Magnitude of odd balls

Simon Willerton
University of Sheffield

ICMS
4th July 2019

Magnitude of finite metric spaces

Finite metric space $(A, \mathrm{~d})$:

Magnitude of finite metric spaces

Finite metric space $(A, \mathrm{~d})$: weight $w: A \rightarrow \mathbb{R}$ such that

$$
\sum_{a} \mathrm{e}^{-\mathrm{d}(a, b)} w(a)=1 \quad \text { for every } b \in A
$$

Magnitude of finite metric spaces

Finite metric space $(A, \mathrm{~d})$: weight $w: A \rightarrow \mathbb{R}$ such that

$$
\sum_{a} \mathrm{e}^{-\mathrm{d}(a, b)} w(a)=1 \quad \text { for every } b \in A
$$

Define the magnitude by $|A|=\sum_{a} w(a)$.

Magnitude of finite metric spaces

Finite metric space $(A, \mathrm{~d})$: weight $w: A \rightarrow \mathbb{R}$ such that

$$
\sum_{a} \mathrm{e}^{-\mathrm{d}(a, b)} w(a)=1 \quad \text { for every } b \in A
$$

Define the magnitude by $|A|=\sum_{a} w(a)$.

Extending to infinite metric spaces

What happens when try to approximate an infinite subset of \mathbb{R}^{n} ?

Extending to infinite metric spaces

What happens when try to approximate an infinite subset of \mathbb{R}^{n} ?
$L_{m}:=m$ pts on the length ℓ interval

As $m \rightarrow \infty,\left|L_{m}\right| \rightarrow \frac{\ell}{2}+1$.

Extending to infinite metric spaces

What happens when try to approximate an infinite subset of \mathbb{R}^{n} ?
$S_{m}:=m^{2}$ pts on the width ℓ square
$L_{m}:=m$ pts on the length ℓ interval

As $m \rightarrow \infty,\left|L_{m}\right| \rightarrow \frac{\ell}{2}+1$.

As $m \rightarrow \infty,\left|S_{m}\right| \simeq \frac{\ell^{2}}{2 \pi}+\ldots$.

Extending to infinite metric spaces

What happens when try to approximate an infinite subset of \mathbb{R}^{n} ?

$$
S_{m}:=m^{2} \text { pts on the width } \ell \text { square }
$$

$L_{m}:=m$ pts on the length ℓ interval

As $m \rightarrow \infty,\left|L_{m}\right| \rightarrow \frac{\ell}{2}+1$.

$$
\text { As } m \rightarrow \infty,\left|S_{m}\right| \simeq \frac{\ell^{2}}{2 \pi}+\ldots
$$

Definition/Theorem. (Meckes) If $X \subset \mathbb{R}^{n}$ is compact and $A_{m} \rightarrow X$ in the Hausdorff topology then we can define $|X|:=\lim _{m}\left|A_{m}\right|$.

Distributions

A distribution on \mathbb{R}^{n} is a linear functional on some suitable class of functions. Write $\langle w, f\rangle$ for the evaluation of a distribution w on a function f.
E.g.
(i) For each signed measure μ we have an associated distribution with

$$
\langle\mu, f\rangle:=\int_{\mathbb{R}^{n}} f \mathrm{~d} \mu
$$

(ii) For a cooriented, smooth, codim 1 submanifold $\Sigma \subset \mathbb{R}^{n}$, and $i \in \mathbb{N}$

$$
\left\langle w_{i}, f\right\rangle:=\int_{\Sigma} \frac{\partial^{i}}{\partial v^{i}} f(\mathbf{x}) \mathrm{d} \mathbf{x}
$$

where $\frac{\partial}{\partial v}$ means derivative in the normal direction to the submanifold.

Weight distributions

(Meckes) Let $X \subset \mathbb{R}^{n}$ be compact, convex with non-empty interior (n odd). A weight distribution w for X is a distribution (in $H^{-(n+1) / 2}\left(\mathbb{R}^{n}\right)$) supported on X such that

$$
\left\langle w, e^{-\mathrm{d}(\mathbf{s}, \cdot)}\right\rangle=1 \quad \text { for every } \mathbf{s} \in X
$$

The magnitude of X is given by $|X|=\langle w, \mathbf{1}\rangle$.

