On the fractional capacity and
 fractional relative perimeter

Ritva Hurri-Syrjänen
University of Helsinki, Finland joint work with
Antti V. Vähäkangas (University of Jyväskylä, Finland)

Magnitude 2019: Analysis, Category Theory, Applications University of Edinburgh

$$
\text { July 4-5, } 2019
$$

The goal

The set up:
G is an open set in $\mathbb{R}^{n}, n \geq 2$, $u: G \rightarrow \mathbb{R}, n \geq 2$, is an appropriate function.

The goal is to study the relationship between the fractional capacity and the fractional relative perimeter of a measurable set A with respect to G.

The fractional Sobolev space

Let G be an open set in \mathbb{R}^{n}. Let $0<p<\infty$ and $0<\delta<1$ be given. We write

$$
|u|_{W^{\delta, p}(G)}=\left(\int_{G} \int_{G} \frac{|u(x)-u(y)|^{p}}{|x-y|^{n+\delta p}} d y d x\right)^{1 / p}
$$

for measurable functions $u: G \rightarrow \mathbb{R}$. The homogeneous fractional Sobolev space $\dot{W}^{\delta, p}(G)$ consists of all measurable functions $u: G \rightarrow \mathbb{R}$ with $|u|_{W^{\delta, p}(G)}<\infty$.

The functions $u \in \dot{W}^{\delta, p}(G)$ are locally L^{p}-integrable in G, that is, $u \in L_{\text {loc }}^{p}(G)$:
Let K be a compact set in G. If $u \in \dot{W}^{\delta, p}(G)$, then $u \in L^{p}(K)$.

The fractional Sobolev space of functions defined in an open set $G \neq \mathbb{R}^{n}$

Let G be an open set in \mathbb{R}^{n}. Let $0<p<\infty$ and $0<\tau, \delta<1$ be given. We write

$$
|u|_{W_{\tau}^{\delta, p}(G)}=\left(\int_{G} \int_{B^{n}(x, \tau \operatorname{dist}(x, \partial G))} \frac{|u(x)-u(y)|^{p}}{|x-y|^{n+\delta p}} d y d x\right)^{1 / p}
$$

for appropriate measurable functions u on G. When $G=\mathbb{R}^{n}$ both of the integrals are taken over the whole space. The homogeneous fractional Sobolev space $\dot{W}_{\tau}^{\delta, p}(G)$ consists of all measurable functions $u: G \rightarrow \mathbb{R}$ with $|u|_{W_{T}^{\delta, p}(G)}<\infty$.
The functions $u \in \dot{W}_{\tau}^{\delta, p}(G)$ are locally L^{p}-integrable in G,

The fractional Sobolev inequality

■ Let G be an open set in $\mathbb{R}^{n}, n \geq 2$.

- Let $\delta \in(0,1)$ be given.
- Let $1 \leq p<n / \delta$ be given.

If there is a constant C such that the inequality

$$
\begin{aligned}
\left(\int_{G}|u(x)|^{n p /(n-\delta p)} d x\right)^{(n-\delta p) / n p} & \\
& \leq C\left(\int_{G} \int_{G} \frac{|u(x)-u(y)|^{p}}{|x-y|^{n+\delta p}} d y d x\right)^{1 / p}
\end{aligned}
$$

holds for all measurable functions $u: G \rightarrow \mathbb{R}$ with compact support in G, then this inequality is called a fractional Sobolev inequality.

The fractional capacity

Let $0<p<\infty$ and $0<\delta<1$ be given. The fractional (δ, p)-capacity for a compact set K in G is the number

$$
\operatorname{cap}_{\delta, p}(K, G)=\inf _{u}|u|_{W^{\delta, p}(G)}^{p}=\inf _{u} \int_{G} \int_{G} \frac{|u(x)-u(y)|^{p}}{|x-y|^{n+\delta p}} d y d x
$$

where the infimum is taken over all functions $u \in C_{0}(G)$ such that $u(x) \geq 1$ for each $x \in K$.

