Geometric singularities and high-order finite elements for the integral fractional Laplacian

Heiko Gimperlein¹

(with Nikoletta Louca², Rafe Mazzeo³, Ernst P. Stephan⁴, Jakub Stocek⁵)

¹ University of Innsbruck,
 ² Heriot-Watt University, ³ Stanford ⁴ University of Hannover,
 ⁵ British Antarctic Survey, Cambridge.

Journées Singulières Université Côte d'Azur, November 2, 2022

 Γ Riemannian manifold, $\Omega \subseteq \Gamma$ piecewise smooth domain $A: H^{s}(\Gamma) \rightarrow H^{-s}(\Gamma)$ elliptic pseudodifferential operator, order 2s

$$\begin{aligned} Au &= f \quad \text{in } \Omega, \\ u &= 0 \quad \text{in } \Gamma \setminus \overline{\Omega} \end{aligned}$$

Examples:

• A = weakly singular or hypersingular integral operator in BEM

•
$$A=(-\Delta)^s$$
 fractional Laplacian, $s\in(0,1)$

Goals for this talk:

- Fractional problems interesting
- Geometric singularities of solutions near edges and corners
- Approximation by h, p and hp finite elements
- **Exponential convergence** of *hp* version on geometrically graded meshes

Integral fractional Laplacian

$$(-\Delta)^{s}u(x) = c_{n,s}\int_{\mathbb{R}^{n}} \frac{u(x) - u(y)}{|x - y|^{n+2s}} dy = \mathcal{F}^{-1}(|\xi|^{2s}\mathcal{F}u(x)), \qquad s \in (0,1)$$

- Note: generator of Lévy process and has physical meaning. Used in probability, PDE, applications.
- Recent numerical analysis of (-Δ)^s: Acosta, Ainsworth, Borthagaray, Karkulik, Melenk, Nochetto, Salgado, Schwab ... (2017 -)
- Recent analysis: Caffarelli, Silvestre, Figalli ... (2007 –)
- Recent modeling: Du (continuum mechanics, ICM 2018), Perthame (cell movement, 2018), Mouhot (kinetic eqns), ...
- Don't confuse with spectral (-Δ)^s, the fractional power of the Dirichlet problem (Banjai, Borthagaray, Nochetto, Melenk, Otarola, Salgado, ...).

$$(-\Delta)^s u = f$$
 in Ω ,
 $u = 0$ in $\Gamma \setminus \overline{\Omega}$.

Classical Applications:

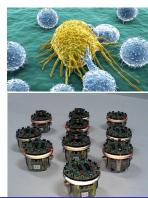
Finance / option pricing: Tankov (2003) Continuum Mechanics: Du (2018)

Nonlocal movement of cells and organisms

Perthame, Sun, Tang, ZAMP 2018 Estrada-Rodriguez, HG, Painter, SIAP 2018 Estrada-Rodriguez, HG, Painter, Stocek, M3AS 2019 Estrada, Estrada-Rodriguez, HG, SIAM Review 2020 Estrada-Rodriguez, Perthame 2022

Swarm robotic systems

Estrada-Rodriguez, HG, SIAP 2020 Duncan, Dragone, Estrada-Rodriguez, HG, Stocek, Vargas, Bioinsp & Biomim 2022



 Γ Riemannian manifold, $\Omega \subseteq \Gamma$ piecewise smooth domain $A: H^{s}(\Gamma) \rightarrow H^{-s}(\Gamma)$ elliptic pseudodifferential operator, order 2s

$$egin{array}{lll} Au = f & ext{in } \Omega, \ u = 0 & ext{in } \Gamma \setminus \overline{\Omega} \end{array}$$

Examples:

- A = weakly singular or hypersingular integral operator
- $A = (-\Delta)^s$ fractional Laplacian, $s \in (0,1)$

For $\Gamma = \mathbb{R}^n$:

$$(-\Delta)^s u(x)=c_{n,s}\int_{\mathbb{R}^n}rac{u(x)-u(y)}{|x-y|^{n+2s}}\mathrm{d}y,\qquad s\in(0,1)\;.$$

伺 と く ヨ と く ヨ と

Relationship to FEM and BEM

$$(-\Delta)^s u(x) = c_{n,s} \int_{\mathbb{R}^n} \frac{u(x) - u(y)}{|x - y|^{n+2s}} \mathrm{d}y, \qquad s \in (0,1) \;.$$

For s = 1 the fractional Dirichlet problem

$$(-\Delta)^1 u = f$$
 in $\Omega \subset \mathbb{R}^n$,
 $u = 0$ in $\mathbb{R}^n \setminus \overline{\Omega}$.

is equivalent to the Dirichlet problem for the Laplacian.

This is most easily seen from $(-\Delta)^{s}u = \mathcal{F}^{-1}(|\xi|^{2s}\mathcal{F}u)$.

伺下 イヨト イヨト

Relationship to FEM and BEM

$$(-\Delta)^s u(x) = c_{n,s} \int_{\mathbb{R}^n} \frac{u(x) - u(y)}{|x - y|^{n+2s}} \mathrm{d}y, \qquad s \in (0,1) \;.$$

For $s = \frac{1}{2}$ the fractional Dirichlet problem $(-\Delta)^{1/2}u = f \quad \text{in } \Omega \subset \mathbb{R}^n,$ $u = 0 \quad \text{in } \mathbb{R}^n \setminus \overline{\Omega}.$

is equivalent to hypersingular integral equation on flat screen:

$$2Wu = f$$
 on $\Omega \times \{0\} \subset \mathbb{R}^{n+1}$.

(see HG, Stocek, Urzúa-Torres, Numer. Math. 2021)

Relationship to FEM and BEM

$$(-\Delta)^s u(x) = c_{n,s} \int_{\mathbb{R}^n} \frac{u(x) - u(y)}{|x - y|^{n+2s}} \mathrm{d}y, \qquad s \in (0,1) \;.$$

For $s = -\frac{1}{2}$ the fractional Dirichlet problem $(-\Delta)^{-1/2}u = f \text{ in } \Omega \subset \mathbb{R}^n,$ $u = 0 \text{ in } \mathbb{R}^n \setminus \overline{\Omega}.$

is equivalent to weakly singular integral equation on flat screen:

$$2\mathbf{V}u = f$$
 on $\Omega \times \{0\} \subset \mathbb{R}^{n+1}$.