Weight distributions

(Meckes) Let $X \subset \mathbb{R}^{n}$ be compact, convex with non-empty interior (n odd).
A weight distribution w for X is a distribution (in $H^{-(n+1) / 2}\left(\mathbb{R}^{n}\right)$)
supported on X such that

$$
\left\langle w, e^{-\mathrm{d}(\mathbf{s}, \cdot)}\right\rangle=1 \quad \text { for every } \mathbf{s} \in X
$$

The magnitude of X is given by $|X|=\langle w, \mathbf{1}\rangle$.
Try to calculate the magnitude of an odd ball!
Guess a weight distribution for B_{R}^{n}, the radius R ball of dimension $n=2 p+1$.

$$
\langle w, f\rangle=\frac{1}{n!\omega_{n}}\left(\int_{\mathbf{x} \in B_{R}^{n}} f \mathrm{~d} \mathbf{x}+\sum_{i=0}^{p} \beta_{i}(R) \int_{\mathbf{x} \in S_{R}^{n-1}} \frac{\partial^{i}}{\partial v^{i}} f \mathrm{~d} \mathbf{x}\right)
$$

Weight distributions

(Meckes) Let $X \subset \mathbb{R}^{n}$ be compact, convex with non-empty interior (n odd).
A weight distribution w for X is a distribution (in $H^{-(n+1) / 2}\left(\mathbb{R}^{n}\right)$) supported on X such that

$$
\left\langle w, e^{-\mathrm{d}(\mathbf{s}, \cdot)}\right\rangle=1 \quad \text { for every } \mathbf{s} \in X
$$

The magnitude of X is given by $|X|=\langle w, \mathbf{1}\rangle$.
Try to calculate the magnitude of an odd ball!
Guess a weight distribution for B_{R}^{n}, the radius R ball of dimension $n=2 p+1$.

$$
\langle w, f\rangle=\frac{1}{n!\omega_{n}}\left(\int_{\mathrm{x} \in B_{R}^{n}} f \mathrm{~d} \mathbf{x}+\sum_{i=0}^{p} \beta_{i}(R) \int_{\mathbf{x} \in S_{R}^{n-1}} \frac{\partial^{i}}{\partial v^{i}} f \mathrm{~d} \mathbf{x}\right)
$$

Need to solve the weight equation for every $\mathbf{s} \in B_{R}^{n}$ to find $\left(\beta_{i}(R)\right)_{i=0}^{p}$. Then

$$
\left|B_{R}^{n}\right|=\frac{1}{n!}\left(R^{n}+n \beta_{0}(R) R^{n-1}\right) .
$$

The Key Integral

$$
\frac{1}{n!\omega_{n}} \int_{\mathbf{x} \in S_{R}^{n-1}} e^{-|\mathbf{x}-\mathbf{s}|} \mathrm{d} \mathbf{x} \quad \text { for } \mathbf{s} \in B_{R}^{n}
$$

The Key Integral

$$
\frac{1}{n!\omega_{n}} \int_{\mathrm{x} \in S_{R}^{n-1}} e^{-|\mathrm{x}-\mathbf{s}|} \mathrm{dx} \quad \text { for } \mathbf{s} \in B_{R}^{n}
$$

Theorem

For $n=2 p+1, R>0$ and $s=|\mathbf{s}|<R$, then

$$
\frac{1}{n!\omega_{n}} \int_{\mathbf{x} \in S_{R}^{n-1}} e^{-|\mathbf{x}-\mathbf{s}|} \mathrm{d} \mathbf{x}=\frac{(-1)^{p} e^{-R}}{2^{p} p!} \sum_{i=0}^{p}\binom{p}{i} \chi_{p+i}(R) \tau_{i}(s) .
$$

modified spherical Bessel functions-ish
Reverse Bessel polynomials

$$
\begin{aligned}
& \chi_{0}(R)=1 \\
& \chi_{1}(R)=R \\
& \chi_{2}(R)=R^{2}+R \\
& \chi_{3}(R)=R^{3}+3 R^{2}+3 R \\
& \chi_{4}(R)=R^{4}+6 R^{3}+15 R^{2}+15 R
\end{aligned}
$$

$$
\begin{aligned}
& \tau_{0}(s)=\cosh (s) \\
& \tau_{1}(s)=-\frac{\sinh (s)}{s} \\
& \tau_{2}(s)=\frac{\cosh (s)}{s^{2}}-\frac{\sinh (s)}{s^{3}} \\
& \tau_{3}(s)=-\frac{\sinh (s)}{s^{3}}+\frac{3 \cosh (s)}{s^{4}}-\frac{3 \sinh (s)}{s^{5}}
\end{aligned}
$$

Solving the weight equations

Trying to solve the weight equation for every $s \in S_{R}^{n-1}$ gives a linear system.