Remarks

- The fractional capacity of a ball $B^{n}(x, r)$

$$
\operatorname{cap}_{\delta, p}\left(B^{n}(x, r), \mathbb{R}^{n}\right)=\operatorname{cap}_{\delta, p}\left(B^{n}(0,1), \mathbb{R}^{n}\right) r^{n-\delta p}
$$

■ $\operatorname{cap}_{\delta, p}\left(\cdot, \mathbb{R}^{n}\right)$ has been studied intensively by David R. Adams (1980's-). Also,P. Silvestre (2014), J. Xiao (2004-). A. Ponce and D. Spector (2018).

- $\operatorname{cap}_{\delta, p}(\cdot, G)$, where G is a Lipschitz domain, have been studied by S. Shi and J. Xiao (2016).
- A. Ponce, and D. Spector (2018) generalized earlier results of N. G. Meyers and W. P. Ziemer (1977) and Adams (1986).

The fractional relative δ-perimeter of a set A in G with respect to G

- Let G be an open set in $\mathbb{R}^{n}, n \geq 2$, and let A be a measurable set in G.
- Let $\delta \in(0,1)$ be given.

The fractional relative δ-perimeter of A with respect to G is defined as

$$
P_{\delta}(A, G)=\int_{A} \int_{G \backslash A} \frac{1}{|x-y|^{n+\delta}} d y d x
$$

The fractional relative δ-perimeter of a set A in G with respect to G

■ L. Caffarelli, J.-M. Roquejoffre, O. Savin (2010).

- N. Fusco, V. Millot, M. Morrini (2011).

■ L. Caffarelli, O. Savin, E. Valdinoci (2015).

The fractional perimeter of A in G with respect to G and the characteristic function of A

The fractional δ-perimeter of a measurable set A in G with respect to G is defined as

$$
P_{\delta}(A, G)=\int_{A} \int_{G \backslash A} \frac{1}{|x-y|^{n+\delta}} d y d x
$$

We note that

$$
P_{\delta}(A, G)=\frac{1}{2}\left|\chi_{A}\right|_{W^{\delta, 1}(G)}=\frac{1}{2} \int_{G} \int_{G} \frac{\left|\chi_{A}(x)-\chi_{A}(y)\right|}{|x-y|^{n+\delta}} d y d x
$$

Properties of $P_{\delta}\left(A, \mathbb{R}^{n}\right)$

$P_{\delta}\left(A, \mathbb{R}^{n}\right)$ is called the fractional perimeter or non-local
δ-perimeter. It gives one notion of an intermediate object between the classical perimeter and the Lebesgue measure.
$P_{\delta}\left(A, \mathbb{R}^{n}\right)$ satisfies an isoperimetric inequality

$$
\frac{P_{\delta}\left(B(0,1), \mathbb{R}^{n}\right)}{|B(0,1)|^{(n-\delta) / n}} \leq \frac{P_{\delta}\left(A, \mathbb{R}^{n}\right)}{|A|^{(n-\delta) / n}}
$$

F. J. Almgren, E. Lieb (1989), A. Figalli, N. Fusco, F. Maggi, V. Millot, M. Morini (2015).

The s-dimensional Hausdorff measure

For any set $A \subset \mathbb{R}^{n}$

$$
\mathcal{H}_{\eta}^{s}(A):=\inf \left\{\sum_{i=0}^{\infty} \omega_{s} r_{i}^{s}: \cup_{i=0}^{\infty} B\left(x_{i}, r_{i}\right) \supset A, r_{i} \leq \eta\right\}
$$

The s-dimensional Hausdorff measure of A is the limit

$$
\mathcal{H}^{s}(A)=\lim _{\eta \rightarrow 0} \mathcal{H}_{\eta}^{s}(A)
$$

Here $\omega_{s}=\pi^{s} / \Gamma(s / 2+1)$.

