Governing equations

Discretization using FEM

Freefem++ software

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Modelling a drum membrane using FEM

Aduamoah M. Louca N. Torkington D.

What is Numerical Analysis? 27 March 2018

Outline of the problem	Governing equations	Discretization using FEM	Freefem++ software
o			

1 Outline of the problem

Jutline

- Geometry of the drum
- What affects the sound of a drum?

2 Governing equations

- Oiscretization using FEM
- Freefem++ software

Outline of the problem	Governing equations	Discretization using FEM	Freefem++ software
Geometry of the drum			
Outline			

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

- Geometry of the drum
- What affects the sound of a drum?

2 Governing equations

Oiscretization using FEM

Freefem++ software

Outline of the problem ○●○○	Governing equations	Discretization using FEM	Freefem++ software
Geometry of the drum			

◆□ ▶ ◆■ ▶ ◆ ■ ◆ ● ◆ ● ◆ ● ◆

Outline of the problem ○●○○	Governing equations	Discretization using FEM	Freefem++ software
Geometry of the drum			

• \mathcal{C} - wooden body of drum

Outline of the problem ○●○○	Governing equations	Discretization using FEM	Freefem++ software
Geometry of the drum			

- $\bullet \ \mathcal{C}$ wooden body of drum
- Σ surface of the membrane

Outline of the problem ○●○○	Governing equations	Discretization using FEM	Freefem++ software
Geometry of the drum			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- \mathcal{C} wooden body of drum
- Σ surface of the membrane
- *a* membrane radius

Outline of the problem ○○●○	Governing equations	Discretization using FEM	Freefem++ software
What affects the sound of a drum	?		
Outline			

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Outline of the problem

- Geometry of the drum
- What affects the sound of a drum?

2 Governing equations

- Oiscretization using FEM
- Freefem++ software

Governing equations

Discretization using FEM

Freefem++ software

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

What affects the sound of a drum?

Governing equations

Discretization using FEM

Freefem++ software

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

What affects the sound of a drum?

What affects the sound of a drum?

Materials used

Governing equations

Discretization using FEM

Freefem++ software

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

What affects the sound of a drum?

- Materials used
 - Absorption of sound

Governing equations

Discretization using FEM

Freefem++ software

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What affects the sound of a drum?

- Materials used
 - Absorption of sound
 - Damping terms

Governing equations

Discretization using FEM

Freefem++ software

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What affects the sound of a drum?

- Materials used
 - Absorption of sound
 - Damping terms
 - Losses

Governing equations

Discretization using FEM

Freefem++ software

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

What affects the sound of a drum?

- Materials used
 - Absorption of sound
 - Damping terms
 - Losses
- Volume and shape

Outline of the problem	Governing equations •00000	Discretization using FEM

Mallet behaviour

Outline of the problem	Governing equations •00000	Discretization using FEM	Freefem++ software
Mallet behavi	our		

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

• u(t) - position of the center of gravity of mallet

Outline of the problem	Governing equations •00000	Discretization using FEM	Freefem++ software
Mallet behavi	our		

- u(t) position of the center of gravity of mallet
- $\delta := u(0) = 0.025m$

Outline of the problem	Governing equations ●00000	Discretization using FEM	Freefem++ software
Mallet behavi	our		

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

• u(t) - position of the center of gravity of mallet

•
$$\delta := u(0) = 0.025m$$

•
$$v_0 := -\frac{du}{dt}(0) = 1.4ms^{-1}$$

Outline of the problem	Governing equations	Discretization using FEM	Freefem++ software
Mallet behavi	our		

• u(t) - position of the center of gravity of mallet

•
$$\delta := u(0) = 0.025m$$

•
$$v_0 := -\frac{du}{dt}(0) = 1.4ms^{-1}$$

• F(t) - interaction force between mallet and membrane

Newton's 2nd Law

$$m\frac{d^2u}{dt^2}=F(t)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline of the problem	Governing equations 0●0000	Discretization using FEM	Freefem++ software
Force			

