The Maximum Diversity of a Compact Metric Space

Emily Roff The University of Edinburgh

> Magnitude Workshop ICMS, Edinburgh 4th July 2019

Part I: Measuring diversity

• Introduce a family of distance-sensitive entropies $(D_q)_{q \in [0,\infty]}$.

Part I: Measuring diversity

Introduce a family of distance-sensitive entropies (D_q)_{q∈[0,∞]}.

Part II: Maximising diversity on compact spaces

• State a maximum entropy theorem for compact spaces.

Part I: Measuring diversity

Introduce a family of distance-sensitive entropies (D_q)_{q∈[0,∞]}.

Part II: Maximising diversity on compact spaces

• State a maximum entropy theorem for compact spaces.

Part II: Maximum diversity and magnitude

• Define a real-valued invariant, closely related to magnitude.

Part I: Measuring diversity

Introduce a family of distance-sensitive entropies (D_q)_{q∈[0,∞]}.

Part II: Maximising diversity on compact spaces

• State a maximum entropy theorem for compact spaces.

Part II: Maximum diversity and magnitude

• Define a real-valued invariant, closely related to magnitude.

Part III: Uniform measures

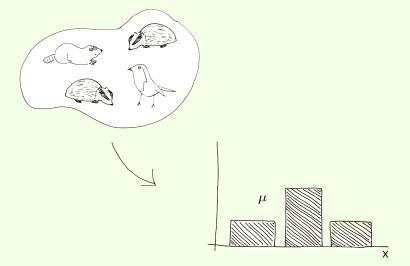
• Propose a uniform measure for a wide class of metric spaces.

Provenance

- Leinster and Cobbold, *Measuring diversity: the importance of species similarity*. Ecology 93 (2012).
- Leinster and Meckes, *Maximizing diversity in biology and beyond*. Entropy 18(3) (2016).
- Meckes, *Magnitude, diversity, capacities, and dimensions of metric spaces.* Potential Analysis 42(2) (2015).
- Leinster and Roff, *The maximum diversity of a compact space*. (To appear.)

Part I Measuring Diversity

Modelling a community



Conventionally, an ecological community is modelled by a set of species and a probability distribution recording the relative abundance of each species.

Quantifying diversity

Gini-Simpson Index Species richness **BIOLOGY Berger-Parker Dominance** DIVERSITY INDICES: SHANNON'S H AND E Given a vector of frequencies (counts), fi the Shannon diversity index is computed as $H = \frac{n \log(n) - \sum_{i=1}^{k} f_i \log(f_i)}{n \log(n) - \sum_{i=1}^{k} f_i \log(f_i)}$ Simpson's Diversity Index A community dominated by one or

A single family of entropies

Definition

Let $X = \{1, ..., n\}$, let $\mu = (\mu_1, ..., \mu_n)$ be a probability distribution on X, and let $q \in [0, \infty]$. The **Rényi entropy of order** q of μ is

$$H_q(\mu) = rac{1}{1-q} \log \sum_{i \in ext{supp}(\mu)} \mu_i^q$$

for $q
eq 1,\infty$, and

$$H_q(\mu) = \begin{cases} -\sum_{i \in \text{supp}(\mu)} \mu_i \log \mu_i & \text{when } q = 1, \\ -\log \max_{i \in \text{supp}(\mu)} \mu_i & \text{when } q = \infty. \end{cases}$$

In particular, $H_1(\mu)$ is **Shannon entropy**.

Incorporating similarities between species

Now, let $X = \{1, ..., n\}$ be a set of species, with pairwise similarities recorded in an $n \times n$ matrix K. Let μ be a probability distribution on X.

Definition

For $q \in [0,\infty)$ not equal to 1, the **order**-q **diversity** of μ is

$$D_q^{\mathcal{K}}(\mu) = \left(\sum_i \left(\mathcal{K}\mu\right)_i^{q-1}\mu_i\right)^{\frac{1}{1-q}}$$

Incorporating similarities between species

Now, let $X = \{1, ..., n\}$ be a set of species, with pairwise similarities recorded in an $n \times n$ matrix K. Let μ be a probability distribution on X.

