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Last week: We calculated some a posteriori error estimates

‖u− uh‖H1(Ω) ≤ C · computable from uh︸ ︷︷ ︸
see slides for calculation

=⇒ 1√
C + 1

‖u− uh‖H1 ≤ sup
‖v‖H1=1

R(v) ≤ ‖u− uh‖H1

These estimates allow us to create fast adaptive algorithms.
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Here η is the error in ∆. We refine the computation where η(∆) is “big”.

1 Adaptive Algorithms

Adaptive Algorithm:

1. Start from a very coarse discretisation (mesh)

2. Solve the FEM equation A~c = ~F

3. Compute η(∆) for all ∆

4. Refine those ∆ where η(∆) is “big”

(a) Mark ∆ where η(∆) is big←− Supply a criterion

(b) Refine those ∆←− Supply a refinement procedure

Adaptive algorithms converge faster than standard uniform mesh refinement.

Question: Why should narrow triangles be avoided?

• Narrow triangles are not good because the long edge dominates the error estimate, and the
short edge causes the linear algebra problem to be ill-conditioned, thus difficult to solve. This
means our adaptive algorithm must avoid creating long/narrow triangles. This is done a priori.

Question: When is adaptive FEM not a good idea?

• If the solution is smooth, a uniform mesh will be fine. Using the apdaptive algorithm means
wasting time calculating unnecessary error estimates.

• If the PDE is inhomogeneous sometimes deriving the error estimates is very difficult or expen-
sive to calculate.

Question: What if the boundary is curved?

• Naıve: Refine the mesh close to ∂Ω
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• Use a polynomials for the basis functions rather than a linear basis.

Up Next: Abstract framework for FEM: in arbitrary dimension, for arbitrary (elliptic) PDEs, in a
functional analytic framework, repeating what we’ve seen in 1D. In particular:∫

Ω
(∂xu)(∂xv) := a(u, v) =︸︷︷︸

FE eq.

∫
Ω
fv := f(v)

In higher dimensions. we will study

a(u, v) :=

∫
Ω
∇u · ∇v =

∫
Ω
fv := f(v) ∀v ∈ H,

corresponding to −∆u = f .

2 General Setup for Finite Elements

Let H be a Hilbert space i.e. a vector space with a scalar product 〈u, v〉H such that

〈u, v〉
1
2
H := ‖u‖H ,

defines a norm and H is complete (important when studying convergence). Think: H = H1
0 (Ω) the

space of functions in which the PDE solution lies. Also let Hh ⊆ H be a finite dimensional subspace
– think piecewise linear continuous functions associated to a discretisation of Ω/. In 1D, splitting Ω
into intervals, in 2D, splitting in to triangles.

PDE: a(u, v) = f(v) ∀v ∈ H

FE eq. : a(uh, vh) = f(vh) ∀vh ∈ Hh

2.1 What does this mean?

What is a(·, ·)?

• It is a bilinear form, a : H ×H → R (or C).

a(λu1 + µu2, v) = λa(u1, v) + µa(u2, v)

a(u, λv1 + µv2) = . . . ∀u, v, u1, u2, v1, v2 ∈ H,∀λ, µ ∈ R

• It’s continuous
|a(u, v) ≤ C‖y‖H‖v‖H

In 1D: ∣∣∣∣∫
Ω

(∂xu)(∂xv)

∣∣∣∣ ≤︸︷︷︸
C-S6=

(∫
(∂xu)2

) 1
2
(∫

(∂xv)2

) 1
2

≤ ‖u‖H1‖v‖H1 ∀u, v ∈ H
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• It is coercive:
a(u, u) ≥ α‖u‖2H1 ∀u ∈ H

In 1D:
a(u, u) =

∫
Ω

(∂xu)2 ≥︸︷︷︸
P-F6=

C

2

∫
Ω
u2 +

1

2

∫
Ω

(∂xu)2 ≥ α‖u‖H1 ,

where α = min(1
2 ,

C
2 )

What is f?
The function f is linear and continuous, f : H → R.

