Magnitude meets persistence. What happens after?

Nina Otter

UCLA

Workshop on magnitude
Edinburgh, 5 July 2019

Preprint available at arxiv.org/1807.01540.

A quick tour of persistent homology

What is persistent homology?

Persistent homology is a method from algebraic topology used to study topological features of data.

What is persistent homology?

Persistent homology is a method from algebraic topology used to study topological features of data.

- Topological features: components, holes, voids, etc.
- Data: e.g., a finite metric space (X, d), often called a point cloud, a weighted undirected network, a grey-scale digital image, etc.

Persistent homology

Motivation

What is the topology of this set X of points in \mathbb{R}^{2} ?

Persistent homology

Motivation
Idea: thicken X as $X_{\epsilon}=\cup_{x \in X} B(\epsilon ; x)$ and study the topology of X_{ϵ}.

Persistent homology

Motivation
Idea: thicken X as $X_{\epsilon}=\cup_{x \in X} B(\epsilon ; x)$ and study the topology of X_{ϵ}.

Problem: How do we choose ϵ ?

Persistent homology

Motivation
Idea: thicken X as $X_{\epsilon}=\cup_{x \in X} B(\epsilon ; x)$ and study the topology of X_{ϵ}.

Problem: How do we choose ϵ ?

If ϵ is too small:

Persistent homology

Motivation

Idea: thicken X as $X_{\epsilon}=\cup_{x \in X} B(\epsilon ; x)$ and study the topology of X_{ϵ}.

Problem: How do we choose ϵ ?
If ϵ is too small:
If ϵ is too large:

Persistent homology

Motivation

Solution: Consider all possible values for ϵ and obtain a nested sequence of spaces

$$
X_{\epsilon_{1}} \subseteq \cdots \subseteq X_{\epsilon_{n}}, \text { for } \epsilon_{1} \leq \cdots \leq \epsilon_{n} .
$$

Now study topological features of these spaces and how they evolve across the filtration.

Simplicial complexes

A k-simplex is the convex hull of $k+1$ linearly independent points in Euclidean space, e.g.:

A k-simplex is completely determined by its $k+1$ vertices. A simplex is a k-simplex for some k.

Simplicial complexes

A simplicial complex is built from simplices:

Homology of a simplicial complex

Given a simplicial complex K :

- the p th simplicial
homology of K with
coefficients in a field \mathbb{K} is a
\mathbb{K}-vector space $H_{p}(K)$
- The dimension of $H_{p}(K)$ is the p th Betti number of
K, denoted by $\beta_{p}(K)$.

Homology of a simplicial complex

Given a simplicial complex K :

- the p th simplicial homology of K with coefficients in a field \mathbb{K} is a \mathbb{K}-vector space $H_{p}(K)$
- The dimension of $H_{p}(K)$ is the p th Betti number of K, denoted by $\beta_{p}(K)$.

Betti numbers give a count of:

- $p=0$: connected components
- $p=1$: holes
- $p=2$: voids (2-dim. holes)
- p : the p-dim. holes

Homology of a simplicial complex

Given a simplicial complex K :

- the p th simplicial homology of K with coefficients in a field \mathbb{K} is a \mathbb{K}-vector space $H_{p}(K)$
- The dimension of $H_{p}(K)$ is the p th Betti number of K, denoted by $\beta_{p}(K)$.

