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The goal

The set up:
G is an open set in Rn, n ≥ 2,
u : G → R, n ≥ 2, is an appropriate function.

The goal is to study the relationship between the fractional
capacity and the fractional relative perimeter of a measurable set A
with respect to G .



The fractional Sobolev space

Let G be an open set in Rn. Let 0 < p <∞ and 0 < δ < 1 be
given. We write

|u|W δ,p(G) =

(∫
G

∫
G

|u(x)− u(y)|p

|x − y |n+δp
dy dx

)1/p

for measurable functions u : G → R . The homogeneous fractional
Sobolev space Ẇ δ,p(G ) consists of all measurable functions
u : G → R with |u|W δ,p(G) <∞.

The functions u ∈ Ẇ δ,p(G ) are locally Lp-integrable in G , that is,
u ∈ Lploc(G ):

Let K be a compact set in G . If u ∈ Ẇ δ,p(G ), then u ∈ Lp(K ).



The fractional Sobolev space of functions defined in an
open set G 6= Rn

Let G be an open set in Rn. Let 0 < p <∞ and 0 < τ, δ < 1 be
given. We write

|u|
W δ,p
τ (G)

=

(∫
G

∫
Bn(x ,τdist(x ,∂G))

|u(x)− u(y)|p

|x − y |n+δp
dy dx

)1/p

for appropriate measurable functions u on G . When G = Rn both
of the integrals are taken over the whole space. The homogeneous
fractional Sobolev space Ẇ δ,p

τ (G ) consists of all measurable
functions u : G → R with |u|

W δ,p
τ (G)

<∞.

The functions u ∈ Ẇ δ,p
τ (G ) are locally Lp-integrable in G ,



The fractional Sobolev inequality

Let G be an open set in Rn, n ≥ 2.

Let δ ∈ (0, 1) be given.

Let 1 ≤ p < n/δ be given.

If there is a constant C such that the inequality(∫
G
|u(x)|np/(n−δp) dx

)(n−δp)/np

≤ C

(∫
G

∫
G

|u(x)− u(y)|p

|x − y |n+δp
dy dx

)1/p

holds for all measurable functions u : G → R with compact support
in G , then this inequality is called a fractional Sobolev inequality.



The fractional capacity

Let 0 < p <∞ and 0 < δ < 1 be given. The fractional
(δ, p)-capacity for a compact set K in G is the number

capδ,p(K ,G ) = inf
u
|u|p

W δ,p(G)
= inf

u

∫
G

∫
G

|u(x)− u(y)|p

|x − y |n+δp
dy dx ,

where the infimum is taken over all functions u ∈ C0(G ) such that
u(x) ≥ 1 for each x ∈ K .



Remarks

The fractional capacity of a ball Bn(x , r)

capδ,p(Bn(x , r),Rn) = capδ,p(Bn(0, 1),Rn)rn−δp .

capδ,p(·,Rn) has been studied intensively by David R. Adams
(1980’s– ). Also,P. Silvestre (2014), J. Xiao (2004–).
A. Ponce and D. Spector (2018).

capδ,p(·,G ), where G is a Lipschitz domain, have been
studied by S. Shi and J. Xiao (2016).

A. Ponce, and D. Spector (2018) generalized earlier results of
N. G. Meyers and W. P. Ziemer (1977) and Adams (1986).



The fractional relative δ-perimeter of a set A in G with
respect to G

Let G be an open set in Rn, n ≥ 2, and let A be a measurable
set in G .

Let δ ∈ (0, 1) be given.

The fractional relative δ-perimeter of A with respect to G is
defined as

Pδ(A,G ) =

∫
A

∫
G\A

1

|x − y |n+δ
dy dx .



The fractional relative δ-perimeter of a set A in G with
respect to G

L. Caffarelli, J.-M. Roquejoffre, O. Savin (2010).

N. Fusco, V. Millot, M. Morrini (2011).

L. Caffarelli, O. Savin, E. Valdinoci (2015).



The fractional perimeter of A in G with respect to G and
the characteristic function of A

The fractional δ-perimeter of a measurable set A in G with respect
to G is defined as

Pδ(A,G ) =

∫
A

∫
G\A

1

|x − y |n+δ
dy dx .

