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A quick tour of persistent homology



What is persistent homology?

Persistent homology is a method from algebraic topology used to
study topological features of data.

I Topological features: components, holes, voids, etc.

I Data: e.g., a finite metric space (X , d), often called a point
cloud, a weighted undirected network, a grey-scale digital
image, etc.
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Persistent homology
Motivation

What is the topology of this set X of points in R2?
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Persistent homology
Motivation

Idea: thicken X as Xε = ∪x∈XB(ε; x) and study the topology of
Xε.

Problem: How do we choose ε?

If ε is too small:
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Persistent homology
Motivation

Solution: Consider all possible values for ε and obtain a nested
sequence of spaces

Xε1 ⊆ · · · ⊆ Xεn , for ε1 ≤ · · · ≤ εn.

Now study topological features of these spaces and how they
evolve across the filtration.



Simplicial complexes

A k-simplex is the convex hull of k + 1 linearly independent points
in Euclidean space, e.g.:

•
0-simplex

• •
1-simplex

• •

•

2-simplex

• •

•
•

3-simplex

A k-simplex is completely determined by its k + 1 vertices. A
simplex is a k-simplex for some k .



Simplicial complexes

A simplicial complex is built from simplices:
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Homology of a simplicial complex

Given a simplicial complex K :

I the pth simplicial
homology of K with
coefficients in a field K is a
K-vector space Hp(K )

I The dimension of Hp(K ) is
the pth Betti number of
K , denoted by βp(K ).

Betti numbers give a count of:

I p = 0: connected
components

I p = 1: holes

I p = 2: voids (2-dim. holes)

I p: the p-dim. holes

e.g.:
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β0 = 3
β1=1

βn = 0 for all n ≥ 2.
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Functoriality of homology

A map of simplicial complexes f : K → K ′ induces a map
Hp(f ) : Hp(K )→ Hp(K ′) on the homology vector spaces.

Given K
f−→ K ′

g−→ K ′′ we have Hp(g ◦ f ) = Hp(g) ◦ Hp(f ).

Functoriality has proven itself to be a powerful tool in
the development of various parts of mathematics, such as
Galois theory within algebra, the theory of Fourier series
within harmonic analysis, and the applicaton of algebraic
topology to fixed point questions in topology. We argue
that [..] it has a role to play in the study of point cloud
data as well. 1

1G. Carlsson, Topology and data, Bulletin of the AMS, 2009
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From a finite metric space to filtered simplicial complexes

Point cloud X
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−→ Filtered simplicial complex
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Example of simplicial complex used in persistent homology
Cech complex

Cε(X ) =
{
σ ⊂ X |

⋂
x∈σ Bx(ε) 6= ∅

}
I Nerve theorem:
|Cε(X )| '

⋃
x∈X Bx(ε)



Example of simplicial complex used in persistent homology
Vietoris–Rips complex

VRε(X ) = {σ ⊂ X | ∀x , y ∈ σ : d(x , y) ≤ 2ε}

I Nerve theorem does not
hold

I For all ε ≥ 0 we have
Cε(X ) ⊂ VRε(X ) ⊂
C√2ε(X ).



Example of simplicial complex used in persistent homology
α complex

αε(X ) =
{
σ ⊂ X |

⋂
x∈σ Bx(ε) ∩ Vx 6= ∅

}
I Nerve theorem:
|αε(X )| '

⋃
x∈X Bx(ε)

I For all ε ≥ 0 we have
αε(X ) ⊂ Cε(X ) ⊂
VRε(X ).



Persistent homology

Given a filtered simplicial complex (K , {Kεi}ni=1), apply pth
simplicial homology:

Hp(Kε1)
f1,2−→ Hp(Kε2)

f2,3−→ . . .
fn−1,n−→ Hp(Kεn).

More precisely, we obtain a tuple ({Hp(Kεi )}ni=1, {fi ,j}i≤j) such
that fk,j ◦ fi ,k = fi ,j for all i ≤ k ≤ j .

This is the pth persistent homology of (K , {Kεi}ni=1).
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Persistence modules

In general,

I a sequence {Mi}i∈N of K-vector spaces

I a collection {fi ,j : Mi −→ Mj}i≤j of linear maps such that
fk,j ◦ fi ,k = fi ,j for all i ≤ k ≤ j

is called a persistence module.