The Hausdorff content of dimension $n-\delta$

For any set $A \subset \mathbb{R}^{n}$ the Hausdorff content of dimension $n-\delta$ is given by

$$
\mathcal{H}_{\infty}^{n-\delta}(A):=\inf \left\{\sum_{i=0}^{\infty} \omega_{n-\delta} r_{i}^{n-\delta}: \cup_{i=0}^{\infty} B\left(x_{i}, r_{i}\right) \supset A\right\}
$$

where $\omega_{n-\delta}=\pi^{n-\delta} / \Gamma((n-\delta) / 2+1)$.

Asymptotics

There are the asymptotics

$$
\begin{aligned}
& \lim _{\delta \rightarrow 0} \delta P_{\delta}\left(A, \mathbb{R}^{n}\right)=C_{1}|A| \\
& \lim _{\delta \rightarrow 1}(1-\delta) P_{\delta}\left(A, \mathbb{R}^{n}\right)=C_{2} \operatorname{Per}(A)
\end{aligned}
$$

where $\operatorname{Per}(A)$ denotes the perimeter of A, that is, integration of the $(n-1)$-dimensional measure over the topological boundary of ∂A.
J. Davila (2002), VI. Mazya, T. Shaposhnikova (2003), A. Ponce, D. Spector (2017).

Very recent results of A. Ponce and D. Spector, 2018

Theorem
For every $\delta \in(0,1)$ and every bounded set $A \subset \mathbb{R}^{n}$

$$
\mathcal{H}_{\infty}^{n-\delta}(A) \leq C \delta(1-\delta) P_{\delta}\left(A, \mathbb{R}^{n}\right)
$$

Theorem
For every $\delta \in(0,1)$ and every $A \subset \mathbb{R}^{n}$

$$
\operatorname{cap}_{\delta, 1}\left(A, \mathbb{R}^{n}\right) \sim \mathcal{H}_{\infty}^{n-\delta}(A)
$$

N. G. Meyers, W. P. Ziemer (1977), D. R. Adams (1977), A. Ponce, D. Spector (2018).

The coarea formula

We recall an extension of the classical coarea formula

$$
\int_{\mathbb{R}^{n}}|\nabla u(x)| d x=\int_{-\infty}^{\infty} \mathcal{H}^{n-1}(\{u=t\}) d t
$$

which is valid for every real-valued Lipschitz function u on \mathbb{R}^{n}.

The fractional coarea formula

The following fractional coarea formula is due to A . Visintin (1990).

The fractional coarea formula
Suppose that G is an open set in \mathbb{R}^{n}. Let $0<\delta<1$ be given. Then

$$
\frac{1}{2}|u|_{W^{\delta, 1}(G)}=\int_{0}^{\infty} P_{\delta}(\{u>t\}, G) d t
$$

for every $u: G \rightarrow[0, \infty)$ with $u \in \dot{W}^{\delta, 1}(G)$.

Proof

We note that

$$
|u(x)-u(y)|=\int_{0}^{\infty}\left|\chi_{\{u>t\}}(x)-\chi_{\{u>t\}}(y)\right| d t
$$

for every $x, y \in G$. On the other hand,
$\left|\chi_{\{u>t\}}(x)-\chi_{\{u>t\}}(y)\right|=\chi_{\{u>t\}}(x) \chi_{G \backslash\{u>t\}}(y)+\chi_{\{u>t\}}(y) \chi_{G \backslash\{u>t\}}(x)$.
Hence, by Fubini's theorem

$$
\begin{aligned}
|u|_{W^{\delta, 1}(G)} & =\int_{G} \int_{G} \int_{0}^{\infty} \frac{\left|\chi_{\{u>t\}}(x)-\chi_{\{u>t\}}(y)\right|}{|x-y|^{n+\delta}} d t d y d x \\
& =2 \int_{0}^{\infty} \int_{\{u>t\}} \int_{G \backslash\{u>t\}} \frac{1}{|x-y|^{n+\delta}} d x d y d t \\
& =2 \int_{0}^{\infty} P_{\delta}(\{u>t\}, G) d t .
\end{aligned}
$$

