Recovery of piecewise linear closed curves

Bino Nolting University of Bremen, Germany

July 2019

Bino Nolting University of Bremen, Germany Recovery of piecewise linear closed curves

July 2019 1 / 16

Theorem (Hepworth)

Let X be an extended quasimetric space, for which $\inf\{d(a, b)|a \neq b\}$ is positive. Then X is determined up to isometry by the magnitude cohomology ring $MH^*_*(X)$.

Can this class of discrete metric space be enlarged?

Piecewise linear closed curves

- The topic of this talk will be piecewise linear closed curves
- The metric of X will be the metric inherited from \mathbb{R}^2

Piecewise linear closed curves

Theorem

Let X be a piecewise linear closed curve with finitely many self intersections. Then X is determined up to isometry by its magnitude cohomology ring $MH_*^*(X)$.

Piecewise linear closed curves

- The space X consists of finitely many supspaces $X = \bigcup X_i$
- It would be useful to be able to measure angles in \mathbb{R}^2 .

The magnitude cohomology ring of curves in \mathbb{R}^n

Definition (Magnitude cohomology)

The magnitude cohomology groups of a Euclidean space X are given by

$$\mathsf{MH}_{l}^{k}(X) = \mathsf{Hom}(\mathsf{MH}_{l,k}(X),\mathbb{Z}).$$

For $\phi \in MH_{l_1}^{k_1}(X), \psi \in MH_{l_2}^{k_2}(X)$ let

 $\phi\psi(x_0,\ldots,x_{k_1+k_2}) := \phi(x_0,\ldots,x_{n_1})\psi(x_{n_1},\ldots,x_{n_1+n_2}).$

The magnitude cohomology ring of curves in \mathbb{R}^n

- The set X can be found in the magnitude cohomology ring:
- $\mathsf{MH}_{0,0}(X) = \langle (x) : x \in X \rangle.$
- For each magnitude homology class corresponding to a point in X, there exists a dual magnitude cohomology class.
- Therefore in $MH_0^0(X)$ there is a set *M* corresponding to the set *X*.
- Each geometric property on points of X may imply an algebraic result on elements in *M*.

Example of how to measure angles (The case of acute angles)

- For $e \in M$, let $N_e(I) = \# \{ f \in M : e \, \mathsf{MH}_I^1(X) f \neq 0 \}$
- In the above picture, with $e = \delta_x : N_e(I) = 2$.
- For any e ∈ M, the function N_e : ℝ₊ → N has two non-continuities l₁ and l₀.
- If x is close to the intersection point, then

$$\sin(\alpha) = \frac{l_1}{l_0}$$

Magnitude distance

- But how can we partition M into M_i , corresponding to X_i ?
- An important step is to identify the corner points.
- A corner point can be identified by considering convergence (There are two types of sequences converging to a corner point, using different directions)
- Therefore we need some kind of "distance measure" on *M* to detect convergence.

Magnitude distance

Definition

Let $e, f \in M$. Then the magnitude distance between e and f is

$$d_M(e, f) = \inf\{I : \exists n : e \operatorname{MH}_I^n(X) f \neq 0\}.$$

Magnitude distance

- Often $d_M(\delta_p, \delta_q) = d(p, q)$
- But not always ...

Intervals in M

Definition

Let $p, q \in X$ and $e = \delta_p, f = \delta_q$. The interval between p and q is given by

$$I_X(p,q) = \{ x \in X : p < x < q \}$$

and the interval between e and f is given by

$$I_M(e,f) = \{\delta_x : x \in I_X(p,q)\}.$$

Observation: Given $e, f \in M$ one can not immediately determine the set $I_M(e, f)$.

Intervals in M

Theorem

Let $e, f \in M$. Then $I_M(e, f)$ is a finite set if and only if there exists a finite sequence $\{e_n\}_{n=0}^k$, such that $e_0 = e, e_k = f$ and there exist magnitude cohomology classes $\Phi_i \in MH_{l_i}^1(X)$, such that for every i

$$e_i \Phi_i e_{i+1} \neq 0$$

and $\Phi_i \Phi_{i+1} = 0$.

Magnitude convergence for piecewise linear closed curves

Theorem

Let X be a piecewise linear closed curve and let $e_n = \delta_{p_n}$ and $e = \delta_q$. Then $p_n \rightarrow q$, if and only if

 $\forall f \in M : |I_M(e, f)| < \infty : d_M(e_n, f) \rightarrow d_M(e, f) = d(e, f).$

Definition (Magnitude convergence) In those cases, we write $e_n \xrightarrow{M} e$

Where can magnitude distance be used?

• What happens for arbitrary closed curves?

Where can magnitude distance be used?

- What happens for arbitrary closed curves?
- Magnitude distance gets more precise?
- But also much more unpredictable

This talk was based on my master thesis. If you are interested in reading that thesis, feel free to contact me

bino@uni-bremen.de