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Euler characteristic for cell complexes

A cell structure on a space is a decomposition into cells (vertices,
edges, faces, etc.) such that each n-cell is topologically an n-ball.

Theorem

For any space X admitting at least one finite cell structure, there is
a number χ(X ), called its Euler characteristic, such that for any
finite cell structure on X we have

c0 − c1 + c2 − c3 + · · · = χ(X )

where cn = the number of n-cells.

The number χ(X ) is a fairly coarse invariant, while the cn’s are not
invariants at all (they depend on the cell structure).
Is there something in between?



Modifying a cell structure

 

c0 c ′0 = c0 − 1

c1 c ′1 = c1 − 3

c2 c ′2 = c2 − 2

c0 − c1 + c2 = c ′0 − c ′1 + c ′2



Modifying a cell structure, bis

 

c0 c ′0 = c0

c1 c ′1 = c1 − 1

c2 c ′2 = c2 − 1

c0 − c1 + c2 = c ′0 − c ′1 + c ′2



Modifying a cell structure, ter

 

c0 c ′0 = c0 − 1

c1 c ′1 = c1 − 1

c2 c ′2 = c2

c0 − c1 + c2 = c ′0 − c ′1 + c ′2



Chains

Idea

We can “cancel” an (n + 1)-cell with an n-cell on its boundary.

To avoid arbitrary choices, let’s try to instead cancel it with “its
whole boundary at once”. What is that?

• A finite collection of n-cells.

• Not ordered — a finite set?

• One n-cell can appear more than once — a finite multiset?

• Need to retain orientations — a finite signed multiset.

Definition

The nth chain group Cn(X ) of a cell structure is the free abelian
group generated by the set of n-cells.

Note that cn is the rank of Cn(x).



Homology

Definition

The boundary map dn+1 : Cn+1(X )→ Cn(X ) sends each
(n + 1)-cell generator to the sum of the n-cells on its boundary
(with multiplicities and signs).

The signs work out so that the composite

Cn+1(X ) Cn(X ) Cn−1(X )
dn+1 dn

is zero. (An algebraic version of the geometric fact ∂∂M = ∅.)
Thus if we define

Zn(X ) = ker(dn) Bn(X ) = im(dn+1)

then Bn(X ) ⊆ Zn(X ).

Definition

The nth homology group is the quotient Hn(X ) = Zn(X )/Bn(X ).



Abstract homology

Definition

A chain complex is a sequence of abelian groups Cn, with maps
dn+1 : Cn+1 → Cn called differentials, such that each composite

Cn+1 Cn Cn−1
dn+1 dn is zero. We then define

Zn = ker(dn) Bn = im(dn+1) Hn = Zn/Bn.

We call Zn the cycles, Bn the boundaries, and Hn the homology,
and write∗ zn, bn, and hn for their ranks.

(Instead of abelian groups we can use vector spaces, modules,
graded groups, etc.)

∗ Confusingly, our hn ’s are traditionally denoted bn (the “Betti numbers”).



Homology and Euler characteristic

Theorem

For any finite-rank chain complex we have∑
n(−1)n Rank(Cn) =

∑
n(−1)n Rank(Hn).

Proof.

The short exact sequence 0→ Zn → Cn → Bn−1 → 0 implies
cn = bn−1 + zn, and hence

c0 − c1 + c2 − c3 + · · ·
= z0 − (b0 + z1) + (b1 + z2)− (b2 + z3) + · · ·
= (z0 − b0)− (z1 − b1) + (z2 − b2)− (z3 − b3) + · · ·
= h0 − h1 + h2 − h3 + · · · .

bn−1 counts the “pairs of canceled cells” between cn−1 and cn.



Homology of spaces

Corollary

If X has a finite cell structure, then

χ(X ) =
∑
n

(−1)n Rank(Hn(X )).

The homology groups (as opposed to their ranks) have many other
variants and useful properties:

• Also make sense for infinite spaces

• Homology with more general coefficients

• Cohomology, with a ring structure

• Functoriality, Kunneth and Mayer-Vietoris theorems

• Spectral sequences

• . . .
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Where does magnitude come from?

Slogan

Magnitude = homology + summing a geometric series



The nerve of a category

Definition

The nerve of a small category X is a cell complex NX with one
n-cell for every composable string of n nonidentity∗ morphisms in X ,
with a boundary determined by all partial composites.

f g

gf

•

• •

•

hgf

gf

hgf

h

g

∗ In traditional simplicial-set language, there are also simplices containing identities; but they are degenerate and
hence disappear under geometric realization.



