On the fractional capacity and fractional relative perimeter

Ritva Hurri-Syrjänen University of Helsinki, Finland joint work with Antti V. Vähäkangas (University of Jyväskylä, Finland)

Magnitude 2019: Analysis, Category Theory, Applications University of Edinburgh July 4-5, 2019 The set up: *G* is an open set in \mathbb{R}^n , $n \ge 2$, $u: G \to \mathbb{R}$, $n \ge 2$, is an appropriate function.

The goal is to study the relationship between the fractional capacity and the fractional relative perimeter of a measurable set A with respect to G.

Let G be an open set in $\mathbb{R}^n.$ Let $0 and <math display="inline">0 < \delta < 1$ be given. We write

$$|u|_{W^{\delta,p}(G)} = \left(\int_G \int_G \frac{|u(x) - u(y)|^p}{|x - y|^{n + \delta p}} \, dy \, dx\right)^{1/p}$$

for measurable functions $u: G \to \mathbb{R}$. The homogeneous fractional Sobolev space $\dot{W}^{\delta,p}(G)$ consists of all measurable functions $u: G \to \mathbb{R}$ with $|u|_{W^{\delta,p}(G)} < \infty$.

The functions $u \in \dot{W}^{\delta,p}(G)$ are locally L^p -integrable in G, that is, $u \in L^p_{loc}(G)$: Let K be a compact set in G. If $u \in \dot{W}^{\delta,p}(G)$, then $u \in L^p(K)$.

The fractional Sobolev space of functions defined in an open set $G \neq \mathbb{R}^n$

Let G be an open set in \mathbb{R}^n . Let $0 and <math>0 < \tau, \delta < 1$ be given. We write

$$|u|_{W^{\delta,p}_{\tau}(G)} = \left(\int_G \int_{B^n(x,\tau \operatorname{dist}(x,\partial G))} \frac{|u(x) - u(y)|^p}{|x - y|^{n + \delta p}} \, dy \, dx\right)^{1/p}$$

for appropriate measurable functions u on G. When $G = \mathbb{R}^n$ both of the integrals are taken over the whole space. The homogeneous fractional Sobolev space $\dot{W}_{\tau}^{\delta,p}(G)$ consists of all measurable functions $u: G \to \mathbb{R}$ with $|u|_{W_{\tau}^{\delta,p}(G)} < \infty$.

The functions $u \in \dot{W}^{\delta,p}_{\tau}(G)$ are locally L^p -integrable in G,

The fractional Sobolev inequality

• Let G be an open set in
$$\mathbb{R}^n$$
, $n \geq 2$.

• Let
$$\delta \in (0,1)$$
 be given.

If there is a constant C such that the inequality

$$\left(\int_{G} |u(x)|^{np/(n-\delta p)} dx\right)^{(n-\delta p)/np} \leq C \left(\int_{G} \int_{G} \frac{|u(x)-u(y)|^{p}}{|x-y|^{n+\delta p}} dy dx\right)^{1/p}$$

holds for all measurable functions $u : G \to \mathbb{R}$ with compact support in *G*, then this inequality is called a fractional Sobolev inequality. Let $0 and <math>0 < \delta < 1$ be given. The fractional (δ, p) -capacity for a compact set K in G is the number

$$\operatorname{cap}_{\delta,p}(K,G) = \inf_{u} |u|_{W^{\delta,p}(G)}^{p} = \inf_{u} \int_{G} \int_{G} \frac{|u(x) - u(y)|^{p}}{|x - y|^{n + \delta p}} \, dy \, dx \,,$$

where the infimum is taken over all functions $u \in C_0(G)$ such that $u(x) \ge 1$ for each $x \in K$.

• The fractional capacity of a ball $B^n(x, r)$

$$\operatorname{cap}_{\delta,p}(B^n(x,r),\mathbb{R}^n) = \operatorname{cap}_{\delta,p}(B^n(0,1),\mathbb{R}^n)r^{n-\delta p}$$

- cap_{δ,p}(·, ℝⁿ) has been studied intensively by David R. Adams (1980's−). Also,P. Silvestre (2014), J. Xiao (2004−).
 A. Ponce and D. Spector (2018).
- cap_{δ,p}(·, G), where G is a Lipschitz domain, have been studied by S. Shi and J. Xiao (2016).
- A. Ponce, and D. Spector (2018) generalized earlier results of N. G. Meyers and W. P. Ziemer (1977) and Adams (1986).