We note that

Pδ(A,G ) =
1

2
|χA|W δ,1(G) =

1

2

∫
G

∫
G

|χA(x)− χA(y)|
|x − y |n+δ

dy dx .



Properties of Pδ(A,Rn)

Pδ(A,Rn) is called the fractional perimeter or non-local
δ-perimeter. It gives one notion of an intermediate object between
the classical perimeter and the Lebesgue measure.
Pδ(A,Rn) satisfies an isoperimetric inequality

Pδ(B(0, 1),Rn)

|B(0, 1)|(n−δ)/n
≤ Pδ(A,Rn)

|A|(n−δ)/n
.

F. J. Almgren, E. Lieb (1989), A. Figalli, N. Fusco, F. Maggi, V.
Millot, M. Morini (2015).



The s-dimensional Hausdorff measure

For any set A ⊂ Rn

Hs
η(A) := inf

{ ∞∑
i=0

ωsr
s
i : ∪∞i=0B(xi , ri ) ⊃ A, ri ≤ η

}
.

The s-dimensional Hausdorff measure of A is the limit

Hs(A) = lim
η→0
Hs
η(A) .

Here ωs = πs/Γ(s/2 + 1).



The Hausdorff content of dimension n − δ

For any set A ⊂ Rn the Hausdorff content of dimension n − δ is
given by

Hn−δ
∞ (A) := inf

{ ∞∑
i=0

ωn−δr
n−δ
i : ∪∞i=0B(xi , ri ) ⊃ A

}
,

where ωn−δ = πn−δ/Γ((n − δ)/2 + 1).



Asymptotics

There are the asymptotics

lim
δ→0

δPδ(A,Rn) = C1|A|

lim
δ→1

(1− δ)Pδ(A,Rn) = C2Per(A) ,

where Per(A) denotes the perimeter of A, that is, integration of
the (n − 1)-dimensional measure over the topological boundary of
∂A.

J. Davila (2002), Vl. Mazya, T. Shaposhnikova (2003), A. Ponce,
D. Spector (2017).



Very recent results of A. Ponce and D. Spector, 2018

Theorem
For every δ ∈ (0, 1) and every bounded set A ⊂ Rn

Hn−δ
∞ (A) ≤ Cδ(1− δ)Pδ(A,Rn) .

Theorem
For every δ ∈ (0, 1) and every A ⊂ Rn

capδ,1(A,Rn) ∼ Hn−δ
∞ (A) .

N. G. Meyers, W. P. Ziemer (1977), D. R. Adams (1977), A.
Ponce, D. Spector (2018).



The coarea formula

We recall an extension of the classical coarea formula∫
Rn

|∇u(x)| dx =

∫ ∞
−∞
Hn−1({u = t}) dt ,

which is valid for every real-valued Lipschitz function u on Rn.



The fractional coarea formula

The following fractional coarea formula is due to A. Visintin
(1990).
The fractional coarea formula
Suppose that G is an open set in Rn. Let 0 < δ < 1 be given.
Then

1

2
|u|W δ,1(G) =

∫ ∞
0

Pδ({u > t},G ) dt

for every u : G → [0,∞) with u ∈ Ẇ δ,1(G ).



Proof

We note that

|u(x)− u(y)| =

∫ ∞
0
|χ{u>t}(x)− χ{u>t}(y)| dt

for every x , y ∈ G . On the other hand,

|χ{u>t}(x)−χ{u>t}(y)| = χ{u>t}(x)χG\{u>t}(y)+χ{u>t}(y)χG\{u>t}(x) .

Hence, by Fubini’s theorem

|u|W δ,1(G) =

∫
G

∫
G

∫ ∞
0

|χ{u>t}(x)− χ{u>t}(y)|
|x − y |n+δ

dt dy dx

= 2

∫ ∞
0

∫
{u>t}

∫
G\{u>t}

1

|x − y |n+δ
dx dy dt

= 2

∫ ∞
0

Pδ({u > t},G ) dt .



An approximation lemma

Let ϕ ∈ C∞0 (Bn(0, 1)) be a non-negative bump function such that∫
Rn

ϕ(x) dx = 1 .