(see HG, Stocek, Urzúa-Torres, Numer. Math. 2021)

Fractional Dirichlet problem:

$$\begin{aligned} (-\Delta)^s u &= f & \text{in } \Omega \\ u &= 0 & \text{in } \mathbb{R}^n \setminus \overline{\Omega} \end{aligned}$$

Variational formulation: Find $u \in H$ such that for all $v \in H$

$$E(u) = \frac{c_{n,s}}{4} \iint_{\mathbb{R}^n \times \mathbb{R}^n} \frac{(u(x) - u(y))^2}{|x - y|^{n + 2s}} dy dx - \int_{\Omega} f(x)u(x) dx \leq E(v)$$

Sobolev spaces: $H = \widetilde{H}^{s}(\Omega)$

$$\widetilde{H}^{s}(\Omega) = \left\{ v \in L^{2}(\mathbb{R}^{n}) : \iint_{\mathbb{R}^{n} \times \mathbb{R}^{n}} \frac{(v(x) - v(y))^{2}}{|x - y|^{n + 2s}} < \infty, v = 0 \text{ in } \mathbb{R}^{n} \setminus \overline{\Omega} \right\}$$

Lax-Milgram: If $f \in L^2(\Omega) \rightsquigarrow \exists!$ minimizer $u \in H$

Fractional Dirichlet problem:

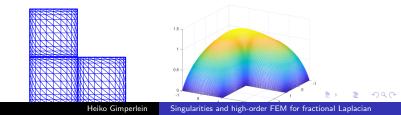
$$(-\Delta)^{s} u = f$$
 in Ω
 $u = 0$ in $\mathbb{R}^{n} \setminus \overline{\Omega}$

Variational formulation: Find $u \in H$ such that for all $v \in H$

$$E(u) = \frac{c_{n,s}}{4} \iint_{\mathbb{R}^n \times \mathbb{R}^n} \frac{(u(x) - u(y))^2}{|x - y|^{n + 2s}} dy dx - \int_{\Omega} f(x)u(x) dx \leq E(v)$$

Finite element approximation: Find $u_h \in H_h \subset H$ s.t for all $v_h \in H_h$

$$E(u_h) = \frac{c_{n,s}}{4} \iint_{\mathbb{R}^n \times \mathbb{R}^n} \frac{(u_h(x) - u_h(y))^2}{|x - y|^{n + 2s}} \, dy \, dx - \int_{\Omega} f(x) u_h(x) \, dx \leq E(v_h)$$

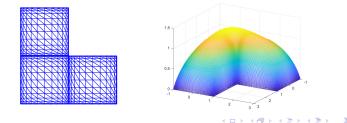


Fractional Dirichlet problem:

$$(-\Delta)^{s} u = f$$
 in Ω
 $u = 0$ in $\mathbb{R}^{n} \setminus \overline{\Omega}$

Finite element approximation: Find $u_h \in H_h \subset H$ s.t for all $v_h \in H_h$ $E(u_h) = \frac{c_{n,s}}{4} \iint_{\mathbb{R}^n \times \mathbb{R}^n} \frac{(u_h(x) - u_h(y))^2}{|x - y|^{n+2s}} dy dx - \int_{\Omega} f(x)u_h(x) dx \leq E(v_h)$ Lax-Milgram: If $f \in L^2(\Omega) \rightsquigarrow \exists!$ minimizers $u \in H, u_h \in H_h$

Finer information about $u \rightsquigarrow$ fast approximation: graded mesh, hp

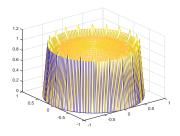


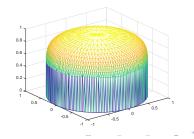
Numerical approximation: non-trivial

$$(-\Delta)^{s} u = 1 \text{ in } \Omega$$
$$u = 0 \text{ in } \mathbb{R}^{2} \setminus \overline{\Omega}.$$
For $\Omega = \mathcal{B}_{1} = \{|x| < 1\}. \ s = \frac{1}{10}$ Exact solution: $u(x) = (1 - |x|^{2})^{\frac{1}{10}}_{+}$

Uniform mesh

2-graded mesh





Numerical approximation on graded meshes

$$(-\Delta)^s u = 1$$
 in Ω ,
 $u = 0$ in $\mathbb{R}^2 \setminus \overline{\Omega}$.

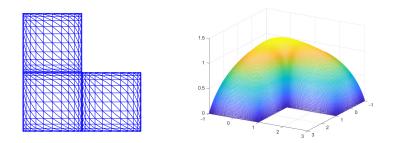
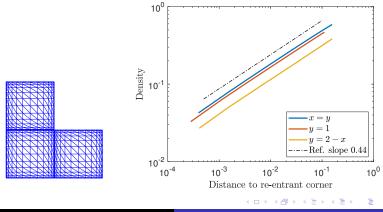


Figure: Algebraically 2–graded mesh for L–shape (left) and numerical solution with $s = \frac{1}{2}$ (right).

$$(-\Delta)^{s} u = 1 \quad \text{in } \Omega,$$

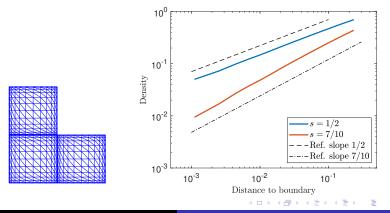
 $u = 0 \quad \text{in } \mathbb{R}^{2} \setminus \overline{\Omega}.$ (*)
Numerically $u(x) \sim \operatorname{dist}(x, \operatorname{corner})^{\lambda}.$



$$(-\Delta)^{s} u = 1 \quad \text{in } \Omega,$$

$$u = 0 \quad \text{in } \mathbb{R}^{2} \setminus \overline{\Omega}.$$
(*)

Numerically $u(x) \sim \operatorname{dist}(x, \partial \Omega)^{s}$.



$$\begin{aligned} (-\Delta)^s u &= f \quad \text{in } \Omega, \\ u &= 0 \quad \text{in } \mathbb{R}^2 \setminus \overline{\Omega}. \end{aligned} \tag{\star}$$

We obtain a precise description of the solution:

Theorem (HG, Mazzeo, Louca / HG, Stephan, Stocek 2022) For Ω polygon and $f \in C^{\infty}(\overline{\Omega})$, the solution u to (\star) admits an asymptotic expansion at the edges and corners: Edge $E: u(x) \sim \operatorname{dist}(x, E)^{s}$, Corner $C: u(x) \sim \operatorname{dist}(x, C)^{\lambda}$,

Edge-Corner: $u(x) \sim \operatorname{dist}(x, C)^{\lambda-s} \cdot \operatorname{dist}(x, E)^{s}$,

up to logarithmic terms.