The fractional relative δ -perimeter of a set A in G with respect to G

- Let G be an open set in \mathbb{R}^n , $n \ge 2$, and let A be a measurable set in G.
- Let $\delta \in (0, 1)$ be given.

The fractional relative δ -perimeter of A with respect to G is defined as

$$P_{\delta}(A,G) = \int_{A} \int_{G\setminus A} \frac{1}{|x-y|^{n+\delta}} \, dy \, dx \, .$$

The fractional relative δ -perimeter of a set A in G with respect to G

- L. Caffarelli, J.-M. Roquejoffre, O. Savin (2010).
- N. Fusco, V. Millot, M. Morrini (2011).
- L. Caffarelli, O. Savin, E. Valdinoci (2015).

The fractional perimeter of A in G with respect to G and the characteristic function of A

The fractional δ -perimeter of a measurable set A in G with respect to G is defined as

$$\mathcal{P}_{\delta}(A,G) = \int_{A} \int_{G\setminus A} rac{1}{|x-y|^{n+\delta}} \, dy \, dx \, .$$

We note that

$$P_{\delta}(A,G) = \frac{1}{2} |\chi_A|_{W^{\delta,1}(G)} = \frac{1}{2} \int_G \int_G \frac{|\chi_A(x) - \chi_A(y)|}{|x - y|^{n+\delta}} \, dy \, dx \, .$$

 $P_{\delta}(A, \mathbb{R}^n)$ is called the fractional perimeter or non-local δ -perimeter. It gives one notion of an intermediate object between the classical perimeter and the Lebesgue measure. $P_{\delta}(A, \mathbb{R}^n)$ satisfies an isoperimetric inequality

$$rac{P_\delta(B(0,1),\mathbb{R}^n)}{|B(0,1)|^{(n-\delta)/n}} \leq rac{P_\delta(A,\mathbb{R}^n)}{|A|^{(n-\delta)/n}}\,.$$

F. J. Almgren, E. Lieb (1989), A. Figalli, N. Fusco, F. Maggi, V. Millot, M. Morini (2015).

For any set $A \subset \mathbb{R}^n$

$$\mathcal{H}^{s}_{\eta}(A) := \inf \left\{ \sum_{i=0}^{\infty} \omega_{s} r_{i}^{s} : \cup_{i=0}^{\infty} B(x_{i}, r_{i}) \supset A, r_{i} \leq \eta \right\}.$$

The s-dimensional Hausdorff measure of A is the limit

$$\mathcal{H}^{s}(A) = \lim_{\eta \to 0} \mathcal{H}^{s}_{\eta}(A)$$
.

Here $\omega_s = \pi^s / \Gamma(s/2 + 1)$.

For any set $A \subset \mathbb{R}^n$ the Hausdorff content of dimension $n - \delta$ is given by

$$\mathcal{H}_{\infty}^{n-\delta}(A) := \inf \left\{ \sum_{i=0}^{\infty} \omega_{n-\delta} r_i^{n-\delta} : \cup_{i=0}^{\infty} B(x_i, r_i) \supset A \right\},\$$

where $\omega_{n-\delta} = \pi^{n-\delta} / \Gamma((n-\delta)/2 + 1)$.

There are the asymptotics

$$\lim_{\delta \to 0} \delta P_{\delta}(A, \mathbb{R}^n) = C_1 |A|$$
$$\lim_{\delta \to 1} (1 - \delta) P_{\delta}(A, \mathbb{R}^n) = C_2 Per(A),$$

where Per(A) denotes the perimeter of A, that is, integration of the (n-1)-dimensional measure over the topological boundary of ∂A .

J. Davila (2002), VI. Mazya, T. Shaposhnikova (2003), A. Ponce, D. Spector (2017).

Theorem For every $\delta \in (0,1)$ and every bounded set $A \subset \mathbb{R}^n$

$$\mathcal{H}^{n-\delta}_{\infty}(A) \leq C\delta(1-\delta)P_{\delta}(A,\mathbb{R}^n).$$

Theorem

For every $\delta \in (0,1)$ and every $A \subset \mathbb{R}^n$

$$\operatorname{cap}_{\delta,1}(A,\mathbb{R}^n)\sim \mathcal{H}^{n-\delta}_{\infty}(A)$$
.