Let j ∈ N be given. We define ϕj(x) = 2jnϕ(2jx) for all x ∈ Rn. If
u ∈ Lp(Rn) and 1 ≤ p <∞, it is well known that u ∗ ϕj → u in
Lp(Rn) when j →∞. We use this fact in the proof of the
following lemma which tells that the standard mollification
converges to u in the fractional seminorm |·|W δ,1(G).



An approximation lemma

An approximation lemma
Suppose that G is an open set in Rn. Let 0 < δ < 1 be given. Let
u : G → R be a function in Ẇ δ,1(G ) with compact support in G .
Then,

|u − u ∗ ϕj |W δ,1(G)
j→∞−−−→ 0 .



Characterization. Suppose that G is an open set in Rn.
Let δ ∈ (0, 1), and let a constant C > 0 be given.

Then the following conditions are equivalent.

(1) The fractional inequality(∫
G
|u(x)|n/(n−δ) dx

)(n−δ)/n
≤ C

∫
G

∫
G

|u(x)− u(y)|
|x − y |n+δ

dy dx

holds for all measurable functions u : G → R with compact
support in G .

(2) The fractional isocapacitary inequality

|K |(n−δ)/n ≤ C capδ,1(K ,G )

holds for every compact set K in G .

(3) The fractional isoperimetric inequality

|D|(n−δ)/n ≤ 2C Pδ(D,G )

holds for every open set D ⊂⊂ G whose boundary ∂D is an
(n − 1)-dimensional C∞-manifold in G .



Remarks

The constant C is the same in each step (1), (2), and (3).

Vl. Mazya has characterized the fractional Sobolev inequality
in terms of fhe fractional capacity.



Suppose that G is an open set in Rn. Let 1 ≤ q <∞,
δ ∈ (0, 1), and let a constant C > 0 be given.

The following conditions are equivalent.

(I) The fractional inequality(∫
G
|u(x)|q dx

)1/q

≤ C

∫
G

∫
G

|u(x)− u(y)|
|x − y |n+δ

dy dx

holds for all measurable functions u : G → R with compact
support in G .

(II) The fractional isocapacitary inequality

|K |1/q ≤ C capδ,1(K ,G )

holds for every compact set K in G .

(III) The fractional isoperimetric inequality

|D|1/q ≤ 2C Pδ(D,G )

holds for every open set D ⊂⊂ G whose boundary ∂D is an
(n − 1)-dimensional C∞-manifold in G .



A characterization of the Hardy inequality

Let G be an unbounded convex domain Rn, G 6= Rn, such that G
is a union of bounded convex domains Di , Di ⊂ Di+1,
|D1| > 0,and the ratio of the outer radius and inner radius of Di is
bounded by the same constant for all Di .



A characterization of the Hardy inequality

Let δ ∈ (0, 1) and 1 < p, q <∞ be given such that p < n/δ and
0 ≤ 1/p − 1/q ≤ δ/n. Then the fractional (δ, q, p)-Hardy
inequality holds in G , that is,∫
G

|u(x)|q

dist(x , ∂G )q(δ+n(1/q−1/p)) dx ≤ C

(∫
G

∫
G

|u(x)− u(y)|p

|x − y |n+δp
dy dx

)q/p

,

for all u ∈ C0(G ) if and only if, there exists a positive constant
N > 0 such that inequality( ∑

Q∈W(G)

capδ,p(K ∩ Q,D)q/p
)p/q

≤ N capδ,p(K ,D)

holds for every compact set K in D. Here W(G ) is a Whitney
decomposition of G .



A Mazya-type characterization for the Hardy inequality

Let 0 < δ < 1 and 1 < p ≤ q <∞. Then the (δ, q, p)-Hardy
inequality∫
G

|u(x)|q

dist(x , ∂G )q(δ+n(1/q−1/p)) dx ≤ C

(∫
G

∫
G

|u(x)− u(y)|p

|x − y |n+δp
dy dx

)q/p

holds in any proper open set G in Rn for all u ∈ C0(G ) if and only
if there is a constant C > 0 such that the inequality∫

K
dist(x , ∂G )−q(δ+n(1/q−1/p)) dx ≤ C capδ,p(K ,G )q/p

holds for every compact set K in G .
The special case p = q was considered by B. Dyda and A. V.
Vähäkangas earlier.