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Outline of the problem	Governing equations ○●○○○○	Discretization using FEM	Freefem++ software
Force			

<□ > < @ > < E > < E > E のQ @

• ${\it K}=1.6 imes 10^8 {\it Nm}^{lpha}$ - coefficient of mallet stiffness

Outline of the problem	Governing equations ○●○○○○	Discretization using FEM	Freefem++ software
Force			

- ${\it K}=1.6 imes 10^8 {\it Nm}^{lpha}$ coefficient of mallet stiffness
- W(t) mean displacement of membrane's area in contact with mallet

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Outline of the problem	Governing equations 000000	Discretization using FEM	Freefem++ software
Force			

- ${\it K}=1.6 imes 10^8 {\it Nm}^{lpha}$ coefficient of mallet stiffness
- W(t) mean displacement of membrane's area in contact with mallet
 - w(x, y, t) transverse displacement of the membrane

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• g(x, y) - spatial window

•
$$W(t) = \int_{\Sigma} w(x, y, t)g(x, y) dx dy$$

Outline of the problem	Governing equations ○●○○○○	Discretization using FEM	Freefem++ software
Force			

- ${\it K}=1.6 imes 10^8 {\it Nm}^{lpha}$ coefficient of mallet stiffness
- W(t) mean displacement of membrane's area in contact with mallet
 - w(x, y, t) transverse displacement of the membrane
 - g(x, y) spatial window

•
$$W(t) = \int_{\Sigma} w(x, y, t)g(x, y) dx dy$$

Force term

$$F(t) = K[(\delta - u(t) + W(t))^+]^{\alpha}$$

Outline of the problem 0000

Governing equations 00000

Discretization using FEM

Freefem++ software

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Outline of the problem	Governing equations	Discretization using FEM	Freefem++ software
Membrane ed	luation		

• f(t) - force density

Outline	the	problem

Governing equations 000000

Discretization using FEM

Freefem++ software

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

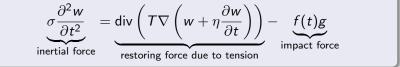
- f(t) force density
- $\bullet~\sigma$ area density of the membrane

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- f(t) force density
- $\bullet~\sigma$ area density of the membrane
- T membrane tension

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- f(t) force density
- $\bullet~\sigma$ area density of the membrane
- T membrane tension
- $\bullet~\eta$ viscoelastic damping coefficient


< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

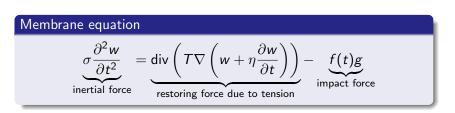
Membrane equation

- f(t) force density
- $\bullet~\sigma$ area density of the membrane
- T membrane tension
- η viscoelastic damping coefficient

$$\underbrace{\sigma \frac{\partial^2 w}{\partial t^2}}_{\text{inertial force}} = \underbrace{\operatorname{div} \left(T \nabla \left(w + \eta \frac{\partial w}{\partial t} \right) \right)}_{\text{restoring force due to tension}} - \underbrace{f(t)g}_{\text{impact force}}$$

Outline of the problem	Governing equations 000●00	Discretization using FEM	Freefem++ software
Membrane e	quation		

- Inertial force (mass density σ · acceleration) balanced by:-
 - restoring force due to tension T an 'equilibrium-seeking' force; and
 - impact force from mallet *actively* displaces membrance, hence minus sign


Governing equations

Discretization using FEM

Freefem++ software

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Couple more comments on Membrane Equation...

