Variational Inequalities

Michael Tang

2018 What is. . . Numerical Analysis?

1 Movtivation

- Transmission Problem
- Obstacle Problem
- Signorini Problem

2 Lax-Milgram Theorem

3 Variational Inequality

4 Falk's Theorem

Transmission Problem

Suppose we have a domain $\Omega=$ $\Omega_{1} \cup \Omega_{2}$ and we want to understand the displacements u_{1}, u_{2} materials Ω_{1} and Ω_{2} which is experiencing force f.

This can be done by minimising the energy

$$
E\left(v_{1}, v_{2}\right)=\sum_{i=1}^{n} \frac{\alpha_{i}}{2} \int_{\Omega_{i}}\left|\nabla v_{i}\right|^{2}-\int_{\Omega_{i}} f v_{i}
$$

over $v_{i} \in H^{1}\left(\Omega_{i}\right)$ such that $v_{1}=v_{2}$ on Γ_{c} and $\left.u_{i}\right|_{\partial \Omega}=0$.

Obstacle Problem

Consider a domain/material Ω that we wish to understand under a force f but there is an obstacle, $\varphi \in C^{\infty}$ that is impassable.

This can be done by minimising the energy

$$
E(v)=\int_{\Omega}|\nabla v|^{2}-\int_{\Omega} f v
$$

over the set of $v \in H_{0}^{1}(\Omega)$ such that $v \geq \varphi$.

Signorini Problem

Consider a domain/material Ω that we wish to understand as it sits on a surface $\varphi \in C^{\infty}$ with contact surface $\Gamma_{c} \subset \partial \Omega$ under a force f.

Similarly, we can do this by minimising the energy

$$
E(v)=\int_{\Omega}|\nabla v|^{2}-\int_{\Omega} f v
$$

over the set of $v \in H^{1}(\Omega)$ such that $v \geq \varphi$ on Γ_{c}.

Image from http://www.fibre2fashion.com/industry-article/5787/development-of-double-hydrophilic-hydrophobic-surfaces-of-wool-fabric

Differences With Course Material

These examples all have energy described by a symmetric, coercive, continuous bilinear form with continuous functional f. This energy is then minimised over a convex subset instead of a vector space.

Lax-Milgram
Weak Formulation
Cea's Lemma

Lax-Milgram
Variational Inequality
Falk's Theorem

Lax-Milgram

Theorem
Suppose $K \subset H$ is closed and convex, a($\cdot, \cdot)$ is a continuous, coercive symmetric bilinear form and $f \in H^{*}$. Then

$$
E(v)=\frac{1}{2} a(v, v)-\langle f, v\rangle
$$

has a unique minimiser.
The proof will be done in 4 steps:

- Show $E(v)$ is bounded below.
- Show an minimising sequence is Cauchy.
- Show the Cauchy limit is in K.
- Uniqueness.

Proof 1/4 — Bounded Below

$$
\begin{aligned}
E(v) & =\frac{1}{2} a(v, v)-\langle f, v\rangle \\
& \geq \frac{\alpha}{2}\|v\|^{2}-|\langle f, v\rangle| \\
& \geq \frac{\alpha}{2}\|v\|^{2}-\|f\|\|v\| \\
& =\frac{1}{2 \alpha}(\alpha\|v\|-\|f\|)^{2}-\frac{1}{2 \alpha}\|f\|^{2} \\
& \geq-\frac{1}{2 \alpha}\|f\|^{2}
\end{aligned}
$$

Let $m:=\inf _{v \in K} E(v)$.