N. G. Meyers, W. P. Ziemer (1977), D. R. Adams (1977), A. Ponce, D. Spector (2018).

We recall an extension of the classical coarea formula

$$\int_{\mathbb{R}^n} |\nabla u(x)| \, dx = \int_{-\infty}^{\infty} \mathcal{H}^{n-1}(\{u=t\}) \, dt \, ,$$

which is valid for every real-valued Lipschitz function u on \mathbb{R}^n .

The following fractional coarea formula is due to A. Visintin (1990).

The fractional coarea formula

Suppose that G is an open set in \mathbb{R}^n . Let $0 < \delta < 1$ be given. Then

$$\frac{1}{2}|u|_{W^{\delta,1}(G)} = \int_0^\infty P_{\delta}(\{u > t\}, G) \, dt$$

for every $u: G \to [0,\infty)$ with $u \in \dot{W}^{\delta,1}(G)$.

Proof

We note that

$$|u(x) - u(y)| = \int_0^\infty |\chi_{\{u > t\}}(x) - \chi_{\{u > t\}}(y)| dt$$

for every $x, y \in G$. On the other hand,

$$|\chi_{\{u>t\}}(x) - \chi_{\{u>t\}}(y)| = \chi_{\{u>t\}}(x)\chi_{G\setminus\{u>t\}}(y) + \chi_{\{u>t\}}(y)\chi_{G\setminus\{u>t\}}(x)$$

Hence, by Fubini's theorem

$$\begin{split} |u|_{W^{\delta,1}(G)} &= \int_G \int_G \int_0^\infty \frac{|\chi_{\{u>t\}}(x) - \chi_{\{u>t\}}(y)|}{|x-y|^{n+\delta}} \, dt \, dy \, dx \\ &= 2 \int_0^\infty \int_{\{u>t\}} \int_{G \setminus \{u>t\}} \frac{1}{|x-y|^{n+\delta}} \, dx \, dy \, dt \\ &= 2 \int_0^\infty P_\delta(\{u>t\}, G) \, dt \, . \end{split}$$

Let $\varphi \in C_0^{\infty}(B^n(0,1))$ be a non-negative bump function such that

 $\int_{\mathbb{R}^n} \varphi(x) \, dx = 1 \, .$

Let $j \in \mathbf{N}$ be given. We define $\varphi_j(x) = 2^{jn}\varphi(2^jx)$ for all $x \in \mathbb{R}^n$. If $u \in L^p(\mathbb{R}^n)$ and $1 \le p < \infty$, it is well known that $u * \varphi_j \to u$ in $L^p(\mathbb{R}^n)$ when $j \to \infty$. We use this fact in the proof of the following lemma which tells that the standard mollification converges to u in the fractional seminorm $|\cdot|_{W^{\delta,1}(G)}$.

An approximation lemma

Suppose that G is an open set in \mathbb{R}^n . Let $0 < \delta < 1$ be given. Let $u: G \to \mathbb{R}$ be a function in $\dot{W}^{\delta,1}(G)$ with compact support in G. Then,

$$|u-u*\varphi_j|_{W^{\delta,1}(G)}\xrightarrow{j\to\infty} 0.$$

Characterization. Suppose that G is an open set in \mathbb{R}^n . Let $\delta \in (0, 1)$, and let a constant C > 0 be given.

Then the following conditions are equivalent.

(1) The fractional inequality

$$\left(\int_G |u(x)|^{n/(n-\delta)} dx\right)^{(n-\delta)/n} \leq C \int_G \int_G \frac{|u(x)-u(y)|}{|x-y|^{n+\delta}} dy dx$$

holds for all measurable functions $u: G \to \mathbb{R}$ with compact support in G.

(2) The fractional isocapacitary inequality

$$|K|^{(n-\delta)/n} \leq C \operatorname{cap}_{\delta,1}(K,G)$$

holds for every compact set K in G.

(3) The fractional isoperimetric inequality

$$|D|^{(n-\delta)/n} \leq 2C P_{\delta}(D,G)$$

holds for every open set $D \subset \subset G$ whose boundary ∂D is an (n-1)-dimensional C^{∞} -manifold in G.