What kind of object is this?

Recall: The ring K[x ] is N-graded: K[x ] =
⊕

i∈NKx i .

An N-graded module M over K[x ] is a module over K[x ] such that
M =

⊕
i∈NMi and x jMi ⊂ Mi+j for all i , j .



Correspondence theorem

Theorem (Carlsson, Zomorodian, 20052)

There is an isomorphism of categories between the category of
persistence modules of finite type and the category of finitely
generated N-graded modules over K[x ].

(
{Mi}i∈N, {fi ,j : Mi → Mj}i≤j

)
7→
⊕
i∈N

Mi with action of x j on Mi

given by fi ,i+j

(
{Mi}i∈N,

{
x j−i : Mi → Mj

}
i≤j

) 7→M =
⊕
i∈N

Mi graded module

2G. Carlsson, A. Zomorodian, Computing persistent homology, Discrete &
Computational Geometry, 2005
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Structure theorem for f.g. graded modules over a PID

Theorem (Webb 19853)

For any finitely generated N-graded module M over K[x ]:

M ∼=

(
n⊕

i=1

xαiK[x ])

)
⊕

 m⊕
j=1

xβjK[x ]/xβj+γj

 .

This gives:

I n infinite intervals [αi ,∞) for i = 1, . . . r

I m finite intervals [βj , βj + γj) for j = 1, . . . ,m.

This collection of intervals is called barcode, and it is a complete
invariant for persistence modules.

3C. Webb, Decomposition of graded modules, Proceedings of the AMS, 1985



Examples of barcode

ε = 0 ε = 0.6 ε = 1.1 ε = 1.6 ε = 2.1



Example of Barcode



Applications of PH

Persistent homology can be applied to, e.g.:

1. Finite metric spaces

2. Undirected weighted networks

3. Grey-scale digital images



PH to study grey-scale images

G =


115 119 119 119 119
115 94 94 94 114
115 94 139 100 114
115 94 99 99 114
115 117 117 117 117



100 115 130 145
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Pipeline for PH computation



Questions

At the end of their paper, Tom Leinster and Mike Shulman write:

(8) Magnitude homology only “notices” whether the
triangle inequality is a strict equality or not. Is there a
“blurred” version that notices “approximate equalities”?

(9) Almost everyone who encounters both magnitude
homology and persistent homology feels that there
should be some relationship between them. What is it?
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Questions. . . and answer(s)

At the end of their paper, Leinster and Shulman write:

(8) Magnitude homology only “notices” whether the
triangle inequality is a strict equality or not. Is there a
“blurred” version that notices “approximate equalities”?

Yes, and . . .

(9) Almost everyone who encounters both magnitude
homology and persistent homology feels that there
should be some relationship between them. What is it?

. . . blurred magnitude homology is the persistent
homology of the enriched nerve!



Set-up
Given a metric space (X , d), we are interested in studying functors

CS(X ) =

(
[0,∞)op

S(X )−→ sSet −→ chAb

)
,

where for each ε we have that S(X )(ε) is a simplicial set.

The pth persistent homology of the filtered simplicial set S(X ) is
Hp(CS(X )).

Example

The enriched nerve of X is the simplicial set with set of
n-simplices given by:

N(X )(ε)n =

{
(x0, . . . , xn) | xi ∈ X, and

n−1∑
i=0

d(xi , xi+1) ≤ ε)

}
.
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Magnitude homology chain complex

B(X )n =
⊕

l∈[0,∞)

Z

[
{(x0, . . . , xn) |

n∑
i=0

d(xi , xi+1) = l}

]
.

with dn : B(X )n → B(X )n−1 given by the alternating sum of maps
d i
n, defined as follows for all 1 ≤ i ≤ n − 1:

d i
n(x0, . . . , xn) =


(x0, . . . , xi−1, xi+1, . . . xn), if d(xi−1, xi ) + d(xi , xi+1)

= d(xi−1, xi+1)

0, otherwise

while for i = 0 we have

d0
n (x0, . . . , xn) =

{
(x1, x2, . . . xn), if d(x0, x1) = 0

0, otherwise

and similarly for i = n.
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Equivalent definition of magnitude homology
Consider the functor of coefficients

Aε : [0,∞)→ Ab

l 7→

{
Z, if l = ε

0, otherwise.