Here, λ relates to the smallest eigenvalue of an elliptic 2nd order differential operator on S^2_+ .

naa

Corner singularity: Dependence on angle and s

 $s = \frac{1}{2}$ classical: J. A. Morrison, J. A. Lewis '76, Walden '74.

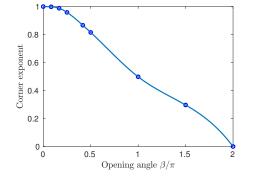


Figure: Corner exponent against opening angle χ , $s = \frac{1}{2}$.

Corner singularity: Dependence on angle and s

 $s = \frac{1}{2}$ classical: J. A. Morrison, J. A. Lewis '76, Walden '74.

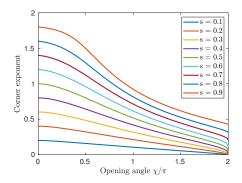


Figure: HG, Stephan, Stocek 2022: Corner exponent against opening angle χ for different values of *s*.

Theorem: $\lambda(s,\chi) > \max\{s - \frac{1}{2}, 0\}$ increasing in *s*, decreasing in angle χ .

Classical work: Edge behaviour of solutions

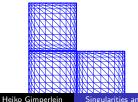
Theorem (Ros-Oton, Serra 2017 / Grubb 2015)

Let
$$s \neq \frac{1}{2}$$
, Ω sufficiently smooth, $f \in L^{\infty}(\Omega)$.
Then $\frac{u(x)}{\operatorname{dist}(x,\partial\Omega)^s} \in C^{\alpha}$ for some $\alpha > 0$.
Logarithmic corrections for $s = \frac{1}{2}$.

Theorem (Acosta, Borthagaray 2017)

Let Ω convex polyhedron. Then quasi-optimal convergence on β -graded meshes:

$$\|u-u_h\|_{H^s} \lesssim h^{\min\{rac{\beta}{2},2-s\}-\varepsilon}.$$



Singularities and high-order FEM for fractional Laplacian

Theorem (Ros-Oton, Serra 2017 / Grubb 2015)

Let
$$s \neq \frac{1}{2}$$
, Ω sufficiently smooth, $f \in L^{\infty}(\Omega)$.
Then $\frac{u(x)}{\operatorname{dist}(x,\partial\Omega)^s} \in C^{\alpha}$ for some $\alpha > 0$.
Logarithmic corrections for $s = \frac{1}{2}$.

Theorem (Acosta, Borthagaray 2017)

Let Ω convex polyhedron. Then quasi-optimal convergence on β -graded meshes:

$$\|u-u_h\|_{H^s} \lesssim h^{\min\{\frac{\beta}{2},2-s\}-\varepsilon}.$$

Borthagaray, Nochetto, et al.: Graded meshes using Besov space estimates

伺 ト イヨ ト イヨト

Classical work: Edge behaviour of solutions

Theorem (Ros-Oton, Serra 2017 / Grubb 2015)

Let
$$s \neq \frac{1}{2}$$
, Ω sufficiently smooth, $f \in L^{\infty}(\Omega)$.
Then $\frac{u(x)}{\operatorname{dist}(x,\partial\Omega)^s} \in C^{\alpha}$ for some $\alpha > 0$.
Logarithmic corrections for $s = \frac{1}{2}$.

Theorem (Acosta, Borthagaray 2017)

Let Ω convex polyhedron. Then quasi-optimal convergence on β -graded meshes:

$$\|u-u_h\|_{H^s} \lesssim h^{\min\{\frac{\beta}{2},2-s\}-\varepsilon}$$

Today:

Geometric singular analysis,

approximation on graded meshes, hp and exponential convergence.

• • = • • = •

$$(-\Delta)^{s} u = f \quad \text{in } \Omega,$$

 $u = 0 \quad \text{in } \mathbb{R}^{2} \setminus \overline{\Omega}.$ (*)

We obtain a precise description of the solution:

Theorem (HG, Mazzeo, Louca / HG, Stephan, Stocek 2022) For Ω polygon and $f \in C^{\infty}(\overline{\Omega})$, the solution u to (\star) admits an asymptotic expansion at the edges and corners: Edge $E: u(x) \sim \operatorname{dist}(x, E)^{s}$, Corner $C: u(x) \sim \operatorname{dist}(x, C)^{\lambda}$, Edge-Corner: $u(x) \sim \operatorname{dist}(x, C)^{\lambda-s} \cdot \operatorname{dist}(x, E)^{s}$, up to logarithmic terms.

Resolving geometric singularities: Graded meshes & hp

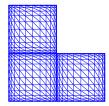
$$\begin{array}{ll} -(-\Delta)^{s}u=f & \quad \text{in }\Omega\\ u=0 & \quad \text{in }\mathbb{R}^{n}\setminus\overline{\Omega} \end{array}$$

Theorem (HG, Stephan, Stocek 2022)

Quasi-optimal convergence of finite elements on β -graded meshes:

$$\|u-u_h\|_{ ilde{H}^s} \lesssim h^{\min\{rac{eta}{2},2-s\}} |\log^*(h)|$$

related work on BEM: von Petersdorff, Stephan 1990

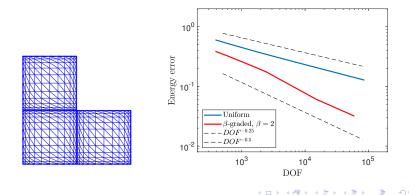


Resolving geometric singularities: Graded meshes & hp

Theorem (HG, Stephan, Stocek 2022)

Quasi-optimal convergence of finite elements on β -graded meshes:

$$\|u-u_h\|_{ ilde{H}^s} \lesssim h^{\min\{rac{eta}{2},2-s\}} |\log^*(h)|$$
 .