Betti numbers give a count of:

- $p=0$: connected components
- $p=1$: holes
- $p=2$: voids (2-dim. holes)
- p : the p-dim. holes
e.g.:

$$
\begin{gathered}
\beta_{0}=3 \\
\beta_{1}=1 \\
\beta_{n}=0 \text { for all } n \geq 2 .
\end{gathered}
$$

Functoriality of homology

A map of simplicial complexes $f: K \rightarrow K^{\prime}$ induces a map $H_{p}(f): H_{p}(K) \rightarrow H_{p}\left(K^{\prime}\right)$ on the homology vector spaces.
${ }^{1}$ G. Carlsson, Topology and data, Bulletin of the AMS, 2009

Functoriality of homology

A map of simplicial complexes $f: K \rightarrow K^{\prime}$ induces a map $H_{p}(f): H_{p}(K) \rightarrow H_{p}\left(K^{\prime}\right)$ on the homology vector spaces.
Given $K \xrightarrow{f} K^{\prime} \xrightarrow{g} K^{\prime \prime}$ we have $H_{p}(g \circ f)=H_{p}(g) \circ H_{p}(f)$.

Functoriality of homology

A map of simplicial complexes $f: K \rightarrow K^{\prime}$ induces a map $H_{p}(f): H_{p}(K) \rightarrow H_{p}\left(K^{\prime}\right)$ on the homology vector spaces.
Given $K \xrightarrow{f} K^{\prime} \xrightarrow{g} K^{\prime \prime}$ we have $H_{p}(g \circ f)=H_{p}(g) \circ H_{p}(f)$.

Functoriality of homology

A map of simplicial complexes $f: K \rightarrow K^{\prime}$ induces a map $H_{p}(f): H_{p}(K) \rightarrow H_{p}\left(K^{\prime}\right)$ on the homology vector spaces.
Given $K \xrightarrow{f} K^{\prime} \xrightarrow{g} K^{\prime \prime}$ we have $H_{p}(g \circ f)=H_{p}(g) \circ H_{p}(f)$.
Functoriality has proven itself to be a powerful tool in the development of various parts of mathematics, such as Galois theory within algebra, the theory of Fourier series within harmonic analysis, and the applicaton of algebraic topology to fixed point questions in topology. We argue that [..] it has a role to play in the study of point cloud data as well. ${ }^{1}$

[^0]From a finite metric space to filtered simplicial complexes

Point cloud X

From a finite metric space to filtered simplicial complexes

Point cloud X
\longrightarrow
Filtered simplicial complex

Example of simplicial complex used in persistent homology

Cech complex

$$
\mathrm{C}_{\epsilon}(X)=\left\{\sigma \subset X \mid \bigcap_{x \in \sigma} B_{x}(\epsilon) \neq \emptyset\right\}
$$

- Nerve theorem:

$$
\left|\mathrm{C}_{\epsilon}(X)\right| \simeq \bigcup_{x \in X} B_{x}(\epsilon)
$$

Example of simplicial complex used in persistent homology

 Vietoris-Rips complex$$
\operatorname{VR}_{\epsilon}(X)=\{\sigma \subset X \mid \forall x, y \in \sigma: \mathrm{d}(x, y) \leq 2 \epsilon\}
$$

- Nerve theorem does not hold
- For all $\epsilon \geq 0$ we have $\mathrm{C}_{\epsilon}(X) \subset \mathrm{VR}_{\epsilon}(X) \subset$ $C_{\sqrt{2} \epsilon}(X)$.

Example of simplicial complex used in persistent homology α complex

$$
\alpha_{\epsilon}(X)=\left\{\sigma \subset X \mid \bigcap_{x \in \sigma} B_{x}(\epsilon) \cap V_{x} \neq \emptyset\right\}
$$

- Nerve theorem:

$$
\left|\alpha_{\epsilon}(X)\right| \simeq \bigcup_{x \in X} B_{x}(\epsilon)
$$

- For all $\epsilon \geq 0$ we have $\alpha_{\epsilon}(X) \subset \mathrm{C}_{\epsilon}(X) \subset$ $\operatorname{VR}_{\epsilon}(X)$.