Proof 2/4 - Minimising Sequence is Cauchy

Let $\left(v_{n}\right)_{n \in \mathbb{N}}$ be a sequence so that $E\left(v_{n}\right) \rightarrow m$. By coercivity,

$$
\begin{aligned}
\alpha\left\|v_{n}-v_{m}\right\|^{2} \leq & a\left(v_{n}-v_{m}, v_{n}-v_{m}\right) \\
= & a\left(v_{n}, v_{n}\right)-a\left(v_{m}, v_{n}\right)-a\left(v_{n}, v_{m}\right)+a\left(v_{m}, v_{m}\right) \\
= & 2 a\left(v_{n}, v_{n}\right)+2 a\left(v_{m}, v_{m}\right) \\
& -\left(a\left(v_{m}, v_{n}\right)+a\left(v_{n}, v_{n}\right)+a\left(v_{n}, v_{m}\right)+a\left(v_{m}, v_{m}\right)\right) \\
= & 2 a\left(v_{n}, v_{n}\right)+2 a\left(v_{m}, v_{m}\right)-a\left(v_{n}+v_{m}, v_{n}+v_{m}\right) \\
= & 4 E\left(v_{n}\right)+4 E\left(v_{m}\right)-8 E\left(\frac{1}{2}\left(v_{n}+v_{m}\right)\right) \\
\leq & 4 E\left(v_{n}\right)+4 E\left(v_{m}\right)-8 m .
\end{aligned}
$$

Proof $3 / 4$ - Limit Is $\ln K$

Since K is closed by assumption, $u:=\lim _{n} v_{n} \in K$. Moreover, a and f are continuous and so

$$
E(v)=\frac{1}{2} a(v, v)-\langle f, v\rangle
$$

is continuous. Hence

$$
E(u)=E\left(\lim _{n} v_{n}\right)=\lim _{n} E\left(v_{n}\right)=m .
$$

So u is a minimiser.

Proof 4/4 - Minimiser Is Unique

Standard trick - suppose there are two distinct minimisers, u and \tilde{u}. Define $\left(u_{n}\right)_{n \in \mathbb{N}}$ by

$$
u_{n}=\left\{\begin{array}{lll}
u & n \equiv 0 & \bmod 2 \\
\tilde{u} & n \equiv 1 & \bmod 2
\end{array}\right.
$$

By the argument in step 2, $\left(u_{n}\right)_{n \in \mathbb{N}}$ is Cauchy. However,

$$
\left\|u_{n}-u_{n+1}\right\|=\|u-\tilde{u}\| \geq c>0
$$

for every n. So $\left(u_{n}\right)_{n \in \mathbb{N}}$ is not Cauchy.

Variational Inequality

Theorem

Let V be a vector space with a symmetric, positive definite bilinear form a. In addition, let $f: V \rightarrow \mathbb{R}$ be linear and $C \subset V$ be convex. Then u minimises $E(v)$ over C if and only if

$$
a(u, h-u) \geq\langle f, h-u\rangle \quad \forall h \in C
$$

Notice that if C is a vector space, then we can let $h=u \pm w$ for any $w \in C$. Hence

$$
a(u, w) \geq\langle f, w\rangle \quad \text { and } \quad a(u,-w) \geq\langle u,-w\rangle
$$

So we recover the weak formulation

$$
a(u, w)=\langle u, w\rangle \quad \forall w \in C
$$

Proof $1 / 2$

Take the usual difference

$$
\begin{aligned}
& E(u+\lambda v)-E(u) \\
= & \frac{1}{2} a(u+\lambda v, u+\lambda v)-\langle f, u+\lambda v\rangle-E(u) \\
= & \frac{1}{2} a(u, u)-\langle f, u\rangle-E(u)+\lambda(a(u, v)-\langle f, v\rangle)+\frac{\lambda^{2}}{2} a(v, v) .
\end{aligned}
$$

If u minimise $E(v)$ then this is greater than or equal to 0 for all $u-\lambda v \in C$. Let $v=h-u, h \in C$. Then for $\lambda \in[0,1]$,

$$
u+\lambda v=(1-\lambda) u+\lambda h \in C .
$$

Therefore

$$
a(u, v)-\langle f, v\rangle \geq-\frac{\lambda}{2} a(v, v) \quad \forall \lambda \in(0,1]
$$

Proof 2/2

Hence

$$
a(u, v)-\langle f, v\rangle \geq 0
$$

Since v was chosen to be $h-u$ this is equivalent to

$$
a(u, h-u) \geq\langle f, h-u\rangle \quad \forall h \in C .
$$

For the reverse implication, we reverse this argument.