- Membrane's internal damping modelled by relaxation term with coefficient η
- Here, we investigate *homogeneous* membranes $\implies \sigma, T, \eta$ *constant*

Outline of the problem	Governing equations 00000●	Discretization using FEM	Freefem++ software

Membrane is clamped at its periphery: Dirichlet BCs

$$w(x, y, t) = 0 \quad \forall (x, y) \in \partial \Sigma \quad \forall t > 0$$

Membrane assumed to be at equilibrium & at rest at t = 0

$$w(x, y, 0) = \frac{\partial w}{\partial t}(x, y, 0) = 0 \quad \forall (x, y) \in \Sigma$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline of the problem	Governing equations	Discretization using FEM	Freefem++ software
Equation			

• The membrane equation

$$\sigma \frac{\partial^2 w}{\partial t^2} = \operatorname{div} \left(T \nabla (w + \eta \frac{\partial w}{\partial t}) \right) - f(t) g$$

$$w(x, y, t) = 0 \text{ on } \partial \Sigma$$

$$w(x, y, 0) = 0.$$

Simplify

$$\sigma \frac{\partial^2 w}{\partial t^2} = T \Delta w + \eta T \frac{\partial}{\partial t} \Delta w - f(t)g.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline of the problem	Governing equations	Discretization using FEM	Freefem++ software
Mook Form			

• Multiply by test function w^* and integrate over Σ

$$\sigma \frac{\partial^2}{\partial t^2} \int_{\Sigma} ww^* ds - \int_{\Sigma} T \Delta ww^* ds - \frac{\partial}{\partial t} \int_{\Sigma} \eta T \Delta ww^* ds + f \int_{\Sigma} gw^* ds = 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Outline of the problem	Governing equations	Discretization using FEM	Freefem++ software
Weak Form			

• Multiply by test function w^* and integrate over Σ

$$\sigma \frac{\partial^2}{\partial t^2} \int_{\Sigma} ww^* ds - \int_{\Sigma} T \Delta ww^* ds - \frac{\partial}{\partial t} \int_{\Sigma} \eta T \Delta ww^* ds + f \int_{\Sigma} gw^* ds = 0$$

• Simplify

$$\sigma \frac{\partial^2}{\partial t^2} \int_{\Sigma} ww^* ds + \int_{\Sigma} T \nabla w \nabla w^* ds + \frac{\partial}{\partial t} \int_{\Sigma} \eta T \nabla w \nabla w^* ds$$
$$+ f \int_{\Sigma} gw^* ds + \text{boundary conditions} = 0 \quad \forall w^*$$

Outline of the problem	Governing equations 000000	Discretization using FEM	Freefem++ software
Discretization			

 In space: We use piecewise linear functions (P1) from space *H_h* ⊆ *H*¹₀(Σ) on a triangular mesh. The approximated solution is denoted as *w_h*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

Outline of the problem	Governing equations	Discretization using FEM	Freefem++ software
Discretization			

- In space: We use piecewise linear functions (P1) from space *H_h* ⊆ *H*¹₀(Σ) on a triangular mesh. The approximated solution is denoted as *w_h*.
- In time: The time derivatives are approximated using finite difference central difference formula.

$$\frac{\partial^2}{\partial t^2} w_h = \frac{w_h^{n+1} - 2w_h^n + w_h^{n-1}}{\Delta t^2}$$
$$\frac{\partial}{\partial t} w_h = \frac{w_h^{n+1} - w_h^{n-1}}{2\Delta t}$$

Discretization using FEM

Freefem++ software

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Newmark Scheme

In order to better approximate the Laplacian, we use the Newmark scheme that takes an average

Newmark Method

$$\Delta w_h^n = \frac{1}{2} \Delta w_h^{n+1} + \frac{1}{2} \Delta w_h^{n-1}$$

Discretization using FEM

Freefem++ software

Discretized Equation

$$\int_{\Sigma} \sigma \frac{(w_h^{n+1} - 2w_h^n + w_h^{n-1})}{\Delta t^2} w_h^* ds + \int_{\Sigma} T \frac{(\nabla w_h^{n+1} + \nabla w_h^{n-1})}{2} \nabla w_h^* ds$$
$$+ \int_{\Sigma} \eta T \frac{(w_h^{n+1} - w_h^{n-1})}{2\Delta t} w_h^* ds + \int_{\Sigma} fg w_h^* ds + \text{boundary conditions} = 0.$$