Definition

For $q \in [0,\infty)$ not equal to 1, the **order**-q **diversity** of μ is

$$D_q^K(\mu) = \left(\sum_i (K\mu)_i^{q-1}\mu_i\right)^{\frac{1}{1-q}}$$

When K is the identity matrix, this reduces to Rényi entropy:

$$D'_q(\mu) = \exp(H_q(\mu)).$$

Moral:

$$log(diversity) = generalised entropy.$$

For $q \in [0,\infty)$ not equal to 1, the order-q diversity of μ is

$$D_q^{\mathcal{K}}(\mu) = \left(\sum_i (\mathcal{K}\mu)_i^{q-1} \mu_i\right)^{\frac{1}{1-q}}$$

For $q \in [0,\infty)$ not equal to 1, the order-q diversity of μ is

$$D_q^{\mathcal{K}}(\mu) = \left(\sum_i (\mathcal{K}\mu)_i^{q-1}\mu_i\right)^{\frac{1}{1-q}}$$

The number $(K\mu)_i = \sum_j K_{ij}\mu_j$ is the expected similarity between an individual of species *i* and an individual chosen at random—it is the typicality of species *i*.

For $q \in [0,\infty)$ not equal to 1, the order-q diversity of μ is

$$D_q^{\mathcal{K}}(\mu) = \left(\sum_i (\mathcal{K}\mu)_i^{q-1}\mu_i\right)^{\frac{1}{1-q}}$$

The number $(K\mu)_i = \sum_j K_{ij}\mu_j$ is the expected similarity between an individual of species *i* and an individual chosen at random—it is the typicality of species *i*.

Then $(K\mu)_i^{-1}$ is the atypicality of species *i*.

For $q \in [0,\infty)$ not equal to 1, the **order**-q **diversity** of μ is

$$\mathcal{D}_{q}^{K}(\mu) = \left(\sum_{i} (K\mu)_{i}^{q-1} \mu_{i}\right)^{rac{1}{1-q}}$$

The number $(K\mu)_i = \sum_j K_{ij}\mu_j$ is the expected similarity between an individual of species *i* and an individual chosen at random—it is the typicality of species *i*.

Then $(K\mu)_i^{-1}$ is the atypicality of species *i*.

So $D_q^K(\mu)$ is the average atypicality of species in X with respect to μ , where 'average' refers to the power mean of order 1 - q.

Part II

Maximising Diversity on Compact Spaces

Compact spaces with similarities

Definition

Let X be a compact Hausdorff topological space.

A similarity kernel on X is a continuous function $K : X \times X \to [0, \infty)$ satisfying K(x, x) > 0 for all $x \in X$.

The pair (X, K) is a space with similarities.

We say (X, K) is symmetric if K(x, y) = K(y, x) for all $x, y \in X$.

Compact spaces with similarities

Definition

Let X be a compact Hausdorff topological space.

A similarity kernel on X is a continuous function $K : X \times X \to [0, \infty)$ satisfying K(x, x) > 0 for all $x \in X$.

The pair (X, K) is a space with similarities.

We say (X, K) is symmetric if K(x, y) = K(y, x) for all $x, y \in X$.

Examples

- A set of species with a similarity matrix.
- A compact metric space X with kernel $K(x, y) = e^{-d(x, y)}$.

Typicality for compact spaces

Definition

Let (X, K) be a space with similarities, and let P(X) be the space of Radon probability measures on X, with the weak* topology.

For each $\mu \in P(X)$ and $x \in X$, define

$$(\kappa\mu)(x) = \int \kappa(x,-) \,\mathrm{d}\mu \in [0,\infty).$$

The function $K\mu : X \to [0, \infty)$ is the **typicality function** of (X, K, μ) . The **atypicality function** of (X, K, μ) is $1/K\mu$.

Diversity for compact spaces

Definition

Let (X, K) be a space with similarities, $\mu \in P(X)$, and $q \in [0, \infty)$ not equal to 1. The **diversity of order** q of μ is

$$D_q^{\mathsf{K}}(\mu) = \left(\int \left(\mathsf{K}\mu\right)^{q-1} \, \mathsf{d}\mu\right)^{1/(1-q)}$$

The diversity function of order q of (X, K) is $D_q^K : P(X) \to (0, \infty)$.

