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Transmission Problem

Suppose we have a domain Ω =
Ω1∪Ω2 and we want to understand
the displacements u1,u2 materials
Ω1 and Ω2 which is experiencing
force f .

This can be done by minimising the energy

E(v1, v2) =
n∑

i=1

αi

2

∫
Ωi

|∇vi |2 −
∫

Ωi

fvi

over vi ∈ H1(Ωi) such that v1 = v2 on Γc and ui |∂Ω = 0.
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Obstacle Problem

Consider a domain/material Ω that
we wish to understand under a
force f but there is an obstacle,
ϕ ∈ C∞ that is impassable.

This can be done by minimising the energy

E(v) =

∫
Ω
|∇v |2 −

∫
Ω

fv

over the set of v ∈ H1
0 (Ω) such that v ≥ ϕ.
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Signorini Problem

Consider a domain/material Ω that
we wish to understand as it sits on
a surface ϕ ∈ C∞ with contact sur-
face Γc ⊂ ∂Ω under a force f .

Similarly, we can do this by minimising the energy

E(v) =

∫
Ω
|∇v |2 −

∫
Ω

fv

over the set of v ∈ H1(Ω) such that v ≥ ϕ on Γc .
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Differences With Course Material

These examples all have energy described by a symmetric,
coercive, continuous bilinear form with continuous functional f .
This energy is then minimised over a convex subset instead of
a vector space.

Lax–Milgram
Weak Formulation
Cea’s Lemma

←→
←→
←→

Lax–Milgram
Variational Inequality

Falk’s Theorem
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Lax–Milgram

Theorem
Suppose K ⊂ H is closed and convex, a(·, ·) is a continuous,
coercive symmetric bilinear form and f ∈ H∗. Then

E(v) =
1
2

a(v , v)− 〈f , v〉

has a unique minimiser.
The proof will be done in 4 steps:

I Show E(v) is bounded below.
I Show an minimising sequence is Cauchy.
I Show the Cauchy limit is in K .
I Uniqueness.
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Proof 1/4 — Bounded Below

E(v) =
1
2

a(v , v)− 〈f , v〉

≥ α

2
‖v‖2 −

∣∣〈f , v〉∣∣
≥ α

2
‖v‖2 −‖f‖‖v‖

=
1

2α
(
α‖v‖ −‖f‖

)2 − 1
2α
‖f‖2

≥ − 1
2α
‖f‖2

Let m := infv∈K E(v).
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Proof 2/4 — Minimising Sequence is Cauchy

Let (vn)n∈N be a sequence so that E(vn)→ m. By coercivity,

α‖vn − vm‖2 ≤ a(vn − vm, vn − vm)

= a(vn, vn)− a(vm, vn)− a(vn, vm) + a(vm, vm)

= 2a(vn, vn) + 2a(vm, vm)

−
(
a(vm, vn) + a(vn, vn) + a(vn, vm) + a(vm, vm)

)
= 2a(vn, vn) + 2a(vm, vm)− a(vn + vm, vn + vm)

= 4E(vn) + 4E(vm)− 8E
(

1
2

(vn + vm)

)
≤ 4E(vn) + 4E(vm)− 8m.
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Proof 3/4 — Limit Is In K

Since K is closed by assumption, u := limn vn ∈ K . Moreover, a
and f are continuous and so

E(v) =
1
2

a(v , v)− 〈f , v〉

is continuous. Hence

E(u) = E(lim
n

vn) = lim
n

E(vn) = m.

So u is a minimiser.
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Proof 4/4 — Minimiser Is Unique

Standard trick — suppose there are two distinct minimisers, u
and ũ. Define (un)n∈N by

un =

{
u n ≡ 0 mod 2
ũ n ≡ 1 mod 2.