Chains in the nerve

Let hom′X (x , y) denote the set of nonidentity morphisms x → y .

cn =
∣∣∣{composable strings of n nonidentity morphisms

}∣∣∣
=
∑

x0,...,xn

∣∣∣{strings of nonidentity morphisms x0 → x1 → · · · → xn
}∣∣∣

=
∑

x0,...,xn

∣∣hom′X (x0, x1)
∣∣ · ∣∣hom′X (x1, x2)

∣∣ · · · ∣∣hom′X (xn−1, xn)
∣∣

Let W denote the square matrix with rows and columns labeled by
the objects of X , whose x-y entry is Wxy =

∣∣hom′X (x , y)
∣∣. Then

(W n)x0,xn =
∑

x1,...,xn−1

∣∣hom′X (x0, x1)
∣∣ · · · ∣∣hom′X (xn−1, xn)

∣∣
cn =

∑
x0,xn

(W n)x0,xn .



Euler characteristic of the nerve

Assume that the cn’s are eventually zero, so all sums are finite.

χ(NX ) = c0 − c1 + c2 − c3 + · · ·

=
∑
x0

(W 0)x0,x0 −
∑
x0,x1

(W 1)x0,x1 +
∑
x0,x2

(W 2)x0,x2 − · · ·

=
∑
x ,y

(
W 0 −W 1 + W 2 −W 3 + · · ·

)
x ,y

=
∑
x ,y

(
1

1 + W

)
x ,y

• By 1
1+W we mean (1 + W )−1, where 1 is the identity matrix.

• Z = 1 + W is the matrix with Zxy = |homX (x , y)|, the
number of possibly identity morphisms x → y .



Euler characteristic and magnitude

Definition

If X is a finite category such that the matrix Zxy = |homX (x , y)| is
invertible, then its magnitude is the sum of all the entries of Z−1:

|X | =
∑
xy

(Z−1)xy

Theorem

If the cn’s are eventually zero, then

|X | = χ(NX ) =
∑
n

(−1)n Rank(Hn(NX ))
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Metric spaces as enriched categories

For a monoidal category (V,⊗), we have V-enriched categories.

Example

For (V,⊗) = (Set,×), a V-enriched category is an ordinary
category.

Example (Lawvere)

For (V,⊗) = ([0,∞),+), V-enriched categories include metric
spaces.



Magnitude of enriched categories

Let R be a ring (often a field) and | · | : V → R an (iso-invariant)
homomorphism of multiplicative monoids, i.e. |u ⊗ v | = |u| · |v |.
For a V-enriched category X with finitely many objects, define a
matrix Z by Zxy = |homX (x , y)|.

Definition

The magnitude of X (with respect to | · |) is the sum of the entries
of Z−1, if it exists.

Example

V = FinSet, R = Q or R, | · | = cardinality: yields the magnitude
(≈ Euler characteristic) of a finite category.

Example

V = [0,∞), R = R, |u| = e−u: defines the magnitude of a finite
metric space.



Towards magnitude homology

Question

For a general V (e.g. [0,∞)), can the magnitude be recovered from
a magnitude homology theory?

Calculating purely formally, we can write∑
x ,y

(Z−1)xy =
∑
x ,y

(
W 0 −W 1 + W 2 −W 3 + · · ·

)
xy

=
∑
x0

(W 0)x0,x0 −
∑
x0,x1

(W 1)x0,x1 +
∑
x0,x2

(W 2)x0,x2 − · · ·

=
∑
n

(−1)n
∑

x0,x1,...,xn

Wx0,x1Wx1,x2 · · ·Wxn−1,xn .

where W = Z − 1.



Towards magnitude homology for metric spaces

For V = [0,∞) we have Wx ,y =

{
e−d(x ,y) if x 6= y

e0 − 1 = 0 if x = y
.

Thus, our formal calculation becomes

|X | =
∑
n

(−1)n
∑

x0 6=x1 6=···6=xn

e−(d(x0,x1)+d(x1,x2)+···+d(xn−1,xn))

Problems

1 Does this formal calculation actually make sense?
(E.g. does the infinite series converge?)

2 Is there a chain complex whose “ranks” are the (non-integers!)∑
x0 6=x1 6=···6=xn

e−(d(x0,x1)+d(x1,x2)+···+d(xn−1,xn)) ?

Yes: Hepworth–Willerton (2015), Leinster–Shulman (2017).
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Universal magnitudes

Any small V has a universal iso-invariant monoid map to a ring.