- The constant C is the same in each step (1), (2), and (3).
- VI. Mazya has characterized the fractional Sobolev inequality in terms of fhe fractional capacity.

Suppose that G is an open set in \mathbb{R}^n . Let $1 \le q < \infty$, $\delta \in (0, 1)$, and let a constant C > 0 be given.

The following conditions are equivalent.

(I) The fractional inequality

$$\left(\int_G |u(x)|^q \, dx\right)^{1/q} \le C \int_G \int_G \frac{|u(x) - u(y)|}{|x - y|^{n + \delta}} \, dy \, dx$$

holds for all measurable functions $u: G \to \mathbb{R}$ with compact support in G.

(II) The fractional isocapacitary inequality

$$|\mathcal{K}|^{1/q} \leq C \operatorname{cap}_{\delta,1}(\mathcal{K}, \mathcal{G})$$

holds for every compact set K in G.

(III) The fractional isoperimetric inequality

$$|D|^{1/q} \leq 2C P_{\delta}(D,G)$$

holds for every open set $D \subset \subset G$ whose boundary ∂D is an (n-1)-dimensional C^{∞} -manifold in G.

Let G be an unbounded convex domain \mathbb{R}^n , $G \neq \mathbb{R}^n$, such that G is a union of bounded convex domains D_i , $\overline{D_i} \subset D_{i+1}$, $|D_1| > 0$, and the ratio of the outer radius and inner radius of D_i is bounded by the same constant for all D_i .

Let $\delta \in (0,1)$ and $1 < p, q < \infty$ be given such that $p < n/\delta$ and $0 \le 1/p - 1/q \le \delta/n$. Then the fractional (δ, q, p) -Hardy inequality holds in G, that is,

$$\int_G \frac{|u(x)|^q}{\operatorname{dist}(x,\partial G)^{q(\delta+n(1/q-1/p))}} \, dx \leq C \bigg(\int_G \int_G \frac{|u(x)-u(y)|^p}{|x-y|^{n+\delta p}} \, dy \, dx \bigg)^{q/p} \, dx$$

for all $u \in C_0(G)$ if and only if, there exists a positive constant N > 0 such that inequality

$$\left(\sum_{Q\in\mathcal{W}(G)}\operatorname{cap}_{\delta,p}(K\cap Q,D)^{q/p}\right)^{p/q}\leq N\operatorname{cap}_{\delta,p}(K,D)$$

holds for every compact set K in D. Here $\mathcal{W}(G)$ is a Whitney decomposition of G.

Let $0 < \delta < 1$ and $1 . Then the <math>(\delta, q, p)$ -Hardy inequality

$$\int_G \frac{|u(x)|^q}{\operatorname{dist}(x,\partial G)^{q(\delta+n(1/q-1/p))}} \, dx \leq C \bigg(\int_G \int_G \frac{|u(x)-u(y)|^p}{|x-y|^{n+\delta p}} \, dy \, dx \bigg)^{q/p}$$

holds in any proper open set G in \mathbb{R}^n for all $u \in C_0(G)$ if and only if there is a constant C > 0 such that the inequality

$$\int_{\mathcal{K}} \operatorname{dist}(x, \partial G)^{-q(\delta+n(1/q-1/p))} dx \leq C \operatorname{cap}_{\delta, p}(\mathcal{K}, G)^{q/p}$$

holds for every compact set K in G. The special case p = q was considered by B. Dyda and A. V. Vähäkangas earlier. Let G be an open set in \mathbb{R}^n . If $1 \le q < \infty$ and $\delta \in (0, 1)$ are given such that the general fractional Sobolev inequality holds with a constant C > 0, then the inequality

$$|A|^{1/q} \leq 2C P_{\delta}(A, G)$$

holds for every measurable set $A \subset \subset G$. This follows from the fractional Sobolev inequality when $u = \chi_A$.

A sufficient condition for an inequality between the fractional capacity and perimeter

Theorem

Suppose that G is an open set in \mathbb{R}^n and $0 < \delta < 1$. If $D \subset \subset G$ is an open set such that $\mathcal{H}^{n-\delta}(\partial D) = 0$, then inequality

$$\operatorname{cap}_{\delta,1}(\overline{D},G) \leq 2P_{\delta}(D,G)$$
.

holds with respect to G.