Theorem (HG, Stephan, Stocek 2022)

Quasi-optimal convergence of finite elements on β -graded meshes:

$$\|u-u_h\|_{ ilde{H}^s} \lesssim h^{\min\{rac{eta}{2},2-s\}} |\log^*(h)| \; .$$

Theorem (HG, Stephan, Stocek 2022)

Doubled convergence rate of p-version on quasi-uniform mesh:

$$\|u-u_{hp}\|_{\widetilde{H}^s}\lesssim \left(rac{h^{1/2}}{p}
ight)|\log^*(h/p^2)|\;.$$

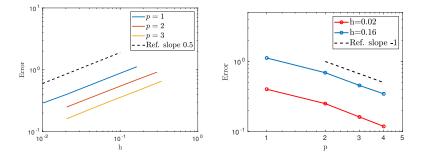
BEM: Bespalov, Heuer 2005 - 2010

Resolving geometric singularities: Graded meshes & hp

Theorem (HG, Stephan, Stocek 2022)

Doubled convergence rate of p-version on quasi-uniform mesh:

$$\|u-u_{hp}\|_{\widetilde{H}^s}\lesssim \left(rac{h^{1/2}}{p}
ight)|\log^*(h/p^2)|$$
.



Heiko Gimperlein Singularities and high-order FEM for fractional Laplacian

∃ ► < ∃ ►</p>

Theorem (HG, Stephan, Stocek 2022)

Quasi-optimal convergence of finite elements on β -graded meshes:

$$\|u-u_h\|_{ ilde{H}^s} \lesssim h^{\min\{rac{eta}{2},2-s\}} |\log^*(h)| \;.$$

Theorem (HG, Stephan, Stocek 2022)

Doubled convergence rate of p-version on quasi-uniform mesh:

$$\|u-u_{hp}\|_{ ilde{H}^s}\lesssim \left(rac{h^{1/2}}{p}
ight)|\log^*(h/p^2)|\;.$$

Theorem (HG, Stephan, Stocek 2022)

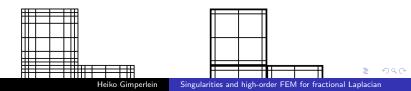
Exponential convergence of hp finite elements on geometrically graded meshes:

$$\|u-u_h\|_{\widetilde{H}^s}\lesssim \exp(-C(DOF)^{1/4})$$
 .

BEM: Heuer, Maischak, Stephan 1999, Holm, Maischak, Stephan 2008.

(−Δ)^s & countably normed spaces: Faustmann, Marcati, Melenk, Schwab 2022.

Geometrically graded meshes with $\sigma = 0.5, 0.17$ p = 1 at $\partial \Omega$, linear increasing with elements

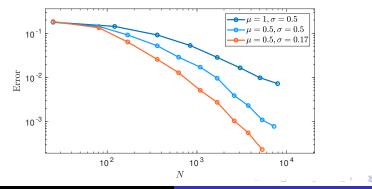


Theorem (HG, Stephan, Stocek 2022)

Exponential convergence of hp finite elements on geometrically graded meshes:

$$\|u-u_h\|_{ ilde{H}^s}\lesssim \exp(-{ extsf{C}}({ extsf{DOF}})^{1/4})$$
 .

 $(-\Delta)^{3/4}u = 1$ in $\Omega = [-1,1]^2$

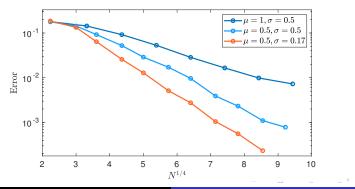


Theorem (HG, Stephan, Stocek 2022)

Exponential convergence of hp finite elements on geometrically graded meshes:

$$\|u-u_h\|_{ ilde{H}^s}\lesssim \exp(-{ extsf{C}}({ extsf{DOF}})^{1/4})$$
 .

 $(-\Delta)^{3/4}u = 1$ in $\Omega = [-1,1]^2$

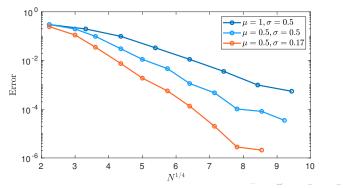


Theorem (HG, Stephan, Stocek 2022)

Exponential convergence of hp finite elements on geometrically graded meshes:

$$\|u-u_h\|_{ ilde{H}^s}\lesssim \exp(-{C}({DOF})^{1/4})$$
 .

 $(-\Delta)^{1/4}u = 1$ in $\Omega = [-1,1]^2$



Theorem (HG, Stephan, Stocek 2022)

Quasi-optimal convergence of finite elements on β -graded meshes:

$$\|u-u_h\|_{\tilde{H}^s} \lesssim h^{\min\{rac{\beta}{2},2-s\}-\varepsilon}$$

Theorem (HG, Stephan, Stocek 2022)

Doubled convergence rate of p-version on quasi-uniform mesh:

$$\|u-u_{hp}\|_{\tilde{H}^s}\lesssim \left(rac{h}{p^2}
ight)^{rac{1}{2}-arepsilon}$$

Theorem (HG, Stephan, Stocek 2022)

Exponential convergence of hp finite elements on geometrically graded meshes:

$$\|u-u_h\|_{\widetilde{H}^s}\lesssim \exp(-C(DOF)^{1/4})$$
 .

Theorem (EPS, Gimperlein, Stocek 2022)

Exponential convergence of hp finite elements on geometrically graded rectangular meshes:

$$\|u-u_h\|_{\widetilde{H}^s}\lesssim \exp(-\mathcal{C}(DOF)^{1/4})\;.$$

 $(-\Delta)^{s}$ & countably normed spaces: Faustmann, Marcati, Melenk, Schwab 2022.

Combine their regularity result with approximation arguments by Maischak (Habilitation 2004), which establish exponential convergence for $u \in B^1_\beta(\Omega)$ (countably normed space of Babuska-Guo).