V Z[V]

R

φR

• The elements of Z[V] are Z-linear combinations of isomorphism
classes [u] with u ∈ V, where [u] · [v ] := [u ⊗ v ].

• If a V-category X has magnitude over Z[V], it is universal:

φR(|X |Z[V]) = |X |R .



Generalized polynomials and rational functions

When V = [0,∞), it is more intuitive to write [u] as qu, where q is
a formal variable, since then instead of [u][v ] = [u + v ] we have

quqv = qu+v .

Thus Z[[0,∞)] is the ring Z[q[0,∞)] of generalized polynomials. This
is like the polynomial ring Z[q] but with exponents in [0,∞), e.g.

1− 2q0.5 + 11qπ.

To invert more matrices, we embed Z[q[0,∞)] in its field of fractions,
which consists of generalized rational functions, e.g.

1 + 3q − 2q0.5 + 11qπ

4 + q1/3 − 17q
√
2

.

We can also include rational coefficients and negative exponents, so
we write it as Q(qR).



Universal magnitudes of metric spaces

Theorem

Every finite metric space X has magnitude over Q(qR).

Proof.

Q(qR) is an ordered field in which positive powers of q are
infinitesimal. Since the entries of the matrix Z are qd(x ,y), where
d(x , x) = 0 and d(x , y) > 0 for x 6= y , they are q0 = 1 along the
diagonal and infinitesimal off it. Thus, the determinant of Z is 1
plus a bunch of infinitesimal terms, hence nonzero.

In fact, Z is even positive definite over Q(qR), by the
Levy-Desplanques theorem.



The magnitude function

A generalized rational function can be evaluated at any nonnegative
real number r by plugging it in for the variable q, except for a finite
number of singularities where the denominator vanishes.

It thereby defines a partial real-analytic function [0,∞) ⇀ R.

Evaluating the universal magnitude |X |Q(qR) at r = e−t , for
t ∈ (0,∞), yields the classical magnitude function t 7→ |tX |R.



Generalized power series

Just as Z[q] and Q(q) embed respectively in the formal power series
ring ZJqK and the formal Laurent series ring Q((q)), the field Q(qR)
embeds in the field of formal Hahn series Q((qR)):∑

n<α

anq
bn α an ordinal

with an ∈ Q and bn ∈ R, such that bm < bn whenever m < n.

Like ZJqK and Q((q)), the field Q((qR)) has a topology generated by
a valuation ν(qb) = b (though it differs in that not all Hahn series
converge to themselves in this topology).



Finally!

Let A = (Ar )r∈R be an R-graded abelian group. If each Ar has finite
rank and {r | Ar 6= 0} ⊆ R is well-ordered, then A has a Hahn rank

RankQ((qR))(A) =
∑
Ar 6=0

Rank(Ar ) qr ∈ Q((qR)).

Thus, we can hope for an R-graded magnitude homology of metric
spaces for which the alternating sum of the Hahn ranks converges in
Q((qR)) to the universal magnitude in Q(qR) ⊆ Q((qR)).
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Towards magnitude chains

Recall our formal calculation over R

|X |R =
∑
n

(−1)n
∑

x0 6=x1 6=···6=xn

e−(d(x0,x1)+d(x1,x2)+···+d(xn−1,xn))

which over Q((qR)) becomes

|X |Q((qR)) =
∑
n

(−1)n
∑

x0 6=x1 6=···6=xn

qd(x0,x1)+d(x1,x2)+···+d(xn−1,xn)

=
∑
n

(−1)n
∑

r∈[0,∞)

cn,r q
r

where

cn,r =
∣∣∣{x0 6= x1 6= · · · 6= xn

∣∣ d(x0, x1) + · · ·+ d(xn−1, xn) = r
}∣∣∣.

And the cardinality of a finite set is the rank of the free abelian
group on that set!



Magnitude chains

Let X be a metric space, n ∈ N, and r ∈ [0,∞).

Definition

Let Cn,r (X ) be the free abelian group on the set of (n + 1)-tuples
x0 6= x1 6= x2 6= · · · 6= xn such that

d(x0, x1) + d(x1, x2) + · · ·+ d(xn−1, xn) = r .

Theorem

For a finite metric space X , we have

|X |Q((qR)) =
∑
n

(−1)n RankQ((qR))(Cn,∗(X ))

the sum over n converging in the topology of Q((qR)).

The point is that X has a nonzero minimum distance between
distinct points, so the valuations of the ranks go to ∞ as n does.



Magnitude homology determines magnitude

Fact

There are maps d : Cn+1,r (X )→ Cn,r (X ) making C∗,∗(X ) an
R-graded chain complex, with magnitude homology groups Hn,q(X ).