Diversity for compact spaces

Definition

Let (X, K) be a space with similarities, $\mu \in P(X)$, and $q \in [0, \infty)$ not equal to 1. The **diversity of order** q of μ is

$$D_q^{\mathsf{K}}(\mu) = \left(\int \left(\mathsf{K}\mu\right)^{q-1} \, \mathsf{d}\mu\right)^{1/(1-q)}$$

The diversity function of order q of (X, K) is $D_q^K : P(X) \to (0, \infty)$.

Example

Let X be a compact metric space, and $\mu \in P(X)$. Then

$$D_q(\mu) = \left(\int \left(\int e^{-d(x,y)} d\mu(x)\right)^{q-1} d\mu(y)\right)^{1/(1-q)}$$

The viewpoint parameter matters!



Leinster and Cobbold, Measuring Diversity..., Ecology 93 (2012)

A maximisation theorem

Theorem (Leinster and Roff, 2019)

Let (X, K) be a nonempty symmetric space with similarities.

1. There exists a probability measure μ on X that maximises $D_q^K(\mu)$ for all $q \in [0, \infty]$ at once.

A maximisation theorem

Theorem (Leinster and Roff, 2019)

Let (X, K) be a nonempty symmetric space with similarities.

- 1. There exists a probability measure μ on X that maximises $D_q^K(\mu)$ for all $q \in [0, \infty]$ at once.
- 2. The maximum diversity $\sup_{\mu} D_q^{\mathcal{K}}(\mu)$ is independent of $q \in [0, \infty]$.

A maximisation theorem

Theorem (Leinster and Roff, 2019)

Let (X, K) be a nonempty symmetric space with similarities.

- 1. There exists a probability measure μ on X that maximises $D_q^K(\mu)$ for all $q \in [0, \infty]$ at once.
- 2. The maximum diversity $\sup_{\mu} D_q^{\mathcal{K}}(\mu)$ is independent of $q \in [0, \infty]$.

Definition

The **maximum diversity** of (X, K) is

$$D_{\mathsf{max}}(X) = \sup_{\mu} D_q^{\mathcal{K}}(\mu)$$

for any $q \in [0, \infty]$.

Maximum diversity of metric spaces

Example

The maximum diversity of a compact metric space X is

$$D_{\max}(X) = \sup_{\mu \in P(X)} D_2(\mu) = \sup_{\mu \in P(X)} \frac{1}{\int \int e^{-d(x,y)} d\mu(x) d\mu(y)}.$$

This quantity is investigated in Meckes (2015).

Part III

Maximum Diversity and Magnitude

Let (X, K) be a space with similarities.

Definition

A measure $\mu \in P(X)$ is **balanced** if $K\mu$ is constant on supp μ .

Let (X, K) be a space with similarities.

Definition

A measure $\mu \in P(X)$ is **balanced** if $K\mu$ is constant on supp μ .

Proposition

Any diversity-maximising measure is balanced.

Let (X, K) be a space with similarities.

Definition

A measure $\mu \in P(X)$ is **balanced** if $K\mu$ is constant on supp μ .

Proposition

Any diversity-maximising measure is balanced.

Definition

A weight measure on (X, K) is a signed measure μ such that $K\mu \equiv 1$. For example, a weight measure on a compact metric space satisfies

$$\int e^{-d(x,y)} \, \mathrm{d}\mu(x) = 1 \text{ for all } y \in X.$$

Let (X, K) be a space with similarities.

Definition

A measure $\mu \in P(X)$ is **balanced** if $K\mu$ is constant on supp μ .

Proposition

Any diversity-maximising measure is balanced.

Definition

A weight measure on (X, K) is a signed measure μ such that $K\mu \equiv 1$. For example, a weight measure on a compact metric space satisfies

$$\int e^{-d(x,y)} \, \mathrm{d} \mu(x) = 1$$
 for all $y \in X$.

Corollary

If μ is a maximising measure, its restriction to supp μ is a scalar multiple of a weight measure.