Persistent homology

Given a filtered simplicial complex $\left(K,\left\{K_{\epsilon_{i}}\right\}_{i=1}^{n}\right)$, apply p th simplicial homology:

$$
H_{p}\left(K_{\epsilon_{1}}\right) \xrightarrow{f_{1,2}} H_{p}\left(K_{\epsilon_{2}}\right) \xrightarrow{f_{2,3}} \ldots \xrightarrow{f_{n-1, n}} H_{p}\left(K_{\epsilon_{n}}\right) .
$$

Persistent homology

Given a filtered simplicial complex $\left(K,\left\{K_{\epsilon_{i}}\right\}_{i=1}^{n}\right)$, apply p th simplicial homology:

$$
H_{p}\left(K_{\epsilon_{1}}\right) \xrightarrow{f_{1,2}} H_{p}\left(K_{\epsilon_{2}}\right) \xrightarrow{f_{2,3}} \ldots \xrightarrow{f_{n-1, n}} H_{p}\left(K_{\epsilon_{n}}\right) .
$$

More precisely, we obtain a tuple $\left(\left\{H_{p}\left(K_{\epsilon_{i}}\right)\right\}_{i=1}^{n},\left\{f_{i, j}\right\}_{i \leq j}\right)$ such that $f_{k, j} \circ f_{i, k}=f_{i, j}$ for all $i \leq k \leq j$.

This is the pth persistent homology of $\left(K,\left\{K_{\epsilon_{i}}\right\}_{i=1}^{n}\right)$.

Persistence modules

In general,

- a sequence $\left\{M_{i}\right\}_{i \in \mathbb{N}}$ of \mathbb{K}-vector spaces
- a collection $\left\{f_{i, j}: M_{i} \longrightarrow M_{j}\right\}_{i \leq j}$ of linear maps such that $f_{k, j} \circ f_{i, k}=f_{i, j}$ for all $i \leq k \leq j$
is called a persistence module.

What kind of object is this?
Recall: The ring $\mathbb{K}[x]$ is \mathbb{N}-graded: $\mathbb{K}[x]=\bigoplus_{i \in \mathbb{N}} \mathbb{K} x^{i}$.
An \mathbb{N}-graded module M over $\mathbb{K}[x]$ is a module over $\mathbb{K}[x]$ such that $M=\bigoplus_{i \in \mathbb{N}} M_{i}$ and $x^{j} M_{i} \subset M_{i+j}$ for all i, j.

Correspondence theorem

Theorem (Carlsson, Zomorodian, 2005²)
There is an isomorphism of categories between the category of persistence modules of finite type and the category of finitely generated \mathbb{N}-graded modules over $\mathbb{K}[x]$.

[^1]
Correspondence theorem

Theorem (Carlsson, Zomorodian, 2005²)
There is an isomorphism of categories between the category of persistence modules of finite type and the category of finitely generated \mathbb{N}-graded modules over $\mathbb{K}[x]$.
$\left(\left\{M_{i}\right\}_{i \in \mathbb{N}},\left\{f_{i, j}: M_{i} \rightarrow M_{j}\right\}_{i \leq j}\right) \mapsto \bigoplus_{i \in \mathbb{N}} M_{i}$ with action of x^{j} on M_{i}
given by $f_{i, i+j}$

[^2]
Correspondence theorem

Theorem (Carlsson, Zomorodian, 2005²)
There is an isomorphism of categories between the category of persistence modules of finite type and the category of finitely generated \mathbb{N}-graded modules over $\mathbb{K}[x]$.
$\left(\left\{M_{i}\right\}_{i \in \mathbb{N}},\left\{f_{i, j}: M_{i} \rightarrow M_{j}\right\}_{i \leq j}\right) \mapsto \bigoplus_{i \in \mathbb{N}} M_{i}$ with action of x^{j} on M_{i}
given by $f_{i, i+j}$
$\left(\left\{M_{i}\right\}_{i \in \mathbb{N}},\left\{x^{j-i}: M_{i} \rightarrow M_{j}\right\}_{i \leq j}\right) \hookleftarrow M=\bigoplus_{i \in \mathbb{N}} M_{i}$ graded module

