephan, Stocek 2022)

Exponential convergence of hp finite elements on geometrically
graded meshes:

∥u − uh∥H̃s ≲ exp(−C (DOF )1/4) .

BEM: Heuer, Maischak, Stephan 1999,
Holm, Maischak, Stephan 2008.

(−∆)s & countably normed spaces:
Faustmann, Marcati, Melenk, Schwab 2022.

Geometrically graded meshes with σ = 0.5, 0.17
p = 1 at ∂Ω, linear increasing with elements
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Exponential convergence of hp version

Theorem (HG, Stephan, Stocek 2022)

Exponential convergence of hp finite elements on geometrically
graded meshes:

∥u − uh∥H̃s ≲ exp(−C (DOF )1/4) .

(−∆)3/4u = 1 in Ω = [−1, 1]2
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Exponential convergence of hp version

Theorem (HG, Stephan, Stocek 2022)

Exponential convergence of hp finite elements on geometrically
graded meshes:

∥u − uh∥H̃s ≲ exp(−C (DOF )1/4) .

(−∆)3/4u = 1 in Ω = [−1, 1]2

2 3 4 5 6 7 8 9 10

10
-3

10
-2

10
-1

Heiko Gimperlein Singularities and high-order FEM for fractional Laplacian



Exponential convergence of hp version

Theorem (HG, Stephan, Stocek 2022)

Exponential convergence of hp finite elements on geometrically
graded meshes:

∥u − uh∥H̃s ≲ exp(−C (DOF )1/4) .

(−∆)1/4u = 1 in Ω = [−1, 1]2
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Exponential convergence of hp version

Theorem (HG, Stephan, Stocek 2022)

Quasi-optimal convergence of finite elements on β-graded meshes:

∥u − uh∥H̃s ≲ hmin{β
2
,2−s}−ε .

Theorem (HG, Stephan, Stocek 2022)

Doubled convergence rate of p-version on quasi-uniform mesh:

∥u − uhp∥H̃s ≲

(
h

p2

) 1
2
−ε

.

Theorem (HG, Stephan, Stocek 2022)

Exponential convergence of hp finite elements on geometrically
graded meshes:

∥u − uh∥H̃s ≲ exp(−C (DOF )1/4) .
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Ideas of proof: exponential convergence

Theorem (EPS, Gimperlein, Stocek 2022)

Exponential convergence of hp finite elements on geometrically
graded rectangular meshes:

∥u − uh∥H̃s ≲ exp(−C (DOF )1/4) .

(−∆)s & countably normed spaces:
Faustmann, Marcati, Melenk, Schwab 2022.

Combine their regularity result with approximation arguments by
Maischak (Habilitation 2004), which establish exponential
convergence for u ∈ B1

β(Ω) (countably normed space of
Babuska-Guo).
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Ideas of proof: exponential convergence

(−∆)s & countably normed spaces:
Faustmann, Marcati, Melenk, Schwab 2022.

Combine their regularity result with approximation arguments by
Maischak (Habilitation 2004), which establish exponential
convergence for u ∈ B1

β(Ω) (countably normed space of
Babuska-Guo).

Hk,1
β (Ω) = {u ∈ L2(Ω) : Φβ,α,1∂

αu ∈ L2(Ω)∀1 ≤ |α| ≤ k}

u ∈ B1
β(Ω) if u ∈

⋂
k≥1H

k,1
β (Ω) and there exist C , d ≥ 1 such that

for all k ≥ 1 and all |α| = k :

∥Φβ,α,1∂
αu∥L2(Q) ≤ Cdk−1(k − 1)!

