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We will discuss a category of finite element methods known as
‘Discontinuous Galerkin’ (DG) methods.

These slides are based on ”Discontinuous Galerkin Methods for
Solving Elliptic and Parabolic Equations”, by Béatrice Rivière.
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Part I) 1D Elliptic problems



Model problem

We begin by considering the following model problem:
−(K (x)y ′(x))′ = f (x) in (0,1)

y(0) = 1

y(1) = 0

If we set K (x) ≡ 1 here, we get Poisson’s equation on (0,1) with
boundary conditions. If we also set f (x) ≡ 0, we get the Laplace
equation.

We assume that f ∈ C 0(0, 1), K ∈ C 1(0, 1), and p ∈ C 2(0, 1). For
the sake of this model problem, we also assume that on (0,1),
0 < K0 ≤ K (x) ≤ K1.



Derivation of the DG method

Setting up the DG method is very similar to setting up any other
finite element method: the very first thing to do is split up the
domain into elements (or, in 1D, intervals). For our 1D case, we
create a partition

E =
N−1⋃
n=0

In =
N−1⋃
n=0

(xn, xn+1) (1)

of (0,1).



Discontinuities

The main difference to traditional finite element methods is that,
rather than being continuous, the solution obtained by our DG
method will belong to the space

Dk(E) = {v : (0, 1)→ R| v |In ∈ Pk(In)} .

In other words, over each interval In, p will be a continuous
polynomial of degree k.
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Weak formulation

We need to account for any discontinuities in the solution. We
must consider jump and average terms:

[v(xn)] = v(x+
n )− v(x−n ), {v(xn)} =

(
v(x+

n ) + v(x−n )

2

)
.

These are only necessary at points where two or more elements
meet.

We set up our DG method using two main steps. We first set up
the weak formulation of our problem. To do this, we multiply by a
test function v ∈ Dk(E) and integrate by parts over some interval
In.



Weak formulation

− (K (x)y ′(x))′ = f (x)

=⇒ −(K (x)y ′(x))′v(x) = f (x)v(x)

=⇒ −
∫
In

(K (x)y ′(x))′v(x) dx =

∫
In

f (x)v(x) dx

=⇒ −
[
K (x)y ′(x)v(x)

]
∂In

+

∫
In

K (x)y ′(x)v ′(x) dx =

∫
In

f (x)v(x) dx

Summing over all intervals In gives us

N−1∑
n=0

∫ xn+1

xn

K (x)y ′(x)v ′(x)dx−
N∑

n=0

[
K (xn)y ′(xn)v(xn)

]
=

∫ 1

0
f (x)v(x)dx .



Additional terms
Next, we introduce some terms to this equation:

I The term ε
∑N

n=0 {K (xn)v ′(xn)} [y(xn)] allows some
customisation in the method, with the choice of ε ∈ R.
Common choices are ε = 0, 1 or -1.

I The terms

J0(a, b) =
N∑

n=0

σ0

hn−1,n
[a(xn)] [b(xn)] ,

J1(a, b) =
N−1∑
n=1

σ1

hn−1,n

[
a′(xn)

] [
b′(xn)

]
are known as penalty terms; we say they penalise the
approximate solution for having many or large discontinuities.
σ0 and σ1 are also parameters that can be chosen, and the h
terms are worked out from the lengths of the relevant
intervals.



Definition of the DG method

Our numerical method is as follows: find Y ∈ Dk(E) such that, for
all test functions v ∈ Dk(E),

aε(Y , v) = L(v), where

aε(Y , v) =
N−1∑
n=0

∫ xn+1

xn

K (x)Y ′(x)v ′(x)dx −
N∑

n=0

{
K (xn)Y ′(xn)

}
[v(xn)]

+ε
N∑

n=0

{
K (xn)v ′(xn)

}
[Y (xn)] + J0(Y , v) + J1(Y , v),

L(v) =

∫ 1

0
f (x)v(x)dx − εK (x0)v ′(x0) +

σ0

h0,1
v(x0).



Linear system

Our problem
aε(Y , v) = L(v)

can be expressed in the form of a linear system of equations
Ac = b of N(k + 1) unknowns. We first choose a set of k basis
functions {φni }ki=0 for Pk(In), for each interval In ∈ E . For
example, choosing quadratic monomial functions could lead to

φn0(x) = 1, φn1(x) = 2
x − xn+ 1

2

xn+1 − xn
, φn2 = 4

( x − xn+ 1
2

xn+1 − xn

)2

.

We can then extend these basis functions to E as

Φn
i (x) =

{
φni (x) if x ∈ In

0 if x /∈ In.

We can express our approximate solution as
Y (x) =

∑N−1
n=0

∑2
j=0 c

n
j Φj

n(x), and we must now solve for c .



Summary of DG method in 1D

To summarise the method we have derived:

I We begun with a model problem: −(K (x)y ′(x))′ = f (x), over
(0,1).

I We found the weak formulation of this problem and added
some addition terms. This resulted in the new problem
aε(Y , v) = L(v).

I This problem was then changed to the solving of a linear
system Ac = b. The approximate solution is then a linear
combination of basis functions with coefficients from the
vector c .

