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Magnitude

Definition (Leinster, 2008)

(X ,d) finite metric space. A weighting of X is w : X → R s.t.∑
x∈X

e−d(x ,y)w(x) = 1.

Given w , define the magnitude of X as

|X | =
∑
x∈X

w(x)

and its magnitude function as

MagX (t) = |tX |.
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Example

Let ECn = {e2πi j
n | j = 0,1, . . . ,n − 1} ⊆ S1.

MagEC5
(t) =

5
1 + 2e−ξ1t + 2e−ξ2t

ξ1,2 =

√
1
2
(5±

√
5)

Let Cn be the n-cycle graph. Write q = e−t .

MagC5
(t) =

5
1 + 2e−t + 2e−2t

= 5− 10q + 10q2 − 20q4 + 40q5 + . . .
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Magnitude of a Graph

Graph (G,d) with graph metric. (Can be directed.)

Theorem (Leinster, 2014)

The magnitude of G is an integer power series in q = e−t :

MagG(t) =
∞∑

l=0

clql , cl ∈ Z.

The coefficients can be expressed explicitly:

cl =
∞∑

k=0

(−1)k

∣∣∣∣∣{(x0, . . . , xk ) | xi−1 6= xi ,

k∑
i=1

d(xi−1, xi) = l}

∣∣∣∣∣ .
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Magnitude Homology
Definition (Hepworth, Willerton, 2015)
The magnitude chain complex of G:

MCk ,l(G) = 〈(x0, . . . , xk ) | xi 6= xi+1, `(x0, . . . , xk ) = l〉

with boundary operator ∂k ,l : MCk ,l(G)→ MCk−1,l(G)

∂k ,l(x0, . . . , xk ) =
k∑

i=0

(−1)i∂ i
k ,l(x0, . . . , xk ).

Its homology MHk ,l(G) is called the magnitude homology of G.

Proposition (Hepworth, Willerton, 2015)

MagG(t) =
∞∑

l=0

χ(MH∗,l(G))ql (q = e−t)
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Example: 5-Cycle Graph C5

MCk ,l 0 1 2 3 4
0 5
1 10
2 10 20
3 40 40
4 20 120 80

MHk ,l 0 1 2 3 4
0 5
1 10
2 10
3 10 10
4 30 10

1 2 3 4 5

1

2

3

4

5

1 2 3 4 5

1

2

3

4

5
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Example: A Directed Graph
MCk ,l 0 1 2 3 4

0 3
1 5
2 1 8
3 4 13
4 10 21

MHk ,l 0 1 2 3 4
0 3
1 5
2 7
3 9
4 11

1 2 3

1

2

3

1 2 3

1

2

3
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Example: Icosahedral Graph
MCk ,l 0 1 2 3 4

0 12
1 60
2 60 300
3 12 600 1500
4 420 4500 7500

MHk ,l 0 1 2 3 4
0 12
1 60
2 240
3 912
4 3420

1 5 12

1

5

12

1 5 12

1

5

12
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Magnitude of a Compact Metric Space

Definition (Meckes, 2010)

(X ,d) compact positive definite metric space. The magnitude
of X is:

|X | = sup{|W | |W ⊆ X ,W finite.}

Example (Leinster, Willerton, 2009)

|t · (S1,euclidean)| = πt + O(t−1) as t →∞
|t · (S1,geodesic)| = πt

1−e−πt
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Persistent Homology

Definition (various authors)

Given a filtration functor S : (I,≤)→ SCx (I ⊆ R locally finite),

F = Hk ◦ S

is known as the k-th persistent homology of S.

Described by barcodes. Isomorphism of categories:

Vect(I,≤) ∼= Modk [t].

Definition
Given (X ,d) and A ⊆ X finite, define the Rips filtration:

A ∈ Rr (X ) ⇐⇒ diam A ≤ r .
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Example: Rips Filtration of the 4-Cycle Graph C4

PH0
∼=

PH1
∼=
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Example: Rips Filtration of the 4-Cycle Graph C4

PH0
∼=

k [t ]4

(t · k [t ])3

PH1
∼=

t · k [t ]
t2 · k [t ]
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Example: Rips Filtration of the 4-Cycle Graph C4

PH0
∼= [0,∞)⊕ [0,1)3

PH1
∼= [1,2)
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Rips Magnitude
Definition
The Rips magnitude of (X ,d) is the filtered Euler characteristic
of the Rips complex Rr (X ):

RMagX (t) =
∑
∅6=A⊆X

(−1)|A|−1e−t diam(A)

=
n∑

i=0

χ(Rri (X ))(e−ri t − e−ri+1t)

=
m∑

j=1

(−1)|βi |(e−aj t − e−bj t)

Remark
This can be generalized beyond Rips filtrations.
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Properties of Rips Magnitude

Observation
The Rips magnitude function of a finite metric space (X ,d)
satisfies

lim
t↓0

RMagX (t) = 1, lim
t→∞

RMagX (t) = |X |.