For [0, 1]2

Φβ,(α1,α2),1 =


xβ+α1−1 for α1 ≥ 1, α2 = 0

xβ+α1−1yα2 + xα1 y
β+α2−1 for α1 ≥ 1, α2 ≥ 1

yβ+α2−1 for α1 = 0, α2 ≥ 1.
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Ideas of proof: exponential convergence

Hk,1
β (Ω) = {u ∈ L2(Ω) : Φβ,α,1∂

αu ∈ L2(Ω)∀1 ≤ |α| ≤ k}

u ∈ B1
β(Ω) if u ∈

⋂
k≥1H

k,1
β (Ω) and there exist C , d ≥ 1 such that

for all k ≥ 1 and all |α| = k :

∥Φβ,α,1∂
αu∥L2(Q) ≤ Cdk−1(k − 1)!

Local approximation for u ∈ B1
β(Ω):

interior elements uA, edge uB , uC , Corner uD
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Edge and corner singularities

(−∆)su = f in Ω,

u = 0 in R2 \ Ω.
(⋆)

The results on quasi-uniform and alg. graded meshes depend on a
precise description of the solution:

Theorem (HG, Mazzeo, Louca / HG, Stephan, Stocek 2022)

For Ω polygon and f ∈ C∞(Ω), the solution u to (⋆) admits an
asymptotic expansion at the edges and corners:

Edge E: u(x) ∼ dist(x ,E )s ,
Corner C : u(x) ∼ dist(x ,C )λ,
Edge-Corner: u(x) ∼ dist(x ,C )λ−s · dist(x ,E )s ,

up to logarithmic terms.
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Extension approach, s = 1/2

Fractional Dirichlet problem:

(−∆)
1
2 u = f in Ω,

u = 0 in Rn \ Ω.
(⋆)

Harmonic extension of u:

∆(X ,t)U(X , t) = 0 for X ∈ Rn and t > 0
U(X , 0) = u(X ) for X ∈ Rn

U(X , t) → 0 as |X , t| → ∞
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Extension approach, s = 1/2
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Extension approach, s = 1/2

Fractional Dirichlet problem:

(−∆)
1
2 u = f in Ω,

u = 0 in Rn \ Ω.
(⋆)

Mixed problem:

∆(X ,t)U(X , t) = 0 for X ∈ Rn and t > 0
− limt→0+ ∂tU(X , t) = f (X ) for X ∈ Ω

U(X , 0) = 0 for X ∈ Rn \ Ω
(⋆⋆)

U(X , t) → 0 as |X , t| → ∞
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Extension approach, s = 1/2

Fractional Dirichlet problem:

(−∆)
1
2 u = f in Ω,

u = 0 in Rn \ Ω.
(⋆)

Mixed problem:

∆(X ,t)U(X , t) = 0 for X ∈ Rn and t > 0
− limt→0+ ∂tU(X , t) = f (X ) for X ∈ Ω

U(X , 0) = 0 for X ∈ Rn \ Ω
(⋆⋆)

U(X , t) → 0 as |X , t| → ∞

Theorem (Caffarelli, Silvestre 2007, Ω = Rn)

(−∆)1/2 coincides with the Dirichlet-to-Neumann operator:

T : u 7→ −Ut(x , 0).

(⋆) ⇔ (⋆⋆) ⇔ Tu = f .
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Extension approach, s ̸= 1/2

Fractional Dirichlet problem:

(−∆)su = f in Ω,

u = 0 in Rn \ Ω.
(⋆)

Extension: (degenerately elliptic for s ̸= 1/2)

∇(X ,t) · (t1−2s∇(X ,t)U(X , t)) = 0 for X ∈ Rn and t > 0
U(X , 0) = u(X ) for X ∈ Rn .

U(X , t) → 0 as |X , t| → ∞
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Extension approach, s ̸= 1/2

Fractional Dirichlet problem:

(−∆)su = f in Ω,

u = 0 in Rn \ Ω.
(⋆)

Mixed PDE problem:

∇(X ,t) · (t1−2s∇(X ,t)U(X , t)) = 0 for X ∈ Rn and t > 0
− limt→0+ t1−2s∂tU(X , t) = f (X ) for X ∈ Ω

U(X , 0) = 0 for X ∈ Rn \ Ω
.

