INSTITUT FÜR ANALYSIS UNIVERSITÄT HANNOVER Prof. Dr. E. Schrohe, H. Gimperlein

1. Übungsblatt zu Mathematik für Physiker I

Abgabe in der Übung am 22.10. oder bis 23.10., 9 Uhr, in Postfach 147 im Lichthof neben dem Haupteingang

Aufgabe 1 (a) 5 Punkte, b) 5 Punkte)

- a) In diesem Semester möchte Herr Scholz die (Matrikelnummern der) 90 neuen Erstsemester auf 36 kleine Projekte P_1, \ldots, P_{36} aufteilen. Am liebsten hätte er nur Zweiergruppen, aber die große Teilnehmerzahl zwingt ihn dazu, auch Dreiergruppen zu bilden. Wieviele Möglichkeiten hat er, die Studenten auf P_1, \ldots, P_{36} zu verteilen, so dass die Hälfte der Projekte von je zwei und die andere Hälfte von je drei Studenten bearbeitet wird? (die 5 führenden Stellen reichen)
- b) Nach einer langen Nacht macht sich Herr B. vom Oktoberfest (x=0) auf den Weg nachhause. Da er schon etwas wackelig auf den Beinen ist, schafft er nur mit Wahrscheinlichkeit $\frac{1}{2}$ einen großen Schritt (Länge 1) nach vorne. Mit derselben Wahrscheinlichkeit setzt sein Fuß in der entgegengesetzten Richtung auf (ebenfalls Schrittlänge 1). Auch am neuen Ort x=1 bzw. x=-1 bestimmt der Zufall seinen Weg etc. bis er nach k Schritten am Punkt x(k) einschläft. Berechnen Sie $\langle x(k) \rangle$ und $\langle x(k)^2 \rangle$ (Induktion!?!). Wie oft erwarten Sie ihn für $k \to \infty$ an seinem Ausgangspunkt zurück?

Aufgabe 2 (a) 1 Punkt, b) 4 Punkte, c) 2 Punkte, d) 3 Punkte)

Wir betrachten die Gruppe G der Drehungen des \mathbb{R}^2 um den Ursprung. Für eine Drehung $g \in G$ und $(x,y) \in \mathbb{R}^2$ bezeichne g(x,y) den gedrehten Vektor. Ist $M \subset \mathbb{R}^2$, so sei $gM = \{g(x,y) : (x,y) \in M\}$. Da Drehungen Abstände erhalten, bildet G den Einheitskreis S^1 auf sich ab, d.h. $gS^1 = S^1$ für alle $g \in G$.

a) Man zeige, dass

 $(x,y) \sim (u,v)$: \Leftrightarrow es existiert eine Drehung g um einen rationalen Winkel mit g(x,y) = (u,v)

für $(x,y),(u,v)\in S^1$ eine Äquivalenzrelation auf S^1 definiert. Die zugehörigen Äquivalenzklassen könnten im folgenden nützlich sein.

- b) Finden Sie mit Hilfe des Auswahlaxioms Teilmengen $M_j \subset S^1$ und $g_j \in G$, $j \in \mathbb{N}$, mit $M_i \cap M_j = \emptyset$ für $i \neq j$ und $S^1 = \bigcup_{j \in \mathbb{N}} M_j = \bigcup_{j \in \mathbb{N}} g_{2j} M_{2j} = \bigcup_{j \in \mathbb{N}} g_{2j+1} M_{2j+1}$. Wenn Sie also eine von S^1 berandete Torte in "Stücke" mit äußeren Rändern M_j aufschneiden, so können Sie schon aus den von $\bigcup_{j \in \mathbb{N}} M_{2j}$ bzw. $\bigcup_{j \in \mathbb{N}} M_{2j+1}$ berandeten Stücken mit einem Tortenheber jeweils eine vollständige Torte zusammensetzen.
- c) Es gibt keine auf allen Teilmengen von S^1 definierte Funktion μ mit Werten in $[0, \infty]$ und $\mu(S^1) = 2\pi$, die σ -additiv $(\mu(\bigcup_{j\in\mathbb{N}} M_j) = \sum_{j\in\mathbb{N}} \mu(M_j)$ für alle $M_j \subset S^1$ mit $M_i \cap M_j = \emptyset$, $i \neq j$) und rotationsinvariant $(\mu(M) = \mu(gM))$ für alle $M \subset S^1$ und alle $g \in G$) ist.
- d) Es gibt keine auf allen Teilmengen von \mathbb{R} definierte Funktion μ mit Werten in $[0, \infty]$ und $\mu([0, 1]) = 1$, die σ -additiv und translationsinvariant $(\mu(M) = \mu(\{m+c : m \in M\})$ für alle $M \subset \mathbb{R}$ und alle $c \in \mathbb{R}$) ist.

Hinweis: Äquivalenzrelationen und das Auswahlaxiom kennen Sie aus Lineare Algebra I, Kapitel 1. Eine hier nützliche Formulierung des Auswahlaxioms ist: Ist S eine Menge paarweise disjunkter, nicht-leerer Mengen C_{α} , so existiert eine Menge, die als Elemente jeweils genau ein Element aus jedem der C_{α} enthält.

2. Hinweis: Organisatorisches und Übungsblätter zu Mathematik für Physiker I finden Sie unter:

www.analysis.uni-hannover.de/ $^{\sim}$ gimperlein/mfp07