Suppose that G is an open set in \mathbb{R}^n and let $0 < \delta < 1$ be given. Let $D \subset \subset G$ be an open set such that $\mathcal{H}^{n-\delta}(\partial D) = 0$. Let $\varepsilon > 0$ be given. Then, there exists a function u in $C_0(G)$ such that $0 \le u \le 1$ and u(x) = 1 for every $x \in \overline{D}$. Moreover,

$$\int_{G\setminus D}\int_{G\setminus D}\frac{|u(x)-u(y)|}{|x-y|^{n+\delta}}\,dy\,dx<\varepsilon$$

Suppose that $D \subset G$ is an open set and $\mathcal{H}^{n-\delta}(\partial D) = 0$. Let $\varepsilon > 0$ and let $u = u_{\varepsilon}$ be the $C_0(G)$ function given by previous lemma. Then, we obtain

$$\begin{split} & \operatorname{cap}_{\delta,1}(\overline{D},G) \leq \int_{G} \int_{G} \frac{|u(x) - u(y)|}{|x - y|^{n + \delta}} \, dy \, dx \\ & \leq 2 \int_{D} \int_{G \setminus D} \frac{1}{|x - y|^{n + \delta}} \, dy \, dx + \int_{G \setminus D} \int_{G \setminus D} \frac{|u(x) - u(y)|}{|x - y|^{n + \delta}} \, dy \, dx \\ & < 2 P_{\delta}(D,G) + \varepsilon \,. \end{split}$$

The theorem is proved by taking $\varepsilon \to 0$.

As a corollary we obtain the following result.

Suppose that $u \in C_0^\infty(G)$. Let $0 < \delta < 1$ be given. Then the set

$$D_t := \{x \in G : u(x) > t\}$$

satisfies inequality

$$\operatorname{cap}_{\delta,1}(\overline{D_t},G) \leq 2P_{\delta}(D_t,G)$$

with respect to G for almost every t > 0.

A question on the characteristic function of a set $D \subset \subset G$ belonging to $\dot{W}^{\delta,1}(G)$

We note that the left hand side of inequality

$$\operatorname{cap}_{\delta,1}(\overline{D},G) \leq 2P_{\delta}(D,G).$$

may be viewed as a lower bound for

$$|\chi_D|_{W^{\delta,1}(G)}=2P_{\delta}(D,G).$$

Hence, inequality

$$\operatorname{cap}_{\delta,1}(\overline{D},G) \leq 2P_{\delta}(D,G).$$

is related to the question if the characteristic function χ_D of a set $D \subset G$ belongs to the fractional homogeneous Sobolev space $\dot{W}^{\delta,1}(G)$. The question is studied by D. Faraco and K. M. Rogers, 2013.

All quasiballs satisfy inequality

$$\operatorname{cap}_{\delta,1}(\overline{D},\mathbb{R}^n) \leq 2P_{\delta}(D,\mathbb{R}^n).$$

A homeomorphism $f : \mathbb{R}^n \to \mathbb{R}^n$ is *K*-quasiconformal, $K \ge 1$, if *f* belongs to the Sobolev class $W_{loc}^{1,n}(\mathbb{R}^n;\mathbb{R}^n)$ and $|Df(x)|^n \le KJ_f(x)$ for almost every $x \in \mathbb{R}^n$. Here $J_f = \det(Df)$. If $f : \mathbb{R}^n \to \mathbb{R}^n$ is a *K*-quasiconformal mapping, then the image of the unit ball in \mathbb{R}^n under the mapping *f* is called a quasiball. Examples of quasiballs are snowflakes in the plane and snowballs in \mathbb{R}^3 , which are 3-dimensional analogues of snowflakes.

Ritva Hurri-Syrjänen and Antti V. Vähäkangas: Fractional Sobolev-Poincaré inequalities and fractional Hardy inequalities in unbounded John domains. Mathematika 61, 2015. Ritva Hurri-Syrjänen and Antti V. Vähäkangas: Characterizations to the fractional Sobolev inequality. Complex Analysis and Dynamical Systems VII, Contemp. Math., 699, Amer. Math. Soc., Providence, RI, 2017. Thank you for your attention.