(⋆ ⋆ ⋆)
U(X , t) → 0 as |X , t| → ∞
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Extension approach, s ̸= 1/2

Fractional Dirichlet problem:

(−∆)su = f in Ω,

u = 0 in Rn \ Ω.
(⋆)

Mixed PDE problem:

∇(X ,t) · (t1−2s∇(X ,t)U(X , t)) = 0 for X ∈ Rn and t > 0
− limt→0+ t1−2s∂tU(X , t) = f (X ) for X ∈ Ω

U(X , 0) = 0 for X ∈ Rn \ Ω
.

(⋆ ⋆ ⋆)
U(X , t) → 0 as |X , t| → ∞

Theorem (Caffarelli, Silvestre 2007, Ω = Rn)

(−∆)su = Tu = −cn,s limt→0+ t1−2s∂tU.

(⋆) ⇔ (⋆ ⋆ ⋆) ⇔ Tu = f .

Key observation: fractional ⇔ mixed PDE also for Ω ⊂ Rn.
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Extension approach, s ̸= 1/2

Fractional Dirichlet problem:

(−∆)su = f in Ω,

u = 0 in Rn \ Ω.
(⋆)

Mixed PDE problem:

∇(X ,t) · (t1−2s∇(X ,t)U(X , t)) = 0 for X ∈ Rn and t > 0
− limt→0+ t1−2s∂tU(X , t) = f (X ) for X ∈ Ω

U(X , 0) = 0 for X ∈ Rn \ Ω
.

(⋆ ⋆ ⋆)
U(X , t) → 0 as |X , t| → ∞

Key observation: fractional ⇔ mixed PDE also for Ω ⊂ Rn.

Consequence: relation to classical problems

We can use classical techniques for the singular analysis of mixed
boundary problems.
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Extension approach to fractional boundary problems

(−∆)su = f in Ω,
u = 0 in Rn \ Ω.
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Extension approach to fractional boundary problems

Localisation:
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Extension approach to fractional boundary problems

LsU(X , t) = 0 for X ∈ Rn, t > 0,

U(X , 0) = 0 for X ∈ Rn \ Ω,
− limt→0+ t1−2s∂tU(X , t) = f (X ) for X ∈ Ω, t > 0,

U(X , t) → 0 as |X , t| → ∞.
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Extension approach to fractional boundary problems

Coordinates in half-space (X , t) ∈ Rn+1
+ :

X = (x , y) ∈ R× Rn−1, t > 0.
Fourier transform tangential to boundary

Fy→ηLs = ∂2t +
1− 2s

t
∂t + ∂2x − |η|2 =: L̂s

Mixed boundary problem now becomes

L̂sÛ(x , η, t) = 0 in Rn+1
+ ,

Û(x , η, 0) = 0 for x < 0,

− lim
t→0+

t1−2s∂tÛ(x , η, 0) = û(x , η, 0) for x > 0.

(M̂BP)

U(X , t) → 0 as |X , t| → ∞
Local behaviour near ∂Ω: |η|2 lower order → Consider η = 0 first.
Polar coordinates in 2d

t = ρ sin θ, x = ρ cos θ

B (Ls) = ∂2ρ +
2− 2s

ρ
∂ρ +

1

ρ2
(
∂2θ + (1− 2s) cot(θ)∂θ

)
.
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Extension approach to fractional boundary problems

B (Ls) = ∂2ρ +
2− 2s

ρ
∂ρ +

1

ρ2
(
∂2θ + (1− 2s) cot(θ)∂θ

)︸ ︷︷ ︸
:=Ps

Asymptotics from separation of variables:
U = ρνϕ(θ) → eigenvalue problem:

Psϕ = −λ(ν)ϕ

with the mixed boundary conditions

θ1−2s∂θϕ = 0 at θ = 0, ϕ = 0 at θ = π

where λ(ν) = (ν + 1
2)

2 − (s − 1
2)

2.