Ideas of proof: exponential convergence

 $(-\Delta)^{s}$ & countably normed spaces: Faustmann, Marcati, Melenk, Schwab 2022.

Combine their regularity result with approximation arguments by Maischak (Habilitation 2004), which establish exponential convergence for $u \in B^1_\beta(\Omega)$ (countably normed space of Babuska-Guo).

$$H^{k,1}_eta(\Omega)=\{u\in L^2(\Omega): \Phi_{eta,lpha,1}\partial^lpha u\in L^2(\Omega) orall 1\leq |lpha|\leq k\}$$

 $u \in B^1_{\beta}(\Omega)$ if $u \in \bigcap_{k \ge 1} H^{k,1}_{\beta}(\Omega)$ and there exist $C, d \ge 1$ such that for all $k \ge 1$ and all $|\alpha| = k$:

$$\|\Phi_{eta,lpha,1}\partial^{lpha}u\|_{L^2(Q)}\leq Cd^{k-1}(k-1)!$$

For $[0, 1]^2$

$$\Phi_{\beta,(\alpha_1,\alpha_2),1} = \begin{cases} x^{\beta+\alpha_1-1} & \text{for } \alpha_1 \ge 1, \alpha_2 = 0\\ x^{\beta+\alpha_1-1}y^{\alpha_2} + x_1^{\alpha}y^{\beta+\alpha_2-1} & \text{for } \alpha_1 \ge 1, \alpha_2 \ge 1\\ y^{\beta+\alpha_2-1} & \text{for } \alpha_T = 0, \alpha_2 \ge 1. \end{cases}$$
Heiko Gimperlein Singularities and high-order FEM for fractional Laplacian

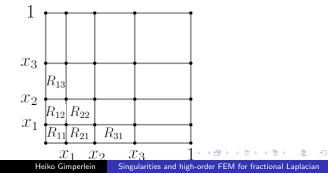
Ideas of proof: exponential convergence

$$H^{k,1}_{\beta}(\Omega) = \{ u \in L^2(\Omega) : \Phi_{\beta,\alpha,1} \partial^{\alpha} u \in L^2(\Omega) \forall 1 \le |\alpha| \le k \}$$

 $u \in B^1_\beta(\Omega)$ if $u \in \bigcap_{k \ge 1} H^{k,1}_\beta(\Omega)$ and there exist $C, d \ge 1$ such that for all $k \ge 1$ and all $|\alpha| = k$:

$$\|\Phi_{\beta,\alpha,1}\partial^{lpha}u\|_{L^2(Q)}\leq Cd^{k-1}(k-1)!$$

Local approximation for $u \in B^1_\beta(\Omega)$: interior elements u^A , edge u^B , u^C , Corner u^D



$$\begin{aligned} (-\Delta)^s u &= f \quad \text{in } \Omega, \\ u &= 0 \quad \text{in } \mathbb{R}^2 \setminus \overline{\Omega}. \end{aligned} \tag{(\star)}$$

The results on quasi-uniform and alg. graded meshes depend on a precise description of the solution:

Theorem (HG, Mazzeo, Louca / HG, Stephan, Stocek 2022)

For Ω polygon and $f \in C^{\infty}(\overline{\Omega})$, the solution u to (\star) admits an asymptotic expansion at the edges and corners:

Edge E: $u(x) \sim \operatorname{dist}(x, E)^{s}$, Corner C: $u(x) \sim \operatorname{dist}(x, C)^{\lambda}$, Edge-Corner: $u(x) \sim \operatorname{dist}(x, C)^{\lambda-s} \cdot \operatorname{dist}(x, E)^{s}$,

up to logarithmic terms.

伺 ト イヨト イヨト

Fractional Dirichlet problem:

$$(-\Delta)^{\frac{1}{2}}u = f \quad \text{in } \Omega,$$

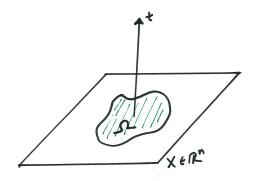
$$u = 0 \quad \text{in } \mathbb{R}^n \setminus \overline{\Omega}.$$
 (*)

Harmonic extension of *u*:

$$egin{aligned} \Delta_{(X,t)} & U(X,t) &= 0 & ext{for } X \in \mathbb{R}^n ext{ and } t > 0 \ & U(X,0) &= u(X) & ext{for } X \in \mathbb{R}^n \ & U(X,t)
ightarrow 0 & ext{as } |X,t|
ightarrow \infty \end{aligned}$$

A B M A B M

Extension approach, s = 1/2



Fractional Dirichlet problem:

$$(-\Delta)^{\frac{1}{2}}u = f \quad \text{in } \Omega,$$

$$u = 0 \quad \text{in } \mathbb{R}^n \setminus \overline{\Omega}.$$
 (*)

Mixed problem:

$$\begin{array}{rll} \Delta_{(X,t)} U(X,t) &= 0 & \text{for } X \in \mathbb{R}^n \text{ and } t > 0 \\ -\lim_{t \to 0^+} \partial_t U(X,t) &= f(X) & \text{for } X \in \Omega & (\star\star) \\ U(X,0) &= 0 & \text{for } X \in \mathbb{R}^n \setminus \overline{\Omega} \\ U(X,t) \to 0 & \text{as } |X,t| \to \infty \end{array}$$

()

Extension approach, s = 1/2

Fractional Dirichlet problem:

$$(-\Delta)^{\frac{1}{2}}u = f \quad \text{in } \Omega,$$

$$u = 0 \quad \text{in } \mathbb{R}^n \setminus \overline{\Omega}.$$
 (*)

Mixed problem:

$$\begin{array}{rll} \Delta_{(X,t)} U(X,t) &= 0 & \text{for } X \in \mathbb{R}^n \text{ and } t > 0 \\ -\lim_{t \to 0^+} \partial_t U(X,t) &= f(X) & \text{for } X \in \Omega & (\star\star) \\ U(X,0) &= 0 & \text{for } X \in \mathbb{R}^n \setminus \overline{\Omega} \\ U(X,t) \to 0 & \text{as } |X,t| \to \infty \end{array}$$

Theorem (Caffarelli, Silvestre 2007, $\Omega=\mathbb{R}^n)$

• $(-\Delta)^{1/2}$ coincides with the Dirichlet-to-Neumann operator:

$$T: u \mapsto -U_t(x, 0).$$

• $(\star) \Leftrightarrow (\star\star) \Leftrightarrow Tu = f$.