Corollary

For a finite metric space X , we have

|X |Q((qR)) =
∑
n

(−1)n RankQ((qR))(Hn,∗(X )).

the sum over n converging in the topology of Q((qR)).

In particular, since the magnitude function is determined by
evaluating |X |Q(qR) at numbers q = e−t , the magnitude function is
determined by the magnitude homology.



The integral case

Suppose all distances in X are integers (such as if it is a graph with
the shortest-path metric). Then:

• We can consider it as enriched over N instead of [0,∞).

• Its universal magnitude lies in the field of ordinary rational
functions Q(q).

• Instead of Hahn series we can use Laurent series Q((q)).

• Instead of R-gradings we can use Z-gradings.

Magnitude homology was first worked out in the case of graphs by
Hepworth and Willerton, making use of these simplifications.



But what are the differentials?

Everything I’ve said so far would be true even if the differentials
d : Cn+1,r (X )→ Cn,r (X ) were zero! But that would make
Hn,r (X ) = Cn,r (X ), which is too trivial to be interesting.

Fact which I wish I had time to explain

The action of d : Cn+1,r (X )→ Cn,r (X ) on generators is almost∗

¿ d([x0, . . . , xn+1]) =
∑

0≤k≤n+1

(−1)k · [x0, . . . , x̂k , . . . , xn+1] ?

The problem is that [x0, . . . , x̂k , . . . , xn+1] may not be a generator
of Cn,r (X ), since its total distance may be < r .
In that case we simply omit the kth term from the sum.

(This is not an ad hoc definition, but falls naturally out of general
homotopical enriched category theory. See arXiv:1711.00802.)

∗ The notation x̂k means to omit that point from the list.
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Magnitude homology of some graphs (Hepworth–Willerton)



Magnitude homology of some graphs (Hepworth–Willerton)



Magnitude homology of some graphs (Hepworth–Willerton)



Magnitude homology of some graphs (Hepworth–Willerton)



Magnitude homology of trees

Theorem (Hepworth–Willerton)

If X is a tree, then:

• H0,0(X ) is free on the vertices of X .

• Hn,n(X ) is free on the directed edges of X for all n > 0.

• Hn,r (X ) = 0 if n 6= r .



Magnitude homology distinguishes more graphs than
magnitude (Gu)



Magnitude homology detects convexity/geodesy

Theorem

H1,∗(X ) = 0 iff X is Menger convex: for any x 6= z there is a y with
x 6= y 6= z and d(x , y) + d(y , z) = d(x , z).

If closed and bounded subsets of X are compact, it is Menger convex
iff it is geodesic (any two points are connected by a geodesic).
If X is not Menger convex, then H1,r (X ) is freely generated by the
ordered pairs of points x 6= z with d(x , z) = r that do not have
such a y strictly between them.



Magnitude homology detects uniqueness of geodesics

Theorem (Kaneta–Yoshinaga (2018), Jubin (2018), Gomi (2019))

If X is convex in Rn or uniquely geodesic, Hn,∗(X ) = 0 for all n > 0.

Theorem (Gomi (2019))

If X is geodesic but not uniquely so, H2,r (X ) “counts” the
nonuniqueness of length-r geodesics joining pairs of points.

Example

When S1 has the geodesic metric:

• H2,π(S1) = Z[S1] and H2,r (S1) = 0 for all other r .

• H3,r (S1) = 0. (Gomi 2018)

However, H3,∗(X ) does not always vanish even for geodesic X .



A curious bifurcation

Observation #1

If X has no strictly-collinear triples (such that x 6= y 6= z and
d(x , y) + d(y , z) = d(x , z)), then all differentials are zero.
Thus H∗,∗(X ) = C∗,∗(X ), and magnitude homology is boring.

Observation #2

We only know how to recover magnitude from magnitude homology
for finite metric spaces.

• (Finite) graphs have lots of strictly-collinear triples.

• So do geodesic spaces; but they must be infinite.

• A finite subset of Rn almost never has strictly-collinear triples!



Compact metric spaces

The magnitude of finite metric spaces can be generalized to various
kinds of compact metric spaces using analysis (e.g. replacing sums
by integrals, or taking suprema over finite subsets).

However, the magnitude homology does not determine this analytic
magnitude. E.g. H∗,∗(B

n) knows only the cardinality of Bn, while
|Bn| knows its volume, etc.

Question

Is there an “analytic magnitude homology” that does determine the
analytic magnitude?
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