Recovery of piecewise linear closed curves

Bino Nolting
University of Bremen, Germany

July 2019

Theorem (Hepworth)

Let X be an extended quasimetric space, for which $\inf \{d(a, b) \mid a \neq b\}$ is positive. Then X is determined up to isometry by the magnitude cohomology ring $\mathrm{MH}_{*}^{*}(X)$.

Can this class of discrete metric space be enlarged?

Piecewise linear closed curves

- The topic of this talk will be piecewise linear closed curves
- The metric of X will be the metric inherited from \mathbb{R}^{2}

Piecewise linear closed curves

Theorem
Let X be a piecewise linear closed curve with finitely many self intersections. Then X is determined up to isometry by its magnitude cohomology ring $\mathrm{MH}_{*}^{*}(X)$.

Piecewise linear closed curves

- The space X consists of finitely many supspaces $X=\bigcup X_{i}$
- It would be useful to be able to measure angles in \mathbb{R}^{2}.

The magnitude cohomology ring of curves in \mathbb{R}^{n}

Definition (Magnitude cohomology)

The magnitude cohomology groups of a Euclidean space X are given by

$$
\mathrm{MH}_{l}^{k}(X)=\operatorname{Hom}\left(\mathrm{MH}_{l, k}(X), \mathbb{Z}\right) .
$$

For $\phi \in \mathrm{MH}_{l_{1}}^{k_{1}}(X), \psi \in \mathrm{MH}_{l_{2}}^{k_{2}}(X)$ let

$$
\phi \psi\left(x_{0}, \ldots, x_{k_{1}+k_{2}}\right):=\phi\left(x_{0}, \ldots, x_{n_{1}}\right) \psi\left(x_{n_{1}}, \ldots, x_{n_{1}+n_{2}}\right) .
$$

The magnitude cohomology ring of curves in \mathbb{R}^{n}

- The set X can be found in the magnitude cohomology ring:
- $\mathrm{MH}_{0,0}(X)=\langle(x): x \in X\rangle$.
- For each magnitude homology class corresponding to a point in X, there exists a dual magnitude cohomology class.
- Therefore in $\mathrm{MH}_{0}^{0}(X)$ there is a set M corresponding to the set X.
- Each geometric property on points of X may imply an algebraic result on elements in M.

Example of how to measure angles (The case of acute angles)

- For $e \in M$, let $N_{e}(I)=\#\left\{f \in M: e M_{l}^{1}(X) f \neq 0\right\}$
- In the above picture, with $e=\delta_{X}: N_{e}(I)=2$.
- For any $e \in M$, the function $N_{e}: \mathbb{R}_{+} \rightarrow \mathbb{N}$ has two non-continuities l_{1} and I_{0}.
- If x is close to the intersection point, then

$$
\sin (\alpha)=\frac{l_{1}}{l_{0}}
$$

Magnitude distance

- But how can we partition M into M_{i}, corresponding to X_{i} ?
- An important step is to identify the corner points.
- A corner point can be identified by considering convergence (There are two types of sequences converging to a corner point, using different directions)
- Therefore we need some kind of "distance measure" on M to detect convergence.

Magnitude distance

Definition

Let $e, f \in M$. Then the magnitude distance between e and f is

$$
d_{M}(e, f)=\inf \left\{I: \exists n: e \mathrm{MH}_{l}^{n}(X) f \neq 0\right\}
$$

Magnitude distance

- Often $d_{M}\left(\delta_{p}, \delta_{q}\right)=d(p, q)$
- But not always...

Intervals in M

Definition

Let $p, q \in X$ and $e=\delta_{p}, f=\delta_{q}$. The interval between p and q is given by

$$
I_{X}(p, q)=\{x \in X: p<x<q\}
$$

and the interval between e and f is given by

$$
I_{M}(e, f)=\left\{\delta_{x}: x \in I_{X}(p, q)\right\} .
$$

Observation: Given $e, f \in M$ one can not immediately determine the set $I_{M}(e, f)$.

Intervals in M

- $e_{1} \Phi_{1} e_{2} \neq 0$ for $\Phi_{1} \in M_{d\left(e_{1}, e_{2}\right)}^{1}(X)$.
- $e_{2} \Phi_{2} e_{3} \neq 0$ for $\Phi_{2} \in M H_{d\left(e_{2}, e_{3}\right)}^{1}(X)$.
- $\Phi_{1} \Phi_{2}=0$, iff. $e_{1}<e_{2}<e_{3}$.

Theorem

Let e,f $f \in M$. Then $I_{M}(e, f)$ is a finite set if and only if there exists a finite sequence $\left\{e_{n}\right\}_{n=0}^{k}$, such that $e_{0}=e, e_{k}=f$ and there exist magnitude cohomology classes $\Phi_{i} \in \mathrm{MH}_{l_{i}}^{1}(X)$, such that for every i

$$
e_{i} \Phi_{i} e_{i+1} \neq 0
$$

and $\Phi_{i} \Phi_{i+1}=0$.

Magnitude convergence for piecewise linear closed curves

Theorem
Let X be a piecewise linear closed curve and let $e_{n}=\delta_{p_{n}}$ and $e=\delta_{q}$.
Then $p_{n} \rightarrow q$, if and only if

$$
\forall f \in M:\left|I_{M}(e, f)\right|<\infty: d_{M}\left(e_{n}, f\right) \rightarrow d_{M}(e, f)=d(e, f) .
$$

Definition (Magnitude convergence)

In those cases, we write $e_{n} \xrightarrow{M} e$

Where can magnitude distance be used?

- What happens for arbitrary closed curves?

Where can magnitude distance be used?

- What happens for arbitrary closed curves?
- Magnitude distance gets more precise?
- But also much more unpredictable...

The end

This talk was based on my master thesis.
If you are interested in reading that thesis, feel free to contact me

bino@uni-bremen.de