Heiko Gimperlein Singularities and high-order FEM for fractional Laplacian



Extension approach to fractional boundary problems

B (Ls) = ∂2ρ +
2− 2s

ρ
∂ρ +

1

ρ2
(
∂2θ + (1− 2s) cot(θ)∂θ

)︸ ︷︷ ︸
:=Ps

Asymptotics from separation of variables:
U = ρνϕ(θ) → eigenvalue problem:

Psϕ = −λ(ν)ϕ

with the mixed boundary conditions

θ1−2s∂θϕ = 0 at θ = 0, ϕ = 0 at θ = π

where λ(ν) = (ν + 1
2)

2 − (s − 1
2)

2.

Lemma

Ps is self-adjoint and negative on L2
(
[0, π], sin1−2s(θ) dθ

)
.
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Extension approach to fractional boundary problems

B (Ls) = ∂2ρ +
2− 2s

ρ
∂ρ +

1

ρ2
(
∂2θ+(1− 2s) cot(θ)∂θ

)︸ ︷︷ ︸
:=Ps

Asymptotics from separation of variables:

Psϕ = −λ(ν)ϕ

with the mixed boundary conditions

θ1−2s∂θϕ = 0 at θ = 0, ϕ = 0 at θ = π

where λ(ν) = (ν + 1
2)

2 − (s − 1
2)

2.

Lemma

Ps is self-adjoint and negative on L2
(
[0, π], sin1−2s(θ) dθ

)
.

Classical (Zaremba) s = 1/2:

Eigenvalues: λj =
(
j + 1

2

)2
, eigenfunctions: ϕj = cos

((
j + 1

2

)
θ
)
,

Singular expansion u ∼
∑

uj(y)x
j+ 1

2 with exponents νj = j + 1
2 .
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Extension approach to fractional boundary problems

B (Ls) = ∂2ρ +
2− 2s

ρ
∂ρ +

1

ρ2
(
∂2θ + (1− 2s) cot(θ)∂θ

)︸ ︷︷ ︸
:=Ps

Asymptotics from separation of variables:

Psϕ = −λ(ν)ϕ

with the mixed boundary conditions

θ1−2s∂θϕ = 0 at θ = 0, ϕ = 0 at θ = π

where λ(ν) = (ν + 1
2)

2 − (s − 1
2)

2.

Lemma

Ps is self-adjoint and negative on L2
(
[0, π], sin1−2s(θ) dθ

)
.

λsj = (j + s)(j + 1− s), φs
j = sins(θ)Ps

j (cos(θ)),
Singular exponents: νsj = j + s.
Here Ps

j is the associated Legendre function of the first kind.
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Extension approach to fractional boundary problems

B (Ls) = ∂2ρ +
2− 2s

ρ
∂ρ +

1

ρ2
(
∂2θ + (1− 2s) cot(θ)∂θ

)︸ ︷︷ ︸
:=Ps

Asymptotics from separation of variables:

Psϕ = −λ(ν)ϕ

with the mixed boundary conditions

θ1−2s∂θϕ = 0 at θ = 0, ϕ = 0 at θ = π

where λ(ν) = (ν + 1
2)

2 − (s − 1
2)

2.

Corollary

The solution to (−∆)su = f admits a polyhomogeneous expansion
near ∂Ω with exponents νj = j + s.
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Extension approach to fractional boundary problems

The analysis of the model problem in the half space implies
corresponding results for smooth Ω ⊆ Γ, using pseudodifferential
techniques. (−∆)su = f in Ω,

u = 0 in Rn \ Ω.
(⋆)

Corollary

The solution to (−∆)su = f admits a polyhomogeneous expansion
near ∂Ω with exponents νj = j + s, i.e. u ∈ d sC∞(Ω), d boundary
defining function.

approach generalizes to manifolds with corners, e.g. polygons
⊆ R2, and lower-order perturbations.
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Structure of solution operator

The analysis of the model problem in the half space implies
corresponding results for smooth Ω ⊆ Γ, using pseudodifferential
techniques. (−∆)su = f in Ω,

u = 0 in Rn \ Ω.
(⋆)

Solution operator S : f 7→ u has distributional kernel K (X ,Y ) :

u(X ) = Sf (X ) =

∫
K (X ,Y )F (Y ) dY

where F = Ls(f̃ ),
∂ f̃
∂ν = f .