[^3]
Structure theorem for f.g. graded modules over a PID

Theorem (Webb 1985³)
For any finitely generated \mathbb{N}-graded module M over $\mathbb{K}[x]$:

$$
\left.M \cong\left(\bigoplus_{i=1}^{n} x^{\alpha_{i}} \mathbb{K}[x]\right)\right) \oplus\left(\bigoplus_{j=1}^{m} x^{\beta_{j}} \mathbb{K}[x] / x^{\beta_{j}+\gamma_{j}}\right)
$$

This gives:

- n infinite intervals $\left[\alpha_{i}, \infty\right)$ for $i=1, \ldots r$
- m finite intervals $\left[\beta_{j}, \beta_{j}+\gamma_{j}\right.$) for $j=1, \ldots, m$.

This collection of intervals is called barcode, and it is a complete invariant for persistence modules.

[^4]
Examples of barcode

Example of Barcode

Applications of PH

Persistent homology can be applied to, e.g.:

1. Finite metric spaces
2. Undirected weighted networks
3. Grey-scale digital images

PH to study grey-scale images

Pipeline for PH computation

Questions

At the end of their paper, Tom Leinster and Mike Shulman write:
(8) Magnitude homology only "notices" whether the triangle inequality is a strict equality or not. Is there a "blurred" version that notices "approximate equalities"?
(9) Almost everyone who encounters both magnitude homology and persistent homology feels that there should be some relationship between them. What is it?

Questions. . . and answer(s)

At the end of their paper, Leinster and Shulman write:
(8) Magnitude homology only "notices" whether the triangle inequality is a strict equality or not. Is there a "blurred" version that notices "approximate equalities"?

Yes, and ...
(9) Almost everyone who encounters both magnitude homology and persistent homology feels that there should be some relationship between them. What is it?

Questions. . . and answer(s)

At the end of their paper, Leinster and Shulman write:
(8) Magnitude homology only "notices" whether the triangle inequality is a strict equality or not. Is there a "blurred" version that notices "approximate equalities"?

Yes, and ...
(9) Almost everyone who encounters both magnitude homology and persistent homology feels that there should be some relationship between them. What is it?
... blurred magnitude homology is the persistent homology of the enriched nerve!

Set-up

Given a metric space (X, d), we are interested in studying functors

$$
C S(X)=\left([0, \infty)^{\mathrm{op}} \xrightarrow{S(X)} \mathrm{sSet} \longrightarrow c h_{\mathrm{Ab}}\right)
$$

where for each ϵ we have that $S(X)(\epsilon)$ is a simplicial set.

Set-up

Given a metric space (X, d), we are interested in studying functors

$$
\operatorname{CS}(X)=\left([0, \infty)^{\mathrm{op}} \xrightarrow{S(X)} \text { sSet } \longrightarrow c h_{\mathrm{Ab}}\right)
$$

where for each ϵ we have that $S(X)(\epsilon)$ is a simplicial set.

The p th persistent homology of the filtered simplicial set $S(X)$ is $H_{p}(C S(X))$.

Set-up

Given a metric space (X, d), we are interested in studying functors

$$
C S(X)=\left([0, \infty)^{\mathrm{op}} \xrightarrow{S(X)} \mathrm{sSet} \longrightarrow c h_{\mathrm{Ab}}\right)
$$

where for each ϵ we have that $S(X)(\epsilon)$ is a simplicial set.

The p th persistent homology of the filtered simplicial set $S(X)$ is $H_{p}(C S(X))$.