Fractional Dirichlet problem:

$$(-\Delta)^{s} u = f \quad \text{in } \Omega,$$

$$u = 0 \quad \text{in } \mathbb{R}^{n} \setminus \overline{\Omega}.$$
 (*)

Extension: (degenerately elliptic for $s \neq 1/2$)

$$\begin{aligned} \nabla_{(X,t)} \cdot (t^{1-2s} \nabla_{(X,t)} U(X,t)) &= 0 & \text{for } X \in \mathbb{R}^n \text{ and } t > 0 \\ U(X,0) &= u(X) & \text{for } X \in \mathbb{R}^n \\ U(X,t) \to 0 & \text{as } |X,t| \to \infty \end{aligned}$$

Fractional Dirichlet problem:

$$(-\Delta)^{s} u = f \quad \text{in } \Omega,$$

 $u = 0 \quad \text{in } \mathbb{R}^{n} \setminus \overline{\Omega}.$ (*)

Mixed PDE problem:

$$\begin{aligned} \nabla_{(X,t)} \cdot (t^{1-2s} \nabla_{(X,t)} U(X,t)) &= 0 & \text{for } X \in \mathbb{R}^n \text{ and } t > 0 \\ -\lim_{t \to 0^+} t^{1-2s} \partial_t U(X,t) &= f(X) & \text{for } X \in \Omega \\ U(X,0) &= 0 & \text{for } X \in \mathbb{R}^n \setminus \overline{\Omega} \\ U(X,t) \to 0 & \text{as } |X,t| \to \infty \end{aligned}$$

3 🕨 🖌 3

Extension approach, $s \neq 1/2$

Fractional Dirichlet problem:

$$(-\Delta)^{s} u = f \quad \text{in } \Omega,$$

 $u = 0 \quad \text{in } \mathbb{R}^{n} \setminus \overline{\Omega}.$ (*)

Mixed PDE problem:

$$\begin{aligned} \nabla_{(X,t)} \cdot (t^{1-2s} \nabla_{(X,t)} U(X,t)) &= 0 & \text{for } X \in \mathbb{R}^n \text{ and } t > 0 \\ -\lim_{t \to 0^+} t^{1-2s} \partial_t U(X,t) &= f(X) & \text{for } X \in \Omega \\ U(X,0) &= 0 & \text{for } X \in \mathbb{R}^n \setminus \overline{\Omega} \\ U(X,t) \to 0 & \text{as } |X,t| \to \infty \end{aligned}$$

Theorem (Caffarelli, Silvestre 2007, $\Omega = \mathbb{R}^n$)

•
$$(-\Delta)^s u = Tu = -c_{n,s} \lim_{t \to 0^+} t^{1-2s} \partial_t U.$$

• $(\star) \Leftrightarrow (\star \star \star) \Leftrightarrow Tu = f.$

Key observation: fractional \Leftrightarrow mixed PDE also for $\Omega \subset \mathbb{R}^n$.

Extension approach, $s \neq 1/2$

Fractional Dirichlet problem:

$$(-\Delta)^{s} u = f \quad \text{in } \Omega,$$

$$u = 0 \quad \text{in } \mathbb{R}^{n} \setminus \overline{\Omega}.$$
(*)

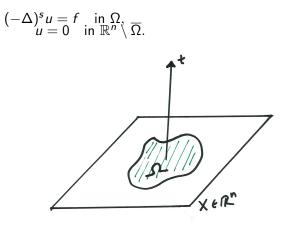
Mixed PDE problem:

$$\begin{aligned} \nabla_{(X,t)} \cdot (t^{1-2s} \nabla_{(X,t)} U(X,t)) &= 0 & \text{for } X \in \mathbb{R}^n \text{ and } t > 0 \\ -\lim_{t \to 0^+} t^{1-2s} \partial_t U(X,t) &= f(X) & \text{for } X \in \Omega \\ U(X,0) &= 0 & \text{for } X \in \mathbb{R}^n \setminus \overline{\Omega} \\ U(X,t) \to 0 & \text{as } |X,t| \to \infty \end{aligned}$$

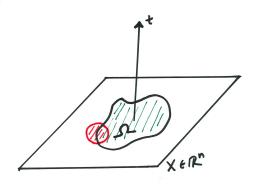
Key observation: fractional \Leftrightarrow mixed PDE also for $\Omega \subset \mathbb{R}^n$.

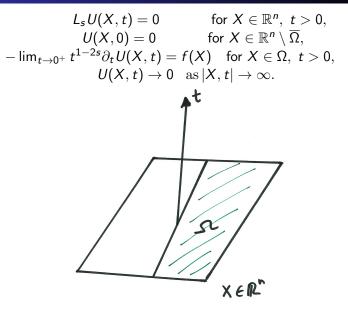
Consequence: relation to classical problems

We can use classical techniques for the singular analysis of mixed boundary problems.



Localisation:





Coordinates in half-space $(X, t) \in \mathbb{R}^{n+1}_+$: $X = (x, y) \in \mathbb{R} \times \mathbb{R}^{n-1}, t > 0.$

Fourier transform tangential to boundary

$$\mathcal{F}_{y \to \eta} \mathcal{L}_s = \partial_t^2 + \frac{1 - 2s}{t} \partial_t + \partial_x^2 - |\eta|^2 =: \widehat{\mathcal{L}}_s$$

Mixed boundary problem now becomes

$$\begin{split} \widehat{L_s}\widehat{U}(x,\eta,t) &= 0 \quad \text{in } \mathbb{R}^{n+1}_+, \\ \widehat{U}(x,\eta,0) &= 0 \quad \text{for } x < 0, \\ -\lim_{t \to 0^+} t^{1-2s}\partial_t\widehat{U}(x,\eta,0) &= \widehat{u}(x,\eta,0) \quad \text{for } x > 0. \\ U(X,t) \to 0 \quad \text{as } |X,t| \to \infty \end{split}$$

