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Objectives

Part I: Measuring diversity

• Introduce a family of distance-sensitive entropies (Dq)q∈[0,∞].

Part II: Maximising diversity on compact spaces

• State a maximum entropy theorem for compact spaces.

Part II: Maximum diversity and magnitude

• Define a real-valued invariant, closely related to magnitude.

Part III: Uniform measures
• Propose a uniform measure for a wide class of metric spaces.



Objectives

Part I: Measuring diversity

• Introduce a family of distance-sensitive entropies (Dq)q∈[0,∞].

Part II: Maximising diversity on compact spaces

• State a maximum entropy theorem for compact spaces.

Part II: Maximum diversity and magnitude

• Define a real-valued invariant, closely related to magnitude.

Part III: Uniform measures
• Propose a uniform measure for a wide class of metric spaces.



Objectives

Part I: Measuring diversity

• Introduce a family of distance-sensitive entropies (Dq)q∈[0,∞].

Part II: Maximising diversity on compact spaces

• State a maximum entropy theorem for compact spaces.

Part II: Maximum diversity and magnitude

• Define a real-valued invariant, closely related to magnitude.

Part III: Uniform measures
• Propose a uniform measure for a wide class of metric spaces.



Objectives

Part I: Measuring diversity

• Introduce a family of distance-sensitive entropies (Dq)q∈[0,∞].

Part II: Maximising diversity on compact spaces

• State a maximum entropy theorem for compact spaces.

Part II: Maximum diversity and magnitude

• Define a real-valued invariant, closely related to magnitude.

Part III: Uniform measures
• Propose a uniform measure for a wide class of metric spaces.



Provenance

• Leinster and Cobbold, Measuring diversity: the importance of
species similarity. Ecology 93 (2012).

• Leinster and Meckes, Maximizing diversity in biology and beyond.
Entropy 18(3) (2016).

• Meckes, Magnitude, diversity, capacities, and dimensions of metric
spaces. Potential Analysis 42(2) (2015).

• Leinster and Roff, The maximum diversity of a compact space.
(To appear.)



Part I

Measuring Diversity



Modelling a community

Conventionally, an ecological community is modelled by a set of species and a
probability distribution recording the relative abundance of each species.



Quantifying diversity



A single family of entropies

Definition
Let X = {1, . . . , n}, let µ = (µ1, . . . , µn) be a probability distribution
on X , and let q ∈ [0,∞]. The Rényi entropy of order q of µ is

Hq(µ) =
1

1− q
log

∑
i∈supp(µ)

µqi

for q 6= 1,∞, and

Hq(µ) =

{
−
∑

i∈supp(µ) µi logµi when q = 1,

− log maxi∈supp(µ) µi when q =∞.

In particular, H1(µ) is Shannon entropy.



Incorporating similarities between species

Now, let X = {1, . . . n} be a set of species, with pairwise similarities
recorded in an n× n matrix K . Let µ be a probability distribution on X .

Definition
For q ∈ [0,∞) not equal to 1, the order-q diversity of µ is

DK
q (µ) =

(∑
i

(Kµ)i
q−1µi

) 1
1−q

.

When K is the identity matrix, this reduces to Rényi entropy:

D I
q(µ) = exp(Hq(µ)).

Moral:
log(diversity) = generalised entropy.
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Interpreting diversity

For q ∈ [0,∞) not equal to 1, the order-q diversity of µ is

DK
q (µ) =

(∑
i

(Kµ)i
q−1µi

) 1
1−q

.

The number (Kµ)i =
∑

j Kijµj is the expected similarity between an
individual of species i and an individual chosen at random—it is the
typicality of species i .

Then (Kµ)i
−1 is the atypicality of species i .

So DK
q (µ) is the average atypicality of species in X with respect to µ,

where ‘average’ refers to the power mean of order 1− q.



Interpreting diversity

For q ∈ [0,∞) not equal to 1, the order-q diversity of µ is

DK
q (µ) =

(∑
i

(Kµ)i
q−1µi

) 1
1−q

.

The number (Kµ)i =
∑

j Kijµj is the expected similarity between an
individual of species i and an individual chosen at random—it is the
typicality of species i .

Then (Kµ)i
−1 is the atypicality of species i .

So DK
q (µ) is the average atypicality of species in X with respect to µ,

where ‘average’ refers to the power mean of order 1− q.



Interpreting diversity

For q ∈ [0,∞) not equal to 1, the order-q diversity of µ is

DK
q (µ) =

(∑
i

(Kµ)i
q−1µi

) 1
1−q

.

The number (Kµ)i =
∑

j Kijµj is the expected similarity between an
individual of species i and an individual chosen at random—it is the
typicality of species i .

Then (Kµ)i
−1 is the atypicality of species i .

So DK
q (µ) is the average atypicality of species in X with respect to µ,

where ‘average’ refers to the power mean of order 1− q.



Interpreting diversity

For q ∈ [0,∞) not equal to 1, the order-q diversity of µ is

DK
q (µ) =

(∑
i

(Kµ)i
q−1µi

) 1
1−q

.

The number (Kµ)i =
∑

j Kijµj is the expected similarity between an
individual of species i and an individual chosen at random—it is the
typicality of species i .

Then (Kµ)i
−1 is the atypicality of species i .

So DK
q (µ) is the average atypicality of species in X with respect to µ,

where ‘average’ refers to the power mean of order 1− q.