Example

The enriched nerve of X is the simplicial set with set of n-simplices given by:

$$
\left.N(X)(\epsilon)_{n}=\left\{\left(x_{0}, \ldots, x_{n}\right) \mid x_{i} \in X, \text { and } \sum_{i=0}^{n-1} d\left(x_{i}, x_{i+1}\right) \leq \epsilon\right)\right\}
$$

Magnitude homology chain complex

$$
B(X)_{n}=\bigoplus_{l \in[0, \infty)} \mathbb{Z}\left[\left\{\left(x_{0}, \ldots, x_{n}\right) \mid \sum_{i=0}^{n} d\left(x_{i}, x_{i+1}\right)=I\right\}\right] .
$$

Magnitude homology chain complex

$$
B(X)_{n}=\bigoplus_{l \in[0, \infty)} \mathbb{Z}\left[\left\{\left(x_{0}, \ldots, x_{n}\right) \mid \sum_{i=0}^{n} d\left(x_{i}, x_{i+1}\right)=l\right\}\right]
$$

with $d_{n}: B(X)_{n} \rightarrow B(X)_{n-1}$ given by the alternating sum of maps d_{n}^{i}, defined as follows for all $1 \leq i \leq n-1$:

$$
d_{n}^{i}\left(x_{0}, \ldots, x_{n}\right)=\left\{\begin{array}{lc}
\left(x_{0}, \ldots, x_{i-1}, x_{i+1}, \ldots x_{n}\right), & \text { if } d\left(x_{i-1}, x_{i}\right)+d\left(x_{i}, x_{i+1}\right) \\
& =d\left(x_{i-1}, x_{i+1}\right) \\
0, & \text { otherwise }
\end{array}\right.
$$

Magnitude homology chain complex

$$
B(X)_{n}=\bigoplus_{l \in[0, \infty)} \mathbb{Z}\left[\left\{\left(x_{0}, \ldots, x_{n}\right) \mid \sum_{i=0}^{n} d\left(x_{i}, x_{i+1}\right)=I\right\}\right]
$$

with $d_{n}: B(X)_{n} \rightarrow B(X)_{n-1}$ given by the alternating sum of maps d_{n}^{i}, defined as follows for all $1 \leq i \leq n-1$:
$d_{n}^{i}\left(x_{0}, \ldots, x_{n}\right)=\left\{\begin{array}{lc}\left(x_{0}, \ldots, x_{i-1}, x_{i+1}, \ldots x_{n}\right), & \text { if } d\left(x_{i-1}, x_{i}\right)+d\left(x_{i}, x_{i+1}\right) \\ & =d\left(x_{i-1}, x_{i+1}\right) \\ 0, & \text { otherwise }\end{array}\right.$
while for $i=0$ we have

$$
d_{n}^{0}\left(x_{0}, \ldots, x_{n}\right)= \begin{cases}\left(x_{1}, x_{2}, \ldots x_{n}\right), & \text { if } d\left(x_{0}, x_{1}\right)=0 \\ 0, & \text { otherwise }\end{cases}
$$

and similarly for $i=n$.

Equivalent definition of magnitude homology

Consider the functor of coefficients

$$
\begin{aligned}
A_{\epsilon}:[0, \infty) & \rightarrow \mathrm{Ab} \\
I & \mapsto\left\{\begin{array}{l}
\mathbb{Z}, \text { if } I=\epsilon \\
0, \text { otherwise } .
\end{array}\right.
\end{aligned}
$$

Equivalent definition of magnitude homology

Consider the functor of coefficients

$$
\begin{aligned}
A_{\epsilon}:[0, \infty) & \rightarrow \mathrm{Ab} \\
I & \mapsto\left\{\begin{array}{l}
\mathbb{Z}, \text { if } I=\epsilon \\
0, \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Define the functor

$$
\begin{aligned}
C N(X) \otimes_{[0, \infty)} A_{-}:[0, \infty)^{\mathrm{op}} & \rightarrow \operatorname{ch}_{\mathrm{Ab}} \\
\epsilon & \mapsto \operatorname{CN}(X) \otimes_{[0, \infty)} A_{\epsilon}
\end{aligned}
$$