An approximation lemma

Let $\varphi \in C_{0}^{\infty}\left(B^{n}(0,1)\right)$ be a non-negative bump function such that

$$
\int_{\mathbb{R}^{n}} \varphi(x) d x=1
$$

Let $j \in \mathbf{N}$ be given. We define $\varphi_{j}(x)=2^{j n} \varphi\left(2^{j} x\right)$ for all $x \in \mathbb{R}^{n}$. If $u \in L^{p}\left(\mathbb{R}^{n}\right)$ and $1 \leq p<\infty$, it is well known that $u * \varphi_{j} \rightarrow u$ in $L^{p}\left(\mathbb{R}^{n}\right)$ when $j \rightarrow \infty$. We use this fact in the proof of the following lemma which tells that the standard mollification converges to u in the fractional seminorm $|\cdot|_{W^{\delta, 1}(G)}$.

An approximation lemma

An approximation lemma

Suppose that G is an open set in \mathbb{R}^{n}. Let $0<\delta<1$ be given. Let $u: G \rightarrow \mathbb{R}$ be a function in $\dot{W}^{\delta, 1}(G)$ with compact support in G. Then,

$$
\left|u-u * \varphi_{j}\right|_{W^{\delta, 1}(G)} \xrightarrow{j \rightarrow \infty} 0 .
$$

Characterization. Suppose that G is an open set in \mathbb{R}^{n}. Let $\delta \in(0,1)$, and let a constant $C>0$ be given.

Then the following conditions are equivalent.
(1) The fractional inequality

$$
\left(\int_{G}|u(x)|^{n /(n-\delta)} d x\right)^{(n-\delta) / n} \leq C \int_{G} \int_{G} \frac{|u(x)-u(y)|}{|x-y|^{n+\delta}} d y d x
$$

holds for all measurable functions $u: G \rightarrow \mathbb{R}$ with compact support in G.
(2) The fractional isocapacitary inequality

$$
|K|^{(n-\delta) / n} \leq C \operatorname{cap}_{\delta, 1}(K, G)
$$

holds for every compact set K in G.
(3) The fractional isoperimetric inequality

$$
|D|^{(n-\delta) / n} \leq 2 C P_{\delta}(D, G)
$$

holds for every open set $D \subset \subset G$ whose boundary ∂D is an $(n-1)$-dimensional C^{∞}-manifold in G.

Remarks

- The constant C is the same in each step (1), (2), and (3).

■ VI. Mazya has characterized the fractional Sobolev inequality in terms of fhe fractional capacity.

Suppose that G is an open set in \mathbb{R}^{n}. Let $1 \leq q<\infty$, $\delta \in(0,1)$, and let a constant $C>0$ be given.

The following conditions are equivalent.
(I) The fractional inequality

$$
\left(\int_{G}|u(x)|^{q} d x\right)^{1 / q} \leq C \int_{G} \int_{G} \frac{|u(x)-u(y)|}{|x-y|^{n+\delta}} d y d x
$$

holds for all measurable functions $u: G \rightarrow \mathbb{R}$ with compact support in G.
(II) The fractional isocapacitary inequality

$$
|K|^{1 / q} \leq C \operatorname{cap}_{\delta, 1}(K, G)
$$

holds for every compact set K in G.
(III) The fractional isoperimetric inequality

$$
|D|^{1 / q} \leq 2 C P_{\delta}(D, G)
$$

holds for every open set $D \subset \subset G$ whose boundary ∂D is an $(n-1)$-dimensional C^{∞}-manifold in G.