Right hand side

$$g(x,y) = \frac{\exp[-10^7((x-x_0)^4 + (y-y_0)^4]}{\int_{\Sigma} \exp[-10^7((x-x_0)^4 + (y-y_0)^4]}$$

$$f(t) = \sin^2(100t)\exp(-50t)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Discretization using FEM

Freefem++ software

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

FreeFem++

mail to FreeFem++ list

Sections Home Wiki Mailing list FreeFem++on the web Showcase Web News mercurial ff++ (user ff++, password: ff++)

FreeFem++ v 3.59

Introduction

FreeFem++ is a partial differential equation solver. It multiphysics non linear systems in 2D and 3D.

Problems involving PDE (2d, 3d) from several brancl interpolations of data on several meshes and their m $2^{\circ}d$ -tree-based interpolation algorithm and a languag follow up of bamg (now a part of FreeFem++).

FreeFem++ is written in C++ and the FreeFem++ lar machines. FreeFem++ replaces the older freefem an

If you use Freefem++ please cite the following reference in your work (books, articles, reports, etc.): Hecht, I 251–265. 65Y15

.

Outline of the problem 0000

Governing equations

Discretization using FEM

Freefem++ software

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Advantages of Freefem++

• Creates mesh and automatically produce the mass and rigid matrices

Advantages of Freefem++

- Creates mesh and automatically produce the mass and rigid matrices
- Uses ffglut for graphical output, but results can also be visualised with programs like Medit, Matlab, Visit and Mathematica

Discretization using FEM

Freefem++ software

Visualisation

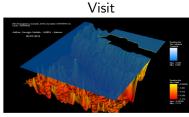


Figure 5: Visualising of the solution using visit

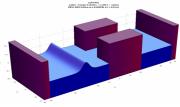


Figure 4: Visualising of the solution using Mathematica

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Freefem++ Code

• Preliminaries: defining domain, creating mesh and defining function space

Code

```
border a(t=0,2*pi){ x=(1/(.5*cos(t)^2 +sin(t)^2)^.5)
            *cos(t); y=(1/(.5*cos(t)^2
            +sin(t)^2)^.5)*sin(t);label=1;}
mesh Th = buildmesh(a(50));
fespace Vh(Th,P1);
Vh uh,vh,uh0=0,uh1=uh0;
```

Freefem++ Code

• Preliminaries: Declaring constants and right hand side functions

Code real sigma=0.262,eta=0.0000006, T = 3325, x0=0.21, y0=0. ,k=1.6e8 , alpha = 2.54,delta = 0.025, m=0.028,dt=.001,Tf=.1; func g=exp(-(10^7) *((x-x0)^4+(y-y0)^4)) /int2d(Th)(exp(-(10^7)*((x-x0)^4+(y-y0)^4)));

Freefem++ Code

• Defining the problem : Time stepping algorithm

Code for (real t=0.;t<Tf;t+=dt) {</pre> func $f = sin(100*t)^2*exp(-50*t);$ solve membrane(uh,vh) = int2d(Th)(sigma*uh*vh) +int2d(Th)(Grad(uh)'*Grad(vh)*T*(dt)^2*.5) + int2d(Th)(Grad(uh0)'*Grad(vh)*T*(dt)^2*.5) + int2d(Th)(Grad(uh)'*Grad(vh)*dt*eta *T*.5) + int2d(Th)(f * g *vh *(dt)^2) - int2d(Th)(Grad(uh0)'*Grad(vh)*dt*eta*T*.5) - int2d(Th)(sigma*(2.*uh1*vh - uh0*vh)) + on(1,2,3,4,uh=0); uh0 = uh1; $uh1 = uh; \}$

Freefem++ Code

• Postprocessing: Plotting and outputting results

Code

```
ofstream file("mem" + kk + ".val");
file << "2 1 1 "<< uh[].n << " 2 \n";
for (int j=0;j<uh[].n ; j++){
file << uh[][j] << endl;
}
```