$$
\left(\begin{array}{cccc}
\chi_{p}(R) & \delta \chi_{p}(R) & \ldots & \delta^{p} \chi_{p}(R) \\
\chi_{p+1}(R) & \delta \chi_{p+1}(R) & \ldots & \delta^{p} \chi_{p+1}(R) \\
\vdots & \vdots & & \vdots \\
\chi_{2 p}(R) & \delta \chi_{2 p}(R) & \ldots & \delta^{p} \chi_{2 p}(R)
\end{array}\right)\left(\begin{array}{c}
\beta_{0}(R) \\
\beta_{1}(R) \\
\vdots \\
\beta_{p}(R)
\end{array}\right)=\left(\begin{array}{c}
\chi_{p+1}(R) / R \\
\chi_{p+2}(R) / R \\
\vdots \\
\chi_{2 p+1}(R) / R
\end{array}\right)
$$

But remember the magnitude has the following form.

$$
\left|B_{R}^{n}\right|=\frac{1}{n!}\left(R^{n}+n \beta_{0}(R) R^{n-1}\right)
$$

So we can add this to our linear system.

$$
\left(\begin{array}{ccccc}
\chi_{p}(R) & \delta \chi_{p}(R) & \ldots & \delta^{p} \chi_{p}(R) & 0 \\
\chi_{p+1}(R) & \delta \chi_{p+1}(R) & \ldots & \delta^{p} \chi_{p+1}(R) & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
\chi_{2 p}(R) & \delta \chi_{2 p}(R) & \ldots & \delta^{p} \chi_{2 p}(R) & 0 \\
-n R^{n-1} & 0 & \ldots & 0 & n!
\end{array}\right)\left(\begin{array}{c}
\beta_{0}(R) \\
\beta_{1}(R) \\
\vdots \\
\beta_{p}(R) \\
\left|B_{R}^{n}\right|
\end{array}\right)=\left(\begin{array}{c}
\chi_{p+1}(R) / R \\
\chi_{p+2}(R) / R \\
\vdots \\
\chi_{2 p+1}(R) / R \\
R^{n}
\end{array}\right)
$$

Now use Cramer's Rule...

The answer

$$
\left|B_{R}^{n}\right|=\frac{\left|\begin{array}{c}
\text { some matrix of } \\
\text { derivatives of } \chi_{i}(R) s
\end{array}\right|}{n!\left|\begin{array}{|ccc|}
\text { some other matrix of } \\
\text { derivatives of } \chi_{i}(R) s
\end{array}\right|}=\cdots=\frac{\left|\begin{array}{cccc}
x_{2}(R) & x_{3}(R) & \cdots & x_{p+2}(R) \\
x_{3}(R) & x_{4}(R) & \cdots & x_{p+3}(R) \\
\vdots & (1) & \vdots & \\
x_{p+2}(R) & x_{p+3}(R) & \cdots & x_{2 p+2}(R)
\end{array}\right|}{n!R\left|\begin{array}{ccc|}
x_{0}(R) & x_{1}(R) & \cdots \\
x_{1}(R) & x_{2}(R) & \cdots \\
\vdots & x_{p}(R) & x_{p+1}(R) \\
x_{p}(R) & x_{p+1}(R) & \vdots \\
x_{2 p}(R)
\end{array}\right|}
$$

[Determinants with constant antidiagonals are called Hankel determinants.]

The answer

$$
\left|B_{R}^{n}\right|=\frac{\left|\begin{array}{c}
\text { some matrix of } \\
\text { derivatives of } \chi_{i}(R) s
\end{array}\right|}{n!\left|\begin{array}{c}
\text { some other matrix of } \\
\text { derivatives of } \chi_{i}(R) s
\end{array}\right|}=\cdots=\frac{\left|\begin{array}{cccc}
x_{3}(R) & x_{4}(R) & \ldots & \chi_{p+3}(R) \\
\vdots & & \vdots & \\
x_{p+2}(R) & x_{p+3}(R) & \ldots & x_{2 p+2}(R)
\end{array}\right|}{n!R\left|\begin{array}{cccc}
x_{0}(R) & \chi_{1}(R) & \ldots & x_{p}(R) \\
x_{1}(R) & x_{2}(R) & \ldots & x_{p+1}(R) \\
\vdots & & \vdots & \\
x_{p}(R) & x_{p+1}(R) & \cdots & x_{2 p}(R)
\end{array}\right|}
$$

[Determinants with constant antidiagonals are called Hankel determinants.]

$$
\begin{aligned}
& \left|B_{R}^{1}\right|=R+1 \\
& \left|B_{R}^{3}\right|=\frac{R^{3}+6 R^{2}+12 R+6}{3!} \\
& \left|B_{R}^{5}\right|=\frac{R^{6}+18 R^{5}+135 R^{4}+525 R^{3}+1080 R^{2}+1080 R+360}{5!(R+3)} \\
& \left|B_{R}^{7}\right|=\frac{R^{10}+40 R^{9}+720 R^{8}+\cdots+1814400 R^{2}+1209600 R+302400}{7!\left(R^{3}+12 R^{2}+48 R+60\right)}
\end{aligned}
$$

Lots of things about these not (immediately) explained by the formula...