Equivalent definition of magnitude homology

Consider the functor of coefficients

$$
\begin{aligned}
A_{\epsilon}:[0, \infty) & \rightarrow \mathrm{Ab} \\
I & \mapsto\left\{\begin{array}{l}
\mathbb{Z}, \text { if } I=\epsilon \\
0, \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Define the functor

$$
\begin{aligned}
C N(X) \otimes_{[0, \infty)} A_{-}:[0, \infty)^{\mathrm{op}} & \rightarrow \operatorname{ch}_{\mathrm{Ab}} \\
\epsilon & \mapsto \operatorname{CN}(X) \otimes_{[0, \infty)} A_{\epsilon}
\end{aligned}
$$

Then we have:
Proposition
$C N(X) \otimes_{[0, \infty)} A_{-}$and the magnitude chain complex $B(X)$ are isomorphic.

Equivalent definition of magnitude homology

Consider the functor of coefficients

$$
\begin{aligned}
A_{\epsilon}:[0, \infty) & \rightarrow \mathrm{Ab} \\
I & \mapsto\left\{\begin{array}{l}
\mathbb{Z}, \text { if } I=\epsilon \\
0, \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Define the functor

$$
\begin{aligned}
C N(X) \otimes_{[0, \infty)} A_{-}:[0, \infty)^{\mathrm{op}} & \rightarrow \operatorname{ch}_{\mathrm{Ab}} \\
\epsilon & \mapsto \operatorname{CN}(X) \otimes_{[0, \infty)} A_{\epsilon}
\end{aligned}
$$

Then we have:
Proposition
$C N(X) \otimes_{[0, \infty)} A_{-}$and the magnitude chain complex $B(X)$ are isomorphic.

Magnitude homology forgets the information given by inclusion maps (what gives "persistence")!

Blurred magnitude homology

Define the functor of coefficients

$$
\begin{aligned}
A_{[0, \epsilon]}:[0, \infty) & \rightarrow \mathrm{Ab} \\
I & \mapsto\left\{\begin{array}{l}
\mathbb{Z}, \text { if } I \in[0, \epsilon] \\
0, \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Blurred magnitude homology

Define the functor of coefficients

$$
\begin{aligned}
A_{[0, \epsilon]}:[0, \infty) & \rightarrow \mathrm{Ab} \\
I & \mapsto\left\{\begin{array}{l}
\mathbb{Z}, \text { if } I \in[0, \epsilon] \\
0, \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Definition
Blurred magnitude homology is the homology of

$$
\begin{aligned}
C(N(X)) \otimes_{[0, \infty)} A_{[0,-]}:[0, \infty)^{\mathrm{op}} & \rightarrow \operatorname{ch}_{\mathrm{Ab}} \\
\epsilon & \mapsto C(N(X)) \otimes_{[0, \infty)} A_{[0, \epsilon]} .
\end{aligned}
$$

Blurred magnitude homology

Define the functor of coefficients

$$
\begin{aligned}
A_{[0, \epsilon]}:[0, \infty) & \rightarrow \mathrm{Ab} \\
I & \mapsto\left\{\begin{array}{l}
\mathbb{Z}, \text { if } I \in[0, \epsilon] \\
0, \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Definition
Blurred magnitude homology is the homology of

$$
\begin{aligned}
C(N(X)) \otimes_{[0, \infty)} A_{[0,-]}:[0, \infty)^{\mathrm{op}} & \rightarrow \operatorname{ch}_{\mathrm{Ab}} \\
\epsilon & \mapsto C(N(X)) \otimes_{[0, \infty)} A_{[0, \epsilon]} .
\end{aligned}
$$

Proposition (NO 2018)
$C(N(X)) \otimes_{[0, \infty)} A_{[0,-]}$ and $C N(X)$ are isomorphic. In particular, blurred magnitude homology is the persistent homology of the enriched nerve.