Local behaviour near $\partial \Omega$: $|\eta|^2$ lower order \rightarrow Consider $\eta = 0$ first. **Polar coordinates** in 2d

$$t = \rho \sin \theta, \ x = \rho \cos \theta$$
$$B(L_s) = \partial_{\rho}^2 + \frac{2 - 2s}{\rho} \partial_{\rho} + \frac{1}{\rho^2} \left(\partial_{\theta}^2 + (1 - 2s) \cot(\theta) \partial_{\theta} \right).$$

$$B(L_s) = \partial_{\rho}^2 + \frac{2-2s}{\rho} \partial_{\rho} + \frac{1}{\rho^2} \underbrace{\left(\partial_{\theta}^2 + (1-2s)\cot(\theta)\partial_{\theta}\right)}_{:=P_s}$$

Asymptotics from separation of variables: $U = \rho^{\nu} \phi(\theta) \rightarrow \text{eigenvalue problem:}$

$$P_s\phi = -\lambda(\nu)\phi$$

with the mixed boundary conditions

$$\theta^{1-2s}\partial_{\theta}\phi = 0$$
 at $\theta = 0$, $\phi = 0$ at $\theta = \pi$
where $\lambda(\nu) = (\nu + \frac{1}{2})^2 - (s - \frac{1}{2})^2$.

$$B(L_s) = \partial_{\rho}^2 + \frac{2-2s}{\rho}\partial_{\rho} + \frac{1}{\rho^2}\underbrace{\left(\partial_{\theta}^2 + (1-2s)\cot(\theta)\partial_{\theta}\right)}_{:=P_s}$$

Asymptotics from separation of variables: $U = \rho^{\nu} \phi(\theta) \rightarrow \text{eigenvalue problem:}$

$$P_{s}\phi = -\lambda(\nu)\phi$$

with the mixed boundary conditions

$$heta^{1-2s}\partial_ heta\phi=0 \ \ \ {
m at}\ heta=0, \ \ \ \phi=0 \ \ \ {
m at}\ heta=\pi$$

where $\lambda(\nu) = (\nu + \frac{1}{2})^2 - (s - \frac{1}{2})^2$.

Lemma

 P_s is self-adjoint and negative on $L^2([0,\pi], \sin^{1-2s}(\theta) d\theta)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

$$B(L_s) = \partial_{\rho}^2 + \frac{2-2s}{\rho} \partial_{\rho} + \frac{1}{\rho^2} \underbrace{\left(\partial_{\theta}^2 + (1-2s)\cot(\theta)\partial_{\theta}\right)}_{:=P_s}$$

Asymptotics from separation of variables:

$$P_{s}\phi = -\lambda(\nu)\phi$$

with the mixed boundary conditions

$$\theta^{1-2s}\partial_{\theta}\phi = 0$$
 at $\theta = 0$, $\phi = 0$ at $\theta = \pi$

where $\lambda(\nu) = (\nu + \frac{1}{2})^2 - (s - \frac{1}{2})^2$.

Lemma

 $\begin{array}{l} P_{s} \text{ is self-adjoint and negative on } L^{2}\left([0,\pi],\sin^{1-2s}(\theta)\,d\theta\right).\\ \hline Classical \ (Zaremba) \ s=1/2:\\ \hline Eigenvalues: \ \lambda_{j}=\left(j+\frac{1}{2}\right)^{2}, \ eigenfunctions: \ \phi_{j}=\cos\left(\left(j+\frac{1}{2}\right)\theta\right),\\ \hline Singular \ expansion \ u\sim\sum u_{j}(y)x^{j+\frac{1}{2}} \ with \ exponents \ \nu_{j}=j+\frac{1}{2}. \end{array}$

$$B(L_s) = \partial_{\rho}^2 + \frac{2-2s}{\rho} \partial_{\rho} + \frac{1}{\rho^2} \underbrace{\left(\partial_{\theta}^2 + (1-2s)\cot(\theta)\partial_{\theta}\right)}_{:=P_s}$$

Asymptotics from separation of variables:

$$P_{s}\phi = -\lambda(\nu)\phi$$

with the mixed boundary conditions

$$heta^{1-2s}\partial_ heta\phi=0$$
 at $heta=0,$ $\phi=0$ at $heta=\pi$

where $\lambda(\nu) = (\nu + \frac{1}{2})^2 - (s - \frac{1}{2})^2$.

Lemma

 $\begin{array}{l} P_s \text{ is self-adjoint and negative on } L^2\left([0,\pi],\sin^{1-2s}(\theta)\,d\theta\right).\\ \lambda_j^s = (j+s)(j+1-s),\,\varphi_j^s = \sin^s(\theta)P_j^s(\cos(\theta)),\\ \text{Singular exponents: } \nu_j^s = j+s.\\ \text{Here } P_j^s \text{ is the associated Legendre function of the first kind.} \end{array}$

$$B(L_s) = \partial_{\rho}^2 + \frac{2-2s}{\rho} \partial_{\rho} + \frac{1}{\rho^2} \underbrace{\left(\partial_{\theta}^2 + (1-2s)\cot(\theta)\partial_{\theta}\right)}_{:=P_s}$$

Asymptotics from separation of variables:

$$P_{s}\phi = -\lambda(\nu)\phi$$

with the mixed boundary conditions

$$\theta^{1-2s}\partial_{\theta}\phi = 0$$
 at $\theta = 0$, $\phi = 0$ at $\theta = \pi$

where
$$\lambda(\nu) = (\nu + \frac{1}{2})^2 - (s - \frac{1}{2})^2$$
.

Corollary

The solution to $(-\Delta)^s u = f$ admits a polyhomogeneous expansion near $\partial \Omega$ with exponents $\nu_j = j + s$.