A result for any measurable set A ⊂⊂ G

Let G be an open set in Rn. If 1 ≤ q <∞ and δ ∈ (0, 1) are given
such that the general fractional Sobolev inequality holds with a
constant C > 0, then the inequality

|A|1/q ≤ 2C Pδ(A,G )

holds for every measurable set A ⊂⊂ G . This follows from the
fractional Sobolev inequality when u = χA.



A sufficient condition for an inequality between the
fractional capacity and perimeter

Theorem
Suppose that G is an open set in Rn and 0 < δ < 1. If D ⊂⊂ G is
an open set such that Hn−δ(∂D) = 0, then inequality

capδ,1(D,G ) ≤ 2Pδ(D,G ) .

holds with respect to G.



Lemma for a proof of a sufficient condition

Suppose that G is an open set in Rn and let 0 < δ < 1 be given.
Let D ⊂⊂ G be an open set such that Hn−δ(∂D) = 0. Let ε > 0
be given. Then, there exists a function u in C0(G ) such that
0 ≤ u ≤ 1 and u(x) = 1 for every x ∈ D. Moreover,∫

G\D

∫
G\D

|u(x)− u(y)|
|x − y |n+δ

dy dx < ε .



Proof for the theorem of a sufficient condition

Suppose that D ⊂⊂ G is an open set and Hn−δ(∂D) = 0. Let
ε > 0 and let u = uε be the C0(G ) function given by previous
lemma. Then, we obtain

capδ,1(D,G ) ≤
∫
G

∫
G

|u(x)− u(y)|
|x − y |n+δ

dy dx

≤ 2

∫
D

∫
G\D

1

|x − y |n+δ
dy dx +

∫
G\D

∫
G\D

|u(x)− u(y)|
|x − y |n+δ

dy dx

< 2Pδ(D,G ) + ε .

The theorem is proved by taking ε→ 0.



An example

As a corollary we obtain the following result.
Suppose that u ∈ C∞0 (G ). Let 0 < δ < 1 be given. Then the set

Dt := {x ∈ G : u(x) > t}

satisfies inequality

capδ,1(Dt ,G ) ≤ 2Pδ(Dt ,G )

with respect to G for almost every t > 0.



A question on the characteristic function of a set D ⊂⊂ G
belonging to Ẇ δ,1(G )

We note that the left hand side of inequality

capδ,1(D,G ) ≤ 2Pδ(D,G ) .

may be viewed as a lower bound for

|χD |W δ,1(G) = 2Pδ(D,G ) .

Hence, inequality

capδ,1(D,G ) ≤ 2Pδ(D,G ) .

is related to the question if the characteristic function χD of a set
D ⊂⊂ G belongs to the fractional homogeneous Sobolev space
Ẇ δ,1(G ). The question is studied by D. Faraco and K. M. Rogers,
2013.



Quasiballs

All quasiballs satisfy inequality

capδ,1(D,Rn) ≤ 2Pδ(D,Rn) .

A homeomorphism f : Rn → Rn is K -quasiconformal, K ≥ 1, if f
belongs to the Sobolev class W 1,n

loc (Rn;Rn) and |Df (x)|n ≤ KJf (x)
for almost every x ∈ Rn. Here Jf = det(Df ). If f : Rn → Rn is a
K -quasiconformal mapping, then the image of the unit ball in Rn

under the mapping f is called a quasiball. Examples of quasiballs
are snowflakes in the plane and snowballs in R3, which are
3-dimensional analogues of snowflakes.



This talk is based on the following papers

Ritva Hurri-Syrjänen and Antti V. Vähäkangas:
Fractional Sobolev-Poincaré inequalities and fractional Hardy
inequalities in unbounded John domains.
Mathematika 61, 2015.
Ritva Hurri-Syrjänen and Antti V. Vähäkangas:
Characterizations to the fractional Sobolev inequality.
Complex Analysis and Dynamical Systems VII, Contemp. Math.,
699, Amer. Math. Soc., Providence, RI, 2017.



Thank you for your attention.


