5. Übungsblatt zu Mathematik für Physiker I

Abgabe in der Übung am 19.11. oder bis 20.11., 9 Uhr, in Postfach 147

Aufgabe 11 (a) 5 Punkte, b) 5 Punkte)

Betrachten Sie $\Pi_n = \{(u_1, \dots, u_n) \in \mathbb{R}^n : \forall k \, u_k > 0 \text{ und } u_k + u_{k+1} < \frac{\pi}{2} \text{ sowie } u_n + u_1 < \frac{\pi}{2} \} \ (n > 1).$

a) Zeigen Sie, dass die Transformation $x_1 = \frac{\sin(u_1)}{\cos(u_2)}$, $x_2 = \frac{\sin(u_2)}{\cos(u_3)}$, ..., $x_n = \frac{\sin(u_n)}{\cos(u_1)}$ das Polyeder Π_n C¹-diffeomorph auf $(0,1)^n$ abbildet. Was ist die zugehörige Jacobi-Determinante?

Hinweis: Um für gegebenes $(x_1, \ldots, x_n) \in (0, 1)^n$ ein passendes $(u_1, \ldots, u_n) \in \Pi_n$ zu bestimmen, hilft es, wenn man ein eindeutiges $u \in [0, \frac{\pi}{2}]$ mit $u = (f_{x_1} \circ \cdots \circ f_{x_n})(u), f_x(u) := \arcsin(x \cos(u)),$ findet.

b) Führen Sie das Volumen von Π_n auf die Reihe $\sum_{k=0}^{\infty} \frac{(-1)^{nk}}{(2k+1)^n}$ zurück und überlegen Sie sich, dass $\frac{\zeta(2k)}{\pi^{2k}}$ für $k \in \mathbb{N}_{>0}$ eine rationale Zahl ist (die Sie nicht explizit ausrechnen müssen!).

Hinweis: $\zeta(x)$ bezeichnet natürlich wie schon in Aufgabe 8 die Reihe $\sum_{j=1}^{\infty} \frac{1}{j^x}$ (x>1).

Aufgabe 12 (a) 2 Punkte, b) 5 Punkte)

Es seien $m_i, a_i, k_i, E > 0$ und $H(q_1, \dots, q_n, p_1, \dots, p_n) = \sum_{i=1}^n \left\{ \frac{p_i^2}{2m_i} + \left| \frac{q_i}{a_i} \right|^{k_i} \right\}$. $V_{n,E}$ bezeichne das 2n-dimensionale Volumen von $\Omega_{n,E} = \{(q_1, \dots, q_n, p_1, \dots, p_n) \in \mathbb{R}^{2n} : H(q_1, \dots, q_n, p_1, \dots, p_n) < E\}$.

- a) Zeigen Sie $V_{1,E} = \sqrt{8m_1}a_1E^{\frac{1}{2}+\frac{1}{k_1}}\frac{\Gamma(\frac{1}{2})\Gamma(1+\frac{1}{k_1})}{\Gamma(\frac{3}{2}+\frac{1}{k_1})}$ mit Hilfe von Aufgabe 10b), z.B. indem Sie $\Omega_{1,E} \cap \mathbb{R}^2_{>0}$ auf $\{(u,v) \in \mathbb{R}^2_{>0} : u+v<1\}$ transformieren.
- b) Berechnen Sie wie in a) das Volumen $V_{n,E}$ mit Hilfe der Gammafunktion. Zeigen Sie, dass der Quotient $\frac{V_{n,E}-V_{n,E-\Delta}}{V_{n,E}}$ für beliebiges $0<\Delta< E$ und $n\to\infty$ gegen 1 strebt. In hoher Dimension konzentrieren sich also Volumen und Entropie $S=k_B$ ln $\frac{V_{n,E}}{V^0}$ in einer dünnen Schale um die Oberfläche ($V^0=$ "Volumen eines Zustands").

Aufgabe 13 (3 Punkte)

Finden Sie mit den Methoden aus Aufgabe 12 das Volumen $\omega_{n,R}$ der n-dimensionalen Kugel vom Radius R. Eliminieren Sie mit Hilfe der bekannten Werte $\Gamma(\frac{1}{2}) = \sqrt{\pi}$, $\Gamma(1) = 1$ sowie $\Gamma(x+1) = x\Gamma(x)$ (x > 0) die Gammafunktionen aus Ihrem Ergebnis. Kommt für n = 1, 2, 3 auch wirklich $2R, \pi R^2$ bzw. $\frac{4}{3}\pi R^3$ heraus?

Bemerkung: Die angegebenen Eigenschaften der Gammafunktion sind sehr einfach zu zeigen: Nach Definition ist $\Gamma(1)=\int_0^\infty \mathrm{d}t\,e^{-t}=1$. $\Gamma(\frac{1}{2})=\int_0^\infty \mathrm{d}t\,e^{-t}t^{-1/2}=2\int_0^\infty \mathrm{d}s\,e^{-s^2}=\sqrt{\pi}$ folgt mit der Substitution $s=\sqrt{t}$. Auch $\Gamma(x+1)=\int_0^\infty \mathrm{d}t\,e^{-t}t^x=[-t^xe^{-t}]_{t=0}^\infty+x\int_0^\infty \mathrm{d}t\,e^{-t}t^{x-1}=0+x\Gamma(x)$ steht sofort da.