Define the functor

CN(X )⊗[0,∞) A− : [0,∞)op → chAb

ε 7→ CN(X )⊗[0,∞) Aε .

Then we have:

Proposition

CN(X )⊗[0,∞) A− and the magnitude chain complex B(X ) are
isomorphic.

Magnitude homology forgets the information given
by inclusion maps (what gives “persistence”)!
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Blurred magnitude homology
Define the functor of coefficients

A[0,ε] : [0,∞)→ Ab

l 7→

{
Z, if l ∈ [0, ε]

0, otherwise

Definition
Blurred magnitude homology is the homology of

C (N(X ))⊗[0,∞) A[0,−] : [0,∞)op → chAb

ε 7→ C (N(X ))⊗[0,∞) A[0,ε] .

Proposition (NO 2018)

C (N(X ))⊗[0,∞) A[0,−] and CN(X ) are isomorphic. In particular,
blurred magnitude homology is the persistent homology of the
enriched nerve.
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Behaviour in the limit
Let V (X )(ε) be the Vietoris–Rips simplicial set:

V (X )(ε)n = {(x0, . . . , xn) | xi ∈ X , and d(xi , xj) ≤ ε for all i , j} .

The Vietoris homology of X is

lim
ε→0

Hk(CV (X )(ε)) .

Theorem (NO 18)

For any metric space (X , d), we have:

lim
ε→0

Hk(CN(X )⊗[0,∞) A[0,ε]) ∼= lim
ε→0

Hk(CV (X )(ε))

and
lim
ε→0

Hk(CN(X )⊗[0,∞) Aε) ∼= 0 .

That is, in the limit:

I blurred magnitude homology is Vietoris homology
I ordinary magnitude homology is trivial.



Behaviour in the limit
Let V (X )(ε) be the Vietoris–Rips simplicial set:

V (X )(ε)n = {(x0, . . . , xn) | xi ∈ X , and d(xi , xj) ≤ ε for all i , j} .
The Vietoris homology of X is

lim
ε→0

Hk(CV (X )(ε)) .

Theorem (NO 18)

For any metric space (X , d), we have:

lim
ε→0

Hk(CN(X )⊗[0,∞) A[0,ε]) ∼= lim
ε→0

Hk(CV (X )(ε))

and
lim
ε→0

Hk(CN(X )⊗[0,∞) Aε) ∼= 0 .

That is, in the limit:

I blurred magnitude homology is Vietoris homology
I ordinary magnitude homology is trivial.



Behaviour in the limit
Let V (X )(ε) be the Vietoris–Rips simplicial set:

V (X )(ε)n = {(x0, . . . , xn) | xi ∈ X , and d(xi , xj) ≤ ε for all i , j} .
The Vietoris homology of X is

lim
ε→0

Hk(CV (X )(ε)) .

Theorem (NO 18)

For any metric space (X , d), we have:

lim
ε→0

Hk(CN(X )⊗[0,∞) A[0,ε]) ∼= lim
ε→0

Hk(CV (X )(ε))

and
lim
ε→0

Hk(CN(X )⊗[0,∞) Aε) ∼= 0 .

That is, in the limit:

I blurred magnitude homology is Vietoris homology
I ordinary magnitude homology is trivial.



Behaviour in the limit
Let V (X )(ε) be the Vietoris–Rips simplicial set:

V (X )(ε)n = {(x0, . . . , xn) | xi ∈ X , and d(xi , xj) ≤ ε for all i , j} .
The Vietoris homology of X is

lim
ε→0

Hk(CV (X )(ε)) .

Theorem (NO 18)

For any metric space (X , d), we have:

lim
ε→0

Hk(CN(X )⊗[0,∞) A[0,ε]) ∼= lim
ε→0

Hk(CV (X )(ε))

and
lim
ε→0

Hk(CN(X )⊗[0,∞) Aε) ∼= 0 .

That is, in the limit:

I blurred magnitude homology is Vietoris homology
I ordinary magnitude homology is trivial.



Some speculations. . .

Could blurred magnitude homology. . .

I help in categorifying magnitude for arbitrary metric spaces?

I give insight into the convex magnitude conjecture?



Some speculations. . .

Could blurred magnitude homology. . .

I help in categorifying magnitude for arbitrary metric spaces?

I give insight into the convex magnitude conjecture?