A characterization of the Hardy inequality

Let G be an unbounded convex domain $\mathbb{R}^{n}, G \neq \mathbb{R}^{n}$, such that G is a union of bounded convex domains $D_{i}, \overline{D_{i}} \subset D_{i+1}$,
$\left|D_{1}\right|>0$, and the ratio of the outer radius and inner radius of D_{i} is bounded by the same constant for all D_{i}.

A characterization of the Hardy inequality

Let $\delta \in(0,1)$ and $1<p, q<\infty$ be given such that $p<n / \delta$ and $0 \leq 1 / p-1 / q \leq \delta / n$. Then the fractional (δ, q, p)-Hardy inequality holds in G, that is,
$\int_{G} \frac{|u(x)|^{q}}{\operatorname{dist}(x, \partial G)^{q(\delta+n(1 / q-1 / p))}} d x \leq C\left(\int_{G} \int_{G} \frac{|u(x)-u(y)|^{p}}{|x-y|^{n+\delta p}} d y d x\right)^{q / p}$,
for all $u \in C_{0}(G)$ if and only if, there exists a positive constant $N>0$ such that inequality

$$
\left(\sum_{Q \in \mathcal{W}(G)} \operatorname{cap}_{\delta, p}(K \cap Q, D)^{q / p}\right)^{p / q} \leq N \operatorname{cap}_{\delta, p}(K, D)
$$

holds for every compact set K in D. Here $\mathcal{W}(G)$ is a Whitney decomposition of G.

A Mazya-type characterization for the Hardy inequality

Let $0<\delta<1$ and $1<p \leq q<\infty$. Then the (δ, q, p)-Hardy inequality

$$
\int_{G} \frac{|u(x)|^{q}}{\operatorname{dist}(x, \partial G)^{q(\delta+n(1 / q-1 / p))}} d x \leq C\left(\int_{G} \int_{G} \frac{|u(x)-u(y)|^{p}}{|x-y|^{n+\delta p}} d y d x\right)^{q / p}
$$

holds in any proper open set G in \mathbb{R}^{n} for all $u \in C_{0}(G)$ if and only if there is a constant $C>0$ such that the inequality

$$
\int_{K} \operatorname{dist}(x, \partial G)^{-q(\delta+n(1 / q-1 / p))} d x \leq C \operatorname{cap}_{\delta, p}(K, G)^{q / p}
$$

holds for every compact set K in G.
The special case $p=q$ was considered by B. Dyda and A. V.
Vähäkangas earlier.

A result for any measurable set $A \subset \subset G$

Let G be an open set in \mathbb{R}^{n}. If $1 \leq q<\infty$ and $\delta \in(0,1)$ are given such that the general fractional Sobolev inequality holds with a constant $C>0$, then the inequality

$$
|A|^{1 / q} \leq 2 C P_{\delta}(A, G)
$$

holds for every measurable set $A \subset \subset G$. This follows from the fractional Sobolev inequality when $u=\chi_{A}$.

A sufficient condition for an inequality between the fractional capacity and perimeter

Theorem
Suppose that G is an open set in \mathbb{R}^{n} and $0<\delta<1$. If $D \subset \subset G$ is an open set such that $\mathcal{H}^{n-\delta}(\partial D)=0$, then inequality

$$
\operatorname{cap}_{\delta, 1}(\bar{D}, G) \leq 2 P_{\delta}(D, G)
$$

holds with respect to G.