We will look at a numerical example now.



Numerical experiment

Consider the case where K (x) ≡ 1 and f (x) ≡ 2 over (0,1); the
problem is then 

−y ′′(x) = 2 in (0,1)

y(0) = 1

y(1) = 0.

Using the boundary conditions, we can easily work out the solution
to be y(x) = 1− x2; let’s check how well the method works. The
DG method was used three times to solve this, taking

I k = 1, N = 4

I k = 1, N = 8

I k = 2, N = 4.

In each case, we must compute the left-hand matrix A and the
right-hand vector b, and solve for 8, 16 and 12 unknown
coefficients respectively.



Numerical experiment
The entries of the matrix A depend on the product of the various
basis functions. The components of the right-hand vector b
involve an integral, and must be approximated using a quadrature
rule. After these computations, the following three results were
obtained:
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Part II) Elliptic problems in
higher dimensions



Model problem

For the higher-dimensional eliptic case, we consider the model
problem 

−∇ · (K∇y) + αy = f in Ω

y = gD on ΓD

K∇y · n = gN on ΓN

with K a matrix-valued function, f ∈ L2(Ω), gD ∈ H1/2(Ω) and
gN ∈ L2(Ω). A strong solution would satisfy y ∈ L2(Ω̄).

In the 1D case, we:

I Found the weak formulation by adding a test function and
integrating by parts

I Obtained the variational formulation by introducing some new
terms

We will follow these same steps here.



Preliminaries

We need to introduce a couple of function space-related ideas here
which were not needed in our 1D case:

I For this case we must use Sobolev spaces:

Hs(Ω) =
{
v ∈ L2(Ω) | Dαv ∈ L2(Ω) if |α| ≤ s

}
I In particular, we need broken Sobolev spaces

Hs(E) =
{
v ∈ L2(Ω) | v |E ∈ Hs(E) for all E ∈ E

}
and fractional Sobolev spaces Hs+1/2(Ω).

I We also need to use the trace theorems, which allow us to
extend functions and their derivatives to the boundary of our
domain, provided s > 3

2 .



Weak formulation

Like the one-dimensional case, to solve this problem using a
numerical DG method we must first obtain this problem in weak
formulation. We need to use a generalized version of Green’s first
identity:∫

Ω

(
K∇a · ∇b + (∇ · (K∇a)b)

)
dx =

∫
∂Ω

K (∇a.n)b dx

This time, we split up the solution y using the trace theorem: set
y = yD + w where yD = gD on ∂Ω and w ∈ H1

0 (Ω). We once
again multiply by a test function v ∈ H1

0 and integrate by parts:



Weak formulation

−∇ · (K∇y) + αy = f

=⇒ −∇ · (K∇y)v + αyv = fv

=⇒ −
∫

Ω
∇ · (K∇y)v +

∫
Ω
αyv =

∫
Ω
fv

=⇒
∫

Ω

(
K∇y · ∇v + αyv

)
=

∫
Ω
fv

Now splitting up y = yD + w gives us∫
Ω

(
K∇yD · ∇v + αyDv

)
=

∫
Ω
fv −

∫
Ω

(
K∇w · ∇v + αwv

)
.



Variational formulation

In the 1D case, we introduced penalty terms. We do the same here:

Jσ0,β0
0 (v ,w) =

∑
e

σ0
e

|e|β0

∫
e
[v ][w ],

Jσ1,β1
1 (v ,w) =

∑
e

σ1
e

|e|β1

∫
e
[K∇v · ne ][K∇w · ne ]



Variational formulation

The variational formulation of the DG method for this problem is:
find y ∈ Hs(E) (s > 3

2 ) such that aε(y , v) = L(v) for all
v ∈ Hs(E), where

aε(y , v) =
∑
E

∫
E
K∇y · ∇v +

∫
Ω
αyv −

∑
e

∫
e
{K∇y · ne} [v ]+

ε
∑
e

∫
e
{K∇v · ne} [y ] + Jσ0,β0

0 (y , v) + Jσ1,β1
1 (y , v),

L(v) =

∫
Ω
fv + ε

∑
e

∫
e

(
K∇y · ne +

σ0

|e|β0
v

)
gD +

∑
e

∫
e
ygN .



Reference elements

When it comes to running this method on a computer, rather than
computing integrals over each ‘physical’ element, it is much easier
to map each one to a ‘reference’ element.



Part III) Comparison to other
methods



I’ll finish by highlighting a few of the differences between the DG
method and other finite element methods which give a continuous
approximation to a problem.

I On a small rectangular mesh, the DG method is more
cost-efficient if high-order polynomials are being used. For
triangular meshes, the DG method is more costly.

I It is very easy when using DG to implement refinement and
derefinement, and have different orders of polynomials on
different elements. Due to lack of continuity restraints, we
can introduce as many new nodes as we like.

I The DG method can be reduced to a balance equation on
each element. This gives us local mass conservation, able to
track the amount of mass passing through the boundary to
other elements. Other finite element methods give us only
global mass balance.



Thanks for listening
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