ヘロト ヘロト ヘヨト

э

The analysis of the model problem in the half space implies corresponding results for smooth $\Omega \subseteq \Gamma$, using pseudodifferential techniques. $(-\Delta)^s u = f$ in Ω ,

$$(-\Delta)^{s} u = f \quad \text{in } \Omega, u = 0 \quad \text{in } \mathbb{R}^{n} \setminus \overline{\Omega}.$$
 (*)

Corollary

The solution to $(-\Delta)^{s}u = f$ admits a polyhomogeneous expansion near $\partial\Omega$ with exponents $\nu_{j} = j + s$, i.e. $u \in d^{s}C^{\infty}(\overline{\Omega})$, d boundary defining function.

approach generalizes to manifolds with corners, e.g. polygons $\subseteq \mathbb{R}^2,$ and lower-order perturbations.

伺 ト イヨト イヨト

Structure of solution operator

The analysis of the model problem in the half space implies corresponding results for smooth $\Omega \subseteq \Gamma$, using pseudodifferential techniques. $(-\Delta)^{s} \mu = f$ in Ω .

$$(-\Delta)^{s} u = f \quad \text{in } \Omega, u = 0 \quad \text{in } \mathbb{R}^{n} \setminus \overline{\Omega}.$$
 (*)

Solution operator $S: f \mapsto u$ has distributional kernel K(X, Y):

$$u(X) = Sf(X) = \int K(X, Y)F(Y) dY$$

where
$$F = L_s(\tilde{f}), \frac{\partial \tilde{f}}{\partial \nu} = f$$
.

Example: Model problem

$$\mathcal{K}(X,Y) = \sum_{j} \mathcal{B}_{j} \varphi_{j}^{s} \otimes \varphi_{j}^{s}$$

where

 $B_{j}(\rho,\tilde{\rho}) = c_{j}(H(\tilde{\rho}-\rho)I_{j+\frac{1}{2}}(\rho)K_{j+\frac{1}{2}}(\tilde{\rho}) - H(\rho-\tilde{\rho})K_{j+\frac{1}{2}}(\rho)I_{j+\frac{1}{2}}(\tilde{\rho})).$

Structure of solution operator

The analysis of the model problem in the half space implies corresponding results for smooth $\Omega \subseteq \Gamma$, using pseudodifferential techniques. $(-\Delta)^s u = f$ in Ω ,

$$u=0$$
 in $\mathbb{R}^n\setminus\overline{\Omega}$.

Theorem (HG, Louca, Mazzeo)

- Distributional kernel K(X, Y) is C^{∞} in $\Omega \times \Omega \setminus \bigtriangleup \Omega$.
- K(X, Y) lifts to polyhomogeneous distribution on a blown up space Z²_{iie} → Ω × Ω, i.e. in suitable "polar coordinates" it is a smooth function with classical asymptotic expansions at all boundary faces and product type expansions at corners.

Nontrivial even for model problem: $K(X, Y) = \sum_{i} B_{j} \varphi_{i}^{s} \otimes \varphi_{i}^{s}$.

The proof of this theorem proceeds with a corresponding fine analysis of the solution operator to the extended problem for L_s in \mathbb{R}^{n+1}_+ with mixed boundary conditions.

 (\star)

$$(-\Delta)^{s} u = f \text{ in } \Omega,$$

 $u = 0 \text{ in } \mathbb{R}^{n} \setminus \overline{\Omega}.$

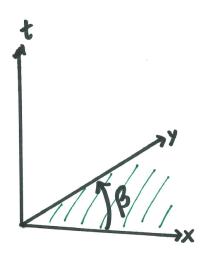
- Fractional problems interesting & unify FEM/BEM
- Asymptotic expansion of solutions near edges and corners
- Quasi-optimal convergence rates on graded meshes / Exponential convergence hp
- Numerical examples confirm analytical expectations
- Construction of solution operator by singular/pseudodifferential analysis of local degenerate elliptic problem in Rⁿ⁺¹₊ with mixed boundary conditions

HG, Stephan, Stocek, *hp*-finite element approximation for the fractional Laplacian on uniform and geometrically graded meshes, preprint 2022.

HG, Stephan, Stocek, Corner singularities for the fractional Laplacian and finite element approximation, draft 2022.

Polygonal domains: Model problem

Corner problem: opening angle β



Spherical coordinates

$$t = r\sin(\theta), \ x = r\cos(\theta)\cos(\phi), \ y = r\cos(\theta)\sin(\phi)$$
$$\widetilde{L}_{s}U(r,\theta,\varphi) = \partial_{r}^{2}U + \frac{3-2s}{r}\partial_{r}U + \frac{1}{r^{2}}\underbrace{(\Delta_{\theta,\varphi}U + (1-2s)\tan(\theta)\partial_{\theta}U)}_{=:\widetilde{P}_{s}U}.$$

Here $\Delta_{\theta,\varphi}$ is the Laplace-Beltrami operator on the 2-sphere S^2 :

$$\Delta_{ heta,arphi} U = rac{1}{\sin(heta)} \partial_ heta(\sin(heta) \partial_ heta U) + rac{1}{\sin^2(heta)} \partial_arphi^2 U.$$

∃ ► < ∃ ►</p>

Extension approach for polygons

Spherical coordinates

$$t = r\sin(\theta), \ x = r\cos(\theta)\cos(\phi), \ y = r\cos(\theta)\sin(\phi)$$

$$\widetilde{L}_{s}U(r,\theta,\varphi) = \partial_{r}^{2}U + \frac{3-2s}{r}\partial_{r}U + \frac{1}{r^{2}}\underbrace{(\Delta_{\theta,\varphi}U + (1-2s)\tan(\theta)\partial_{\theta}U)}_{=:\widetilde{P}_{s}U}.$$

Separation of variables:

 \rightsquigarrow self-adjoint spectral problem in $L^2(S^2_+, \cos(\theta)^{1-2s}dS)$:

$$\begin{split} \widetilde{P}_{s}\psi &= -\lambda\psi \quad \text{ on } S^{2}_{+}, \\ \theta^{1-2s}\lim_{\theta\to 0^{+}}\partial_{\theta}\psi &= 0 \quad \text{ for } \phi\in(0,\beta), \\ \psi &= 0 \quad \text{ for } \phi\notin(0,\beta), \theta = \pi/2 \end{split}$$

Asymptotic expansion near corner: $u \sim \sum r^{\lambda_j} \log(r)^k u_{jk}(\theta, \phi)$.