2.2 How well is the solution to a(u, v) = f(v) approximated by the FE equation?

Examples

1.
a(u, v) =

∫
Ω

(∂xu)(∂xv) in Ω = [0, 1]

• H = H1
0 (Ω), Hh piecewise linear continuous functions

• Continuity←− C-S inequality

• Coercivity←− P-F inequality

• Continuity of f ∣∣∣∣∫
Ω
fv

∣∣∣∣ ≤ (∫
Ω
f2

) 1
2
(∫

Ω
v2

) 1
2

= ‖f‖L2‖v‖L2

≤ ‖f‖L2‖v‖H1 = C‖v‖H1

So continuous if f ∈ L2 (or if f ∈ H−1(Ω)).

2. In higher dimensions,

a(u, v) :=

∫
Ω
∇u · ∇v =

∫
Ω
fv := f(v) ∀v ∈ H,

where
H = H1

0 (Ω) = {v ∈ L2(Ω), ∂xjv ∈ L2(Ω) ∀j}.

Members of this set are called “functions of finite energy”, and the energy norm is

‖u‖H =

[
‖u‖2L2(Ω) +

n∑
j=1

‖∂xju‖2L2(Ω)

] 1
2

Hh is any subspace ofH of finite dimension. The choice of subspace is motivated by knowl-
edge of the solution or ease of implementation. For example if you’re solving a wave equation,
you may choose cos and sin as basis functions; if the solution has kinks a linear functions
will be better; or if the solution is smooth, you could use high order polynomials. Usually we
do not think of Hh as fixed but consider a family {Hh}h∈I⊆(0,∞) of subspaces of H such that
Hh1 ⊇ Hh2 whenever h1 ≤ h2. ⋃

h∈I
Hh is dense in H

For the theory, think of spaces of functions, not of meshes/discretisations.
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• Continuity

‖a(u, v)‖ =

∣∣∣∣∫
Ω
∇u · ∇v

∣∣∣∣ ≤ (∫
Ω

(∇u)2

) 1
2
(∫

Ω
(∇v)2

) 1
2

≤ ‖u‖H1‖v‖H1

• Coercivity

a(u, u) =

∫
Ω

(∇u)2 ≥ α‖u‖2H1

which follows from a higher dimensional P-F inequality.

• Continuity of f follows from C-S inequality.

Does the bilinear form above actually still relate to a PDE?

Theorem 1. u ∈ H1
0 (Ω) solves a(u, v) = f(v)∀v ∈ H1

0 (Ω) if and only if

−∆u = f in Ω

u = 0 on ∂Ω

Proof. Identical to the 1D case, using Green’s theorem.

This is not restricted to the diffusion equation, we could add more terms. Let A ∈ Rn×n be
positive definite. Then the theorem becomes

a(u, v) =

∫
Ω

(A(x)∇u) · ∇v + b(x)uv + ~c (∇u)v = f(v)∀v ∈ H1
0 (Ω)

⇐⇒ −∇(A(x)∇u) + ~c ∇u+ bu = f in Ω

u = 0 on ∂Ω

If a(·, ·) is coercive, this places large restrictions on b(x), c. However we actually only require the
highest order part of the operator to be coercive. For now, we assume all of a(·, ·) is coercive. Could
extend theory to

a(u, v) = a1(v, u)︸ ︷︷ ︸
coercive

+ a2(u, v)︸ ︷︷ ︸
compact

.

In this abstract setting, one obtains

Theorem 2 (Cea’s Lemma). Let u ∈ H be the solution to a(u, v) = f(v)∀v ∈ H and uh ∈ Hh be
the solution to a(uh, vh) = f(vh) ∀vh ∈ Hh. Then

‖u− uh‖H ≤ C inf
vh∈Hh

‖u− vh‖H .

That is, the FE error is less than a constant times the error of the best possible approximation.

If
⋃
Hh is dense in H , the right hand side tends to 0 as h→ 0 and the method converges.

Next Week: Implementation of FEM

After that: Lax-Milgram and proof of Cea’s Lemma
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