Lecture 4
January 27, 2020

Last week: We calculated some a posteriori error estimates
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see slides for calculation
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These estimates allow us to create fast adaptive algorithms.
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Here 7 is the error in A. We refine the computation where n(A) is “big”.

1 Adaptive Algorithms

Adaptive Algorithm:
1. Start from a very coarse discretisation (mesh)
2. Solve the FEM equation Ac = F
3. Compute n(A) for all A
4. Refine those A where n(A) is “big”

(@) Mark A where n(A) is big «— Supply a criterion
(b) Refine those A +— Supply a refinement procedure

Adaptive algorithms converge faster than standard uniform mesh refinement.

Question: Why should narrow triangles be avoided?

e Narrow triangles are not good because the long edge dominates the error estimate, and the
short edge causes the linear algebra problem to be ill-conditioned, thus difficult to solve. This
means our adaptive algorithm must avoid creating long/narrow triangles. This is done a priori.

Question: When is adaptive FEM not a good idea?

e If the solution is smooth, a uniform mesh will be fine. Using the apdaptive algorithm means

wasting time calculating unnecessary error estimates.

o If the PDE is inhomogeneous sometimes deriving the error estimates is very difficult or expen-

sive to calculate.

Question: What if the boundary is curved?

e Naive: Refine the mesh close to 0f2


http://www.macs.hw.ac.uk/~hg94/na20/na20_apost.pdf

e Use a polynomials for the basis functions rather than a linear basis.

Up Next: Abstract framework for FEM: in arbitrary dimension, for arbitrary (elliptic) PDEs, in a
functional analytic framework, repeating what we’ve seen in 1D. In particular:
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FE eq.

In higher dimensions. we will study

a(u,v) ::/QVwVU:/va = f(v) YveH,

corresponding to —Au = f.

2 General Setup for Finite Elements
Let H be a Hilbert space i.e. a vector space with a scalar product (u, v) i such that

1
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defines a norm and H is complete (important when studying convergence). Think: H = H}(Q2) the
space of functions in which the PDE solution lies. Also let H;, C H be a finite dimensional subspace
— think piecewise linear continuous functions associated to a discretisation of €2/. In 1D, splitting €2
into intervals, in 2D, splitting in to triangles.

PDE: a(u,v) = f(v) Yve H

FE eqg. : a(uh,vh) = f(’l)h) Yy, € Hp,

2.1 What does this mean?

What is af(-, )?

e ltis a bilinear form, a : H x H — R (or C).

a(Auy + pug, v) = Aa(ug,v) + pa(ug, v)
a(u, Ay + pvg) = . .. Yu, v, u1,u2,v1,v2 € H VA, € R

e It's continuous
la(u,v) < Cllyllullvlla
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e It is coercive:
a(u,u) > allul|fy Yue H
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where o = min(%, %)

Whatis f?

The function f is linear and continuous, f : H — R.

2.2 How well is the solution to a(u,v) = f(v) approximated by the FE equation?
Examples

1.
a(u,v) = /((%u)(@xv) in Q= 10,1]
Q

H = H}(Q), Hy, piecewise linear continuous functions

Continuity «+— C-S inequality

Coercivity «— P-F inequality
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So continuous if f € L? (orif f € H~1(Q)).

Continuity of f

2. In higher dimensions,

a(u,v) ::/QVU-VU:/Q]‘U = f(v) Yv € H,

where
H = H(Q) = {v e L*Q),0,,v € L*(Q) Vj}.

Members of this set are called “functions of finite energy”, and the energy norm is
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Hy, is any subspace of H of finite dimension. The choice of subspace is motivated by knowl-
edge of the solution or ease of implementation. For example if you’re solving a wave equation,
you may choose cos and sin as basis functions; if the solution has kinks a linear functions
will be better; or if the solution is smooth, you could use high order polynomials. Usually we
do not think of H}, as fixed but consider a family {Hh}hejg(o’oo) of subspaces of H such that
Hy, O Hy, whenever hy < hs.

U H; isdense in H

hel

For the theory, think of spaces of functions, not of meshes/discretisations.



e Continuity

< ( /Q <vu>2>% ( /Q <w>2)é <l ol

a(u, u) = /Q (V) > aull?,

which follows from a higher dimensional P-F inequality.

la(u, )| = ‘/ Vu- Vo
Q

o Coercivity

e Continuity of f follows from C-S inequality.

Does the bilinear form above actually still relate to a PDE?

Theorem 1. u € H{(Q) solves a(u,v) = f(v) Vv € HE(Q) if and only if

—Au=finQ
u = 0 on N
Proof. Identical to the 1D case, using Green’s theorem. O

This is not restricted to the diffusion equation, we could add more terms. Let A € R™*" be
positive definite. Then the theorem becomes

a(u,v) = /Q(A(x)Vu) -V + b(z)uv + € (Vu)v = f(v) Vo € HY(Q)
— —V(A(x)Vu)+cVu+bu=finQ
u = 0on N

If a(-,-) is coercive, this places large restrictions on b(x),c. However we actually only require the
highest order part of the operator to be coercive. For now, we assume all of a(-, -) is coercive. Could
extend theory to

a(u,v) = a1(v,u) + az(u,v).
—_—— N —
coercive compact

In this abstract setting, one obtains

Theorem 2 (Cea’s Lemma). Letu € H be the solution to a(u,v) = f(v)Yv € H anduy, € Hy, be
the solution to a(up,vy) = f(vy) Yo, € Hy. Then

lu—up|lg <C inf |Ju— vl H.
vp,€Hp,

That is, the FE error is less than a constant times the error of the best possible approximation.

If | Hy, is dense in H, the right hand side tends to 0 as » — 0 and the method converges.

Next Week: Implementation of FEM

After that: Lax-Milgram and proof of Cea’s Lemma
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