Definition

Let (X, K) be a symmetric space with similarities. Suppose there exists a weight measure on (X, K). The **magnitude** of (X, K) is

 $|X| = \mu(X)$

for any weight measure μ on (X, K).

Definition

Let (X, K) be a symmetric space with similarities. Suppose there exists a weight measure on (X, K). The **magnitude** of (X, K) is

 $|X| = \mu(X)$

for any weight measure μ on (X, K).

Lemma

Let μ be a maximising measure on (X, K). Then

 $D_{\max}(X) = |\text{supp } \mu|.$

Positive definite spaces

Let X be a compact, positive definite metric space. Its magnitude is

$$|X| = \sup\{|Y| : \text{ finite } Y \subseteq X\}.$$

Proposition (Meckes, 2011)

If X admits a weight measure μ , this is equivalent to $|X| = \mu(X)$.

Positive definite spaces

Let X be a compact, positive definite metric space. Its magnitude is

$$|X| = \sup\{|Y| : \text{ finite } Y \subseteq X\}.$$

Proposition (Meckes, 2011)

If X admits a weight measure μ , this is equivalent to $|X| = \mu(X)$.

Consequences

• For all $Y \subseteq X$, we have $|Y| \le |X|$. So when $X \ne \emptyset$,

 $D_{\max}(X) \leq |X|.$

• If X admits a nonnegative weight measure μ , its normalisation $\widehat{\mu} \in P(X)$ is the unique maximising measure on X, and

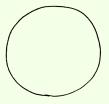
$$D_{\max}(X) = |X|.$$

A line segment $[0, r] \subset \mathbb{R}$ has weight measure $\frac{1}{2}(\delta_0 + \lambda_{[0,r]} + \delta_r)$. Hence,

$$D_{\max}([0,r]) = |[0,r]| = 1 + rac{r}{2}$$

and the unique maximising measure on [0, r] is

$$\frac{\delta_0 + \lambda_{[0,r]} + \delta_r}{2+r}.$$



Suppose X is homogeneous. Then the Haar probability measure μ is the unique maximising measure on X and, for any $y \in X$,

$$D_{\max}(X) = |X| = rac{1}{\int e^{-d(x,y)} \operatorname{d}\!\mu(x)}.$$

Part IV

Uniform Measures

Defining a uniform measure

Let X = (X, d) be a metric space. Write tX for the space (X, td).

Defining a uniform measure

Let X = (X, d) be a metric space. Write tX for the space (X, td).

Definition

Let X be a compact metric space. Suppose that tX has a unique maximising measure μ_t for all $t \gg 0$, and that $\lim_{t\to\infty} \mu_t$ exists in P(X). Then the **uniform measure** on X is

$$\mu_X = \lim_{t \to \infty} \mu_t.$$



Proposition

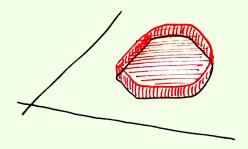
On a finite metric space, the uniform measure is the uniform measure.

Proposition

On a homogeneous space, the uniform measure is the Haar measure.

Proposition

On a compact subinterval of \mathbb{R} , the uniform measure is Lebesgue measure restricted and normalised.



Proposition

Let $X \subset \mathbb{R}^n$ be a compact subset with nonzero volume. Let $\widehat{\lambda}_X$ be Lebesgue measure restricted to X and normalised. For all $q \in [0, \infty]$,

$$rac{D_q^{e^{-td}}(\widehat{\lambda_X})}{D_{\mathsf{max}}(tX)} o 1 ext{ as } t o \infty.$$

Moral: $\widehat{\lambda_X}$ is approximately maximising at large scales.

Part I: Measuring diversity

• Introduce a family of distance-sensitive entropies $(D_q)_{q \in [-\infty,\infty]}$.

Part II: Maximising diversity on compact spaces

• State a maximum entropy theorem for compact spaces.

Part II: Maximum diversity and magnitude

• Define a real-valued invariant, closely related to magnitude.

Part III: Uniform measures

• Propose a uniform measure for a wide class of metric spaces.