Part II

Maximising Diversity on Compact Spaces



Compact spaces with similarities

Definition
Let X be a compact Hausdorff topological space.

A similarity kernel on X is a continuous function K : X × X → [0,∞)
satisfying K (x , x) > 0 for all x ∈ X .

The pair (X ,K ) is a space with similarities.

We say (X ,K ) is symmetric if K (x , y) = K (y , x) for all x , y ∈ X .

Examples

• A set of species with a similarity matrix.

• A compact metric space X with kernel K (x , y) = e−d(x ,y).
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Typicality for compact spaces

Definition
Let (X ,K ) be a space with similarities, and let P(X ) be the space of
Radon probability measures on X , with the weak* topology.

For each µ ∈ P(X ) and x ∈ X , define

(Kµ)(x) =

∫
K (x ,−) dµ ∈ [0,∞).

The function Kµ : X → [0,∞) is the typicality function of (X ,K , µ).

The atypicality function of (X ,K , µ) is 1/Kµ.



Diversity for compact spaces

Definition
Let (X ,K ) be a space with similarities, µ ∈ P(X ), and q ∈ [0,∞) not
equal to 1. The diversity of order q of µ is

DK
q (µ) =

(∫
(Kµ)q−1 dµ

)1/(1−q)
.

The diversity function of order q of (X ,K ) is DK
q : P(X )→ (0,∞).

Example

Let X be a compact metric space, and µ ∈ P(X ). Then

Dq(µ) =

(∫ (∫
e−d(x ,y) dµ(x)

)q−1
dµ(y)

)1/(1−q)

.
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The viewpoint parameter matters!

Leinster and Cobbold, Measuring Diversity. . . , Ecology 93 (2012)



A maximisation theorem

Theorem (Leinster and Roff, 2019)

Let (X ,K ) be a nonempty symmetric space with similarities.

1. There exists a probability measure µ on X that maximises DK
q (µ)

for all q ∈ [0,∞] at once.

2. The maximum diversity supµD
K
q (µ) is independent of q ∈ [0,∞].

Definition
The maximum diversity of (X ,K ) is

Dmax(X ) = sup
µ

DK
q (µ)

for any q ∈ [0,∞].
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Maximum diversity of metric spaces

Example

The maximum diversity of a compact metric space X is

Dmax(X ) = sup
µ∈P(X )

D2(µ) = sup
µ∈P(X )

1∫ ∫
e−d(x ,y) dµ(x) dµ(y)

.

This quantity is investigated in Meckes (2015).



Part III

Maximum Diversity and Magnitude



Relating diversity to magnitude

Let (X ,K ) be a space with similarities.

Definition
A measure µ ∈ P(X ) is balanced if Kµ is constant on supp µ.

Proposition

Any diversity-maximising measure is balanced.

Definition
A weight measure on (X ,K ) is a signed measure µ such that Kµ ≡ 1.

For example, a weight measure on a compact metric space satisfies∫
e−d(x ,y) dµ(x) = 1 for all y ∈ X .

Corollary

If µ is a maximising measure, its restriction to supp µ is a scalar
multiple of a weight measure.
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Relating diversity to magnitude

Definition
Let (X ,K ) be a symmetric space with similarities. Suppose there exists
a weight measure on (X ,K ). The magnitude of (X ,K ) is

|X | = µ(X )

for any weight measure µ on (X ,K ).

Lemma
Let µ be a maximising measure on (X ,K ). Then

Dmax(X ) = |supp µ|.
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Positive definite spaces

Let X be a compact, positive definite metric space. Its magnitude is

|X | = sup{|Y | : finite Y ⊆ X}.

Proposition (Meckes, 2011)

If X admits a weight measure µ, this is equivalent to |X | = µ(X ).

Consequences

• For all Y ⊆ X , we have |Y | ≤ |X |. So when X 6= ∅,

Dmax(X ) ≤ |X |.

• If X admits a nonnegative weight measure µ, its normalisation
µ̂ ∈ P(X ) is the unique maximising measure on X , and

Dmax(X ) = |X |.
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Example

A line segment [0, r ] ⊂ R has weight measure 1
2(δ0 + λ[0,r ] + δr ).

Hence,

Dmax([0, r ]) = |[0, r ]| = 1 +
r

2

and the unique maximising measure on [0, r ] is

δ0 + λ[0,r ] + δr

2 + r
.



Example

Suppose X is homogeneous. Then the Haar probability measure µ is the
unique maximising measure on X and, for any y ∈ X ,

Dmax(X ) = |X | =
1∫

e−d(x ,y) dµ(x)
.



Part IV

Uniform Measures



Defining a uniform measure

Let X = (X , d) be a metric space. Write tX for the space (X , td).

Definition
Let X be a compact metric space. Suppose that tX has a unique
maximising measure µt for all t � 0, and that limt→∞ µt exists in
P(X ). Then the uniform measure on X is

µX = lim
t→∞

µt .
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Example

Proposition

On a finite metric space, the uniform measure is the uniform measure.



Example

Proposition

On a homogeneous space, the uniform measure is the Haar measure.



Example

Proposition

On a compact subinterval of R, the uniform measure is Lebesgue
measure restricted and normalised.



Example

Proposition

Let X ⊂ Rn be a compact subset with nonzero volume. Let λ̂X be
Lebesgue measure restricted to X and normalised. For all q ∈ [0,∞],

De−td

q (λ̂X )

Dmax(tX )
→ 1 as t →∞.

Moral: λ̂X is approximately maximising at large scales.
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