Question
What other properties does it have?

Is it increasing and convex?
Do its values always lie in [1, |X |]?
Does it make sense for infinite subsets X ⊆ Rn?
For instance, does limn→∞RMag(ECn)(t) exist?
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Example: Bipartite Graphs

Interesting examples among graphs:
RMagK2,3

(t) = 5− 6e−t + 2e−2t non-convex,

RMagK4,4
(t) = 8− 16e−t + 9e−2t non-increasing,

RMagK5,6
(t) = 11− 30e−t + 20e−2t non-positive.
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Example: Cycle Graphs Cn

The Rips magnitude RMagCn
of cycle graphs is:

convex for n = 1,2,3,4,5,6,9,10,12,15,18, ...
non-convex for n = 7,8,11,13,14,16,17,19,20, ...

0.5 1.0 1.5 2.0

2

3

4

5

6
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Example: Does RMagECn
converge?

The asymptotic behaviour of RMagECn
(1

2) seems strange:

10 20 30 40 50

1.5

2.0

2.5

3.0

3.5

4.0
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Rips Filtrations of Cycles

Theorem (Adamaszek, 2011)

Let 0 ≤ r < n
2 and let Rr (Cn) be the r-th stage of the Rips

filtration corresponding to the n-cycle graph. Then

Rr (Cn) '

{∨
n−2r−1 S2l ; r = l

2l+1n,
S2l+1; l

2l+1n < r < l+1
2l+3n.

Remark
We have computational evidence that the number of i-simplices
in Rr (Cn) for r < diam Cn is given by

Nn,r ,i =

b n
2 c∑

k=0

n
2k + 1

(
(2k + 1)r − kn + 2k

2k

)(
(2k + 1)r − kn

i − 2k

)
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Rips Magnitude of Cycle Graphs

Corollary

χ(Rr (Cn)) =


n − 2r ; n

n−2r odd integer,
1; n = 2r ,
0; otherwise.

Theorem

Writing q = e−t , we have:

RMagCn
(t) =

∑
odd r |n

r 6=n

n
r

q
n
r

r−1
2 (1− q) + qb

n
2 c.
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Rips Magnitude of Euclidean Cycles

Theorem
The Rips magnitude of Euclidean cycles is given by:

RMagECn
(t) =

∑
odd r |n

r 6=n

n
r
(e−δr t − e−δr,nt) + e−δnt ,

where

δr = diam(ECr ) = 2 sinπ
b r

2c
r

and δr ,n = 2 sinπ

(
1
n
+
b r

2c
r

)
.
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Interval

Proposition

Let I = [0,1]. Given a finite subset A ⊆ I, we have

RMagA(t) = n −
n−1∑
j=1

e−t(aj−aj−1)

Corollary
The Rips magnitude function of the closed interval I is given by

RMag(I)(t) = 1 + t .
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Circle (Euclidean)

Theorem

lim
p→∞

p prime

RMagECp
(t) = e−2t + 2πt

Theorem
The Rips magnitudes of Euclidean cycles ECn satisfy

lim inf
n→∞

RMagECn
(t) = e−2t + 2πt

and

lim sup
n→∞

RMagECn
(t) = e−2t + 2πt

∑
r odd

1
r

e−2t cos π2r sin
π

2r
.
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p prime
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πt
3

e−
√

3t
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Circle (Euclidean)

Theorem
For q prime:

lim
p→∞

p prime

RMagECqp
(t) = e−2t + 2πt +

2πt
q

e−2t cos π2q sin
π

2q

Theorem
The Rips magnitudes of Euclidean cycles ECn satisfy
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π

2r
.

Dejan Govc Rips Magnitude



Basic Definitions and Examples
Rips Magnitude of Cycles

Asymptotic Results

Rips Magnitude of the Interval
Rips Magnitude of the Circle

Circle (Euclidean)
Theorem
For any n ∈ N:

lim
p→∞

p prime

RMagECnp
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∑
odd r |n

1
r

e−2t cos π2r sin
π

2r
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Circle (Geodesic)

Normalize the cycle graph Cn so that the length is 2π.
Call the resulting metric space GCn.

Theorem
The Rips magnitudes of geodesic cycles GCn satisfy

lim inf
n→∞

RMagGCn
(t) = e−πt + 2πt

and
lim sup

n→∞
RMagGCn

(t) =∞.
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Future Work

Asymptotics for higher-dimensional spaces,
Čech magnitude,
Connections to number theory?

Thank you for your attention!
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