Example: Model problem

K (X ,Y ) =
∑
j

Bjφ
s
j ⊗ φs

j

where
Bj(ρ, ρ̃) = cj(H(ρ̃− ρ)Ij+ 1

2
(ρ)Kj+ 1

2
(ρ̃)−H(ρ− ρ̃)Kj+ 1

2
(ρ)Ij+ 1

2
(ρ̃)).
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Structure of solution operator

The analysis of the model problem in the half space implies
corresponding results for smooth Ω ⊆ Γ, using pseudodifferential
techniques. (−∆)su = f in Ω,

u = 0 in Rn \ Ω.
(⋆)

Theorem (HG, Louca, Mazzeo)

Distributional kernel K (X ,Y ) is C∞ in Ω× Ω \ △Ω.

K (X ,Y ) lifts to polyhomogeneous distribution on a blown up
space Z 2

iie → Ω× Ω, i.e. in suitable “polar coordinates” it is a
smooth function with classical asymptotic expansions at all
boundary faces and product type expansions at corners.

Nontrivial even for model problem: K (X ,Y ) =
∑

j Bjφ
s
j ⊗ φs

j .

The proof of this theorem proceeds with a corresponding fine
analysis of the solution operator to the extended problem for Ls in
Rn+1
+ with mixed boundary conditions.

Heiko Gimperlein Singularities and high-order FEM for fractional Laplacian



Conclusions

(−∆)su = f in Ω,

u = 0 in Rn \ Ω.

Fractional problems interesting & unify FEM/BEM
Asymptotic expansion of solutions near edges and corners
Quasi-optimal convergence rates on graded meshes /
Exponential convergence hp
Numerical examples confirm analytical expectations

Construction of solution operator by
singular/pseudodifferential analysis of local degenerate elliptic
problem in Rn+1

+ with mixed boundary conditions

HG, Stephan, Stocek, hp-finite element approximation for the fractional
Laplacian on uniform and geometrically graded meshes, preprint 2022.

HG, Stephan, Stocek, Corner singularities for the fractional Laplacian and
finite element approximation, draft 2022.
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Polygonal domains: Model problem

Corner problem: opening angle β
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Extension approach for polygons

Spherical coordinates

t = r sin(θ), x = r cos(θ) cos(ϕ), y = r cos(θ) sin(ϕ)

L̃sU(r , θ, φ) = ∂2r U+
3− 2s

r
∂rU+

1

r2
(∆θ,φU + (1− 2s) tan(θ)∂θU)︸ ︷︷ ︸

=:P̃sU

.

Here ∆θ,φ is the Laplace-Beltrami operator on the 2-sphere S2:

∆θ,φU =
1

sin(θ)
∂θ(sin(θ)∂θU) +

1

sin2(θ)
∂2φU.

Heiko Gimperlein Singularities and high-order FEM for fractional Laplacian



Extension approach for polygons

Spherical coordinates

t = r sin(θ), x = r cos(θ) cos(ϕ), y = r cos(θ) sin(ϕ)

L̃sU(r , θ, φ) = ∂2r U+
3− 2s

r
∂rU+

1

r2
(∆θ,φU + (1− 2s) tan(θ)∂θU)︸ ︷︷ ︸

=:P̃sU

.

Separation of variables:
⇝ self-adjoint spectral problem in L2(S2

+, cos(θ)
1−2sdS):

P̃sψ = −λψ on S2
+,

θ1−2s lim
θ→0+

∂θψ = 0 for ϕ ∈ (0, β),

ψ = 0 for ϕ /∈ (0, β), θ = π/2.

Asymptotic expansion near corner: u ∼
∑

rλj log(r)kujk(θ, ϕ).
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