Combinatorial interpretation of reverse Bessel polynomials

A length ℓ weighted Schröder path is a lattice path from $(x, 0)$ to $(x+\ell, 0)$ of a certain form:

Combinatorial interpretation of reverse Bessel polynomials

A length ℓ weighted Schröder path is a lattice path from $(x, 0)$ to $(x+\ell, 0)$ of a certain form:

Each Bessel polynomial is a weighted count of such paths.
Theorem (Favreau, Sokal)

$$
x_{i+1}(R) / R=\sum_{\gamma \text { length } 2 i} w(\gamma)
$$

Combinatorial interpretation of reverse Bessel polynomials

A length ℓ weighted Schröder path is a lattice path from $(x, 0)$ to $(x+\ell, 0)$ of a certain form:

Each Bessel polynomial is a weighted count of such paths.
Theorem (Favreau, Sokal)

$$
x_{i+1}(R) / R=\sum_{\gamma \text { length } 2 i} w(\gamma)
$$

Example
$\chi_{3}(R) / R=\#\{\wedge^{2}, \wedge^{1}, \wedge^{1} R, \underbrace{1}, \underline{R}, \underline{R}\}=R^{2}+3 R+3$

Combinatorial interpretation of the determinants

Theorem (Rough version of Lindström-Gessel-Viennot Lemma)

- Let G be a weighted, directed, acyclic graph.
- Suppose $\left\{K_{i}\right\}_{i=0}^{k}$ and $\left\{L_{j}\right\}_{j=0}^{k}$ be two sets of vertices in G.
- Let $M_{i, j}$ denote the weighted count of paths from K_{i} to L_{j}.
- Then subject to some condition on the vertices, the determinant

$$
\operatorname{det}\left[M_{i, j}\right]_{i, j=0}^{k}
$$

is the weighted count of all disjoint collections of $k+1$ paths joining K_{i} to L_{i} for $i=0, \ldots, k$.

Each $\chi_{i}(R)$ is a count of lattice paths.

Corollary

- The Hankel determinants $\operatorname{det}\left[\chi_{i+j+2}(R)\right]_{i, j=0}^{p}$ and $\operatorname{det}\left[\chi_{i+j}(R)\right]_{i, j=0}^{p}$ are counts of disjoint collections of lattice paths.
- Thus so are the numerator and denominator of $\left|B_{R}^{n}\right|$.

Combinatorial interpretation of the determinants (ctd)

You end up with very nice expressions for the numerator and denominator. For example,

We now have a combinatorial interpretation of each of the coefficients:

$$
\begin{aligned}
& \left|B_{R}^{1}\right|=R+1 \\
& \left|B_{R}^{3}\right|=\frac{R^{3}+6 R^{2}+12 R+6}{3!} \\
& \left|B_{R}^{5}\right|=\frac{R^{6}+18 R^{5}+135 R^{4}+525 R^{3}+1080 R^{2}+1080 R+360}{5!(R+3)} \\
& \left|B_{R}^{7}\right|=\frac{R^{10}+40 R^{9}+720 R^{8}+\cdots+1814400 R^{2}+1209600 R+302400}{7!\left(R^{3}+12 R^{2}+48 R+60\right)}
\end{aligned}
$$

The payoff

$$
\begin{aligned}
\left|B_{R}^{1}\right| & =R+1 \\
\left|B_{R}^{3}\right| & =\frac{R^{3}+6 R^{2}+12 R+6}{3!} \\
\left|B_{R}^{5}\right| & =\frac{R^{6}+18 R^{5}+135 R^{4}+525 R^{3}+1080 R^{2}+1080 R+360}{5!(R+3)} \\
\left|B_{R}^{7}\right| & =\frac{R^{10}+40 R^{9}+720 R^{8}+\cdots+1814400 R^{2}+1209600 R+302400}{7!\left(R^{3}+12 R^{2}+48 R+60\right)}
\end{aligned}
$$

Theorem

- Both numerator and denominator are monic polynomials of the obvious degrees with positive integer coefficients.
- $\left|B_{R}^{n}\right| \rightarrow 1$ as $R \rightarrow 0$.
- $\left|B_{R}^{n}\right|=1+\frac{(n-1)!!}{(n-2)!!} R+O\left(R^{2}\right)$ as $R \rightarrow 0$ (with Meckes).
$-\left|B_{R}^{n}\right|=\frac{1}{n!}\left(R^{n}+\frac{n(n+1)}{2} R^{n-1}+\frac{(n-1) n(n+1)^{2}}{8} R^{n-2}+\ldots\right)$ as $R \rightarrow \infty$.
See Gimperlein-Goffeng later this afternoon...