Behaviour in the limit

Let $V(X)(\epsilon)$ be the Vietoris-Rips simplicial set: $V(X)(\epsilon)_{n}=\left\{\left(x_{0}, \ldots, x_{n}\right) \mid x_{i} \in X\right.$, and $d\left(x_{i}, x_{j}\right) \leq \epsilon$ for all $\left.i, j\right\}$.

Behaviour in the limit

Let $V(X)(\epsilon)$ be the Vietoris-Rips simplicial set:

$$
V(X)(\epsilon)_{n}=\left\{\left(x_{0}, \ldots, x_{n}\right) \mid x_{i} \in X, \text { and } d\left(x_{i}, x_{j}\right) \leq \epsilon \text { for all } i, j\right\} .
$$

The Vietoris homology of X is

$$
\lim _{\epsilon \rightarrow 0} H_{k}(C V(X)(\epsilon)) .
$$

Behaviour in the limit

Let $V(X)(\epsilon)$ be the Vietoris-Rips simplicial set:

$$
V(X)(\epsilon)_{n}=\left\{\left(x_{0}, \ldots, x_{n}\right) \mid x_{i} \in X, \text { and } d\left(x_{i}, x_{j}\right) \leq \epsilon \text { for all } i, j\right\} .
$$

The Vietoris homology of X is

$$
\lim _{\epsilon \rightarrow 0} H_{k}(C V(X)(\epsilon))
$$

Theorem (NO 18)
For any metric space (X, d), we have:

$$
\lim _{\epsilon \rightarrow 0} H_{k}\left(C N(X) \otimes_{[0, \infty)} A_{[0, \epsilon]}\right) \cong \lim _{\epsilon \rightarrow 0} H_{k}(C V(X)(\epsilon))
$$

and

$$
\lim _{\epsilon \rightarrow 0} H_{k}\left(C N(X) \otimes_{[0, \infty)} A_{\epsilon}\right) \cong 0
$$

Behaviour in the limit

Let $V(X)(\epsilon)$ be the Vietoris-Rips simplicial set:

$$
V(X)(\epsilon)_{n}=\left\{\left(x_{0}, \ldots, x_{n}\right) \mid x_{i} \in X, \text { and } d\left(x_{i}, x_{j}\right) \leq \epsilon \text { for all } i, j\right\}
$$

The Vietoris homology of X is

$$
\lim _{\epsilon \rightarrow 0} H_{k}(C V(X)(\epsilon))
$$

Theorem (NO 18)
For any metric space (X, d), we have:

$$
\lim _{\epsilon \rightarrow 0} H_{k}\left(C N(X) \otimes_{[0, \infty)} A_{[0, \epsilon]}\right) \cong \lim _{\epsilon \rightarrow 0} H_{k}(C V(X)(\epsilon))
$$

and

$$
\lim _{\epsilon \rightarrow 0} H_{k}\left(C N(X) \otimes_{[0, \infty)} A_{\epsilon}\right) \cong 0
$$

That is, in the limit:

- blurred magnitude homology is Vietoris homology
- ordinary magnitude homology is trivial.

Some speculations...

Could blurred magnitude homology...

- help in categorifying magnitude for arbitrary metric spaces?

Some speculations...

Could blurred magnitude homology...

- help in categorifying magnitude for arbitrary metric spaces?
- give insight into the convex magnitude conjecture?

[^0]: ${ }^{1}$ G. Carlsson, Topology and data, Bulletin of the AMS, 2009

[^1]: ${ }^{2}$ G. Carlsson, A. Zomorodian, Computing persistent homology, Discrete \& Computational Geometry, 2005

[^2]: ${ }^{2}$ G. Carlsson, A. Zomorodian, Computing persistent homology, Discrete \& Computational Geometry, 2005

[^3]: ${ }^{2}$ G. Carlsson, A. Zomorodian, Computing persistent homology, Discrete \& Computational Geometry, 2005

[^4]: ${ }^{3}$ C. Webb, Decomposition of graded modules, Proceedings of the AMS, 1985