Lemma for a proof of a sufficient condition

Suppose that G is an open set in \mathbb{R}^{n} and let $0<\delta<1$ be given. Let $D \subset \subset G$ be an open set such that $\mathcal{H}^{n-\delta}(\partial D)=0$. Let $\varepsilon>0$ be given. Then, there exists a function u in $C_{0}(G)$ such that $0 \leq u \leq 1$ and $u(x)=1$ for every $x \in \bar{D}$. Moreover,

$$
\int_{G \backslash D} \int_{G \backslash D} \frac{|u(x)-u(y)|}{|x-y|^{n+\delta}} d y d x<\varepsilon
$$

Proof for the theorem of a sufficient condition

Suppose that $D \subset \subset G$ is an open set and $\mathcal{H}^{n-\delta}(\partial D)=0$. Let $\varepsilon>0$ and let $u=u_{\varepsilon}$ be the $C_{0}(G)$ function given by previous lemma. Then, we obtain

$$
\begin{aligned}
& \operatorname{cap}_{\delta, 1}(\bar{D}, G) \leq \int_{G} \int_{G} \frac{|u(x)-u(y)|}{|x-y|^{n+\delta}} d y d x \\
& \leq 2 \int_{D} \int_{G \backslash D} \frac{1}{|x-y|^{n+\delta}} d y d x+\int_{G \backslash D} \int_{G \backslash D} \frac{|u(x)-u(y)|}{|x-y|^{n+\delta}} d y d x \\
& <2 P_{\delta}(D, G)+\varepsilon .
\end{aligned}
$$

The theorem is proved by taking $\varepsilon \rightarrow 0$.

An example

As a corollary we obtain the following result. Suppose that $u \in C_{0}^{\infty}(G)$. Let $0<\delta<1$ be given. Then the set

$$
D_{t}:=\{x \in G: u(x)>t\}
$$

satisfies inequality

$$
\operatorname{cap}_{\delta, 1}\left(\overline{D_{t}}, G\right) \leq 2 P_{\delta}\left(D_{t}, G\right)
$$

with respect to G for almost every $t>0$.

A question on the characteristic function of a set $D \subset \subset G$ belonging to $\dot{W}^{\delta, 1}(G)$

We note that the left hand side of inequality

$$
\operatorname{cap}_{\delta, 1}(\bar{D}, G) \leq 2 P_{\delta}(D, G)
$$

may be viewed as a lower bound for

$$
\left|\chi_{D}\right|_{W^{\delta, 1}(G)}=2 P_{\delta}(D, G)
$$

Hence, inequality

$$
\operatorname{cap}_{\delta, 1}(\bar{D}, G) \leq 2 P_{\delta}(D, G)
$$

is related to the question if the characteristic function χ_{D} of a set $D \subset \subset G$ belongs to the fractional homogeneous Sobolev space $\dot{W}^{\delta, 1}(G)$. The question is studied by D. Faraco and K. M. Rogers, 2013.

Quasiballs

All quasiballs satisfy inequality

$$
\operatorname{cap}_{\delta, 1}\left(\bar{D}, \mathbb{R}^{n}\right) \leq 2 P_{\delta}\left(D, \mathbb{R}^{n}\right)
$$

A homeomorphism $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is K-quasiconformal, $K \geq 1$, if f belongs to the Sobolev class $W_{\text {loc }}^{1, n}\left(\mathbb{R}^{n} ; \mathbb{R}^{n}\right)$ and $|D f(x)|^{n} \leq K J_{f}(x)$ for almost every $x \in \mathbb{R}^{n}$. Here $J_{f}=\operatorname{det}(D f)$. If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a K-quasiconformal mapping, then the image of the unit ball in \mathbb{R}^{n} under the mapping f is called a quasiball. Examples of quasiballs are snowflakes in the plane and snowballs in \mathbb{R}^{3}, which are 3-dimensional analogues of snowflakes.

This talk is based on the following papers

Ritva Hurri-Syrjänen and Antti V. Vähäkangas:
Fractional Sobolev-Poincaré inequalities and fractional Hardy inequalities in unbounded John domains.
Mathematika 61, 2015.
Ritva Hurri-Syrjänen and Antti V. Vähäkangas:
Characterizations to the fractional Sobolev inequality.
Complex Analysis and Dynamical Systems VII, Contemp. Math., 699, Amer. Math. Soc., Providence, RI, 2017.

Thank you for your attention.