By the argument in step 2, (un)n∈N is Cauchy. However,∥∥un − un+1
∥∥ =

∥∥u − ũ
∥∥ ≥ c > 0

for every n. So (un)n∈N is not Cauchy.
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Variational Inequality

Theorem
Let V be a vector space with a symmetric, positive definite
bilinear form a. In addition, let f : V → R be linear and C ⊂ V
be convex. Then u minimises E(v) over C if and only if

a(u,h − u) ≥ 〈f ,h − u〉 ∀h ∈ C.

Notice that if C is a vector space, then we can let h = u ± w for
any w ∈ C. Hence

a(u,w) ≥ 〈f ,w〉 and a(u,−w) ≥ 〈u,−w〉.

So we recover the weak formulation

a(u,w) = 〈u,w〉 ∀w ∈ C.
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Proof 1/2
Take the usual difference

E(u + λv)− E(u)

=
1
2

a(u + λv ,u + λv)− 〈f ,u + λv〉 − E(u)

=
1
2

a(u,u)− 〈f ,u〉 − E(u) + λ
(
a(u, v)− 〈f , v〉

)
+
λ2

2
a(v , v).

If u minimise E(v) then this is greater than or equal to 0 for all
u − λv ∈ C. Let v = h − u, h ∈ C. Then for λ ∈ [0,1],

u + λv = (1− λ)u + λh ∈ C.

Therefore

a(u, v)− 〈f , v〉 ≥ −λ
2

a(v , v) ∀λ ∈ (0,1].
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Proof 2/2

Hence
a(u, v)− 〈f , v〉 ≥ 0.

Since v was chosen to be h − u this is equivalent to

a(u,h − u) ≥ 〈f ,h − u〉 ∀h ∈ C.

For the reverse implication, we reverse this argument.
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Falk’s Theorem

Theorem
I Let a be a symmetric, coercive, continuous bilinear form on

H and f ∈ H∗.
I Let Hh ⊂ H be a finite dimensional subspace. Let Kh ⊂ Hh

be convex and K ⊂ H be be convex and closed.
I Let uh be the minimiser of E(v) over Kh and let u be its

minimiser over K .

If W is a Hilbert space so that H ↪→W = W ∗ ↪→ H∗ then

‖u − uh‖2H ≤
C2

α2 ‖u − v‖2H+
2
α
‖f − Au‖W

(
‖u − vh‖W∗ +‖uh − v‖W∗

)
for every v ∈ K and vh ∈ Kh when Au − f ∈W.
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Remarks

Where
(Au, v) := a(u, v) ∀v ∈W

An example of such Hilbert spaces, H and W would be

H1
0 (Ω) ⊂ L2(Ω).

I If K = H then f − Au = 0 because we can find a weak
solution and this becomes Cea’s Lemma.

I If Kh ⊂ K then the final term vanishes.
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Proof 1/2

By the Variational Inequality,

a(u,u − v) ≤ 〈f ,u − v〉
a(uh,uh − vh) ≤ 〈f ,uh − vh〉

for all v ∈ K , vh ∈ Kh. Summing and subtracting 2a(u,uh) gives

a(u,u−v)+a(uh,uh−vh)−2a(u,uh) ≤ 〈f ,u−v〉+〈f ,uh−vh〉−2a(u,uh).

Which can be rewritten as

a(u − uh,u − uh)

≤ 〈f ,u − vh〉+ 〈f ,uh − v〉 − a(u,uh − v)− a(u,u − vh)

+a(u − uh,u − vh).
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Proof 2/2

This is equal to

〈f − Au,u − vh〉+ 〈f − Au,uh − v〉+ a(u − uh, v − vh)

≤ ‖f − Au‖
(
‖u − vh‖+‖uh − v‖

)
+ C‖u − uh‖‖u − vh‖

≤ ‖f − Au‖
(
‖u − vh‖+‖uh − v‖

)
+

1
2
(√
α‖u − uh‖

)2
+

1
2

(
C√
α
‖u − vh‖

)2

and bounded below by

α‖u − uh‖2 .
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