Falk's Theorem

Theorem

- Let a be a symmetric, coercive, continuous bilinear form on H and $f \in H^{*}$.
- Let $H_{h} \subset H$ be a finite dimensional subspace. Let $K_{h} \subset H_{h}$ be convex and $K \subset H$ be be convex and closed.
- Let u_{h} be the minimiser of $E(v)$ over K_{h} and let u be its minimiser over K.

If W is a Hilbert space so that $H \hookrightarrow W=W^{*} \hookrightarrow H^{*}$ then
$\left\|u-u_{h}\right\|_{H}^{2} \leq \frac{C^{2}}{\alpha^{2}}\|u-v\|_{H}^{2}+\frac{2}{\alpha}\|f-A u\|_{W}\left(\left\|u-v_{h}\right\|_{W^{*}}+\left\|u_{h}-v\right\|_{W^{*}}\right)$
for every $v \in K$ and $v_{h} \in K_{h}$ when $A u-f \in W$.

Remarks

Where

$$
(A u, v):=a(u, v) \quad \forall v \in W
$$

An example of such Hilbert spaces, H and W would be

$$
H_{0}^{1}(\Omega) \subset L^{2}(\Omega)
$$

- If $K=H$ then $f-A u=0$ because we can find a weak solution and this becomes Cea's Lemma.
- If $K_{h} \subset K$ then the final term vanishes.

Proof $1 / 2$

By the Variational Inequality,

$$
\begin{aligned}
a(u, u-v) & \leq\langle f, u-v\rangle \\
a\left(u_{h}, u_{h}-v_{h}\right) & \leq\left\langle f, u_{h}-v_{h}\right\rangle
\end{aligned}
$$

for all $v \in K, v_{h} \in K_{h}$. Summing and subtracting $2 a\left(u, u_{h}\right)$ gives
$a(u, u-v)+a\left(u_{h}, u_{h}-v_{h}\right)-2 a\left(u, u_{h}\right) \leq\langle f, u-v\rangle+\left\langle f, u_{h}-v_{h}\right\rangle-2 a\left(u, u_{h}\right)$.
Which can be rewritten as

$$
\begin{aligned}
& a\left(u-u_{h}, u-u_{h}\right) \\
& \leq\left\langle f, u-v_{h}\right\rangle+\left\langle f, u_{h}-v\right\rangle-a\left(u, u_{h}-v\right) \\
& -a\left(u, u-v_{h}\right) \\
& \\
& +a\left(u-u_{h}, u-v_{h}\right)
\end{aligned}
$$

Proof 2/2

This is equal to

$$
\begin{aligned}
& \left\langle f-A u, u-v_{h}\right\rangle+\left\langle f-A u, u_{h}-v\right\rangle+a\left(u-u_{h}, v-v_{h}\right) \\
\leq & \|f-A u\|\left(\left\|u-v_{h}\right\|+\left\|u_{h}-v\right\|\right)+C\left\|u-u_{h}\right\|\left\|u-v_{h}\right\| \\
\leq & \|f-A u\|\left(\left\|u-v_{h}\right\|+\left\|u_{h}-v\right\|\right) \\
& +\frac{1}{2}\left(\sqrt{\alpha}\left\|u-u_{h}\right\|\right)^{2}+\frac{1}{2}\left(\frac{C}{\sqrt{\alpha}}\left\|u-v_{h}\right\|\right)^{2}
\end{aligned}
$$

and bounded below by

$$
\alpha\left\|u-u_{n}\right\|^{2} .
$$

References

- Heiko's Interface and Contact Problems Lecture Notes http://www.macs.hw.ac.uk/ hg94/wien16/
- Duvaut \& Lions. Inequalities in Mechanics and Physics
- Ciarlet. The Finite Element Method For Elliptic Problems

