Rips Magnitude
 (joint with Richard Hepworth)

Dejan Govc

School of Natural and Computing Sciences
University of Aberdeen

Edinburgh, 2019

Outline

(1) Basic Definitions and Examples

- Magnitude and Magnitude Homology
- Persistent Homology and Rips Filtrations
- Rips Magnitude

2 Rips Magnitude of Cycles

- Rips Filtrations of Cycle Graphs
- Rips Magnitude of Cycle Graphs
- Rips Magnitude of Euclidean Cycles
(3) Asymptotic Results
- Rips Magnitude of the Interval
- Rips Magnitude of the Circle

Outline

(1) Basic Definitions and Examples

- Magnitude and Magnitude Homology
- Persistent Homology and Rips Filtrations
- Rips Magnitude
(2) Rips Magnitude of Cycles
- Rips Filtrations of Cycle Graphs
- Rips Magnitude of Cycle Graphs
- Rips Magnitude of Euclidean Cycles
(3) Asymptotic Results
- Rips Magnitude of the Interval
- Rips Magnitude of the Circle

Magnitude

Definition (Leinster, 2008)
(X, d) finite metric space. A weighting of X is $w: X \rightarrow \mathbb{R}$ s.t.

$$
\sum_{x \in X} e^{-d(x, y)} w(x)=1
$$

Given w, define the magnitude of X as

$$
|X|=\sum_{x \in X} w(x)
$$

and its magnitude function as

$$
\operatorname{Mag}_{X}(t)=|t X|
$$

Example

$$
\text { Let } E C_{n}=\left\{\left.e^{2 \pi i \frac{j}{n}} \right\rvert\, j=0,1, \ldots, n-1\right\} \subseteq S^{1}
$$

$$
\begin{aligned}
\operatorname{Mag}_{E C_{5}}(t) & =\frac{5}{1+2 e^{-\xi_{1} t}+2 e^{-\xi_{2} t}} \\
\xi_{1,2} & =\sqrt{\frac{1}{2}(5 \pm \sqrt{5})}
\end{aligned}
$$

Example

$$
\text { Let } E C_{n}=\left\{\left.e^{2 \pi i \frac{j}{n}} \right\rvert\, j=0,1, \ldots, n-1\right\} \subseteq S^{1}
$$

$$
\begin{aligned}
\operatorname{Mag}_{E C_{5}}(t) & =\frac{5}{1+2 e^{-\xi_{1} t}+2 e^{-\xi_{2} t}} \\
\xi_{1,2} & =\sqrt{\frac{1}{2}(5 \pm \sqrt{5})}
\end{aligned}
$$

Let C_{n} be the n-cycle graph. Write $q=e^{-t}$.

$$
\begin{aligned}
\operatorname{Mag}_{C_{5}}(t) & =\frac{5}{1+2 e^{-t}+2 e^{-2 t}} \\
& =5-10 q+10 q^{2}-20 q^{4}+40 q^{5}+\ldots
\end{aligned}
$$

Magnitude of a Graph

Graph (G, d) with graph metric. (Can be directed.)

Magnitude of a Graph

Graph (G, d) with graph metric. (Can be directed.)
Theorem (Leinster, 2014)
The magnitude of G is an integer power series in $q=e^{-t}$:

$$
\operatorname{Mag}_{G}(t)=\sum_{l=0}^{\infty} c_{l} q^{\prime}, \quad c_{l} \in \mathbb{Z}
$$

Magnitude of a Graph

Graph (G, d) with graph metric. (Can be directed.)

Theorem (Leinster, 2014)

The magnitude of G is an integer power series in $q=e^{-t}$:

$$
\operatorname{Mag}_{G}(t)=\sum_{l=0}^{\infty} c_{l} q^{l}, \quad c_{l} \in \mathbb{Z}
$$

The coefficients can be expressed explicitly:

$$
c_{l}=\sum_{k=0}^{\infty}(-1)^{k}\left|\left\{\left(x_{0}, \ldots, x_{k}\right) \mid x_{i-1} \neq x_{i}, \sum_{i=1}^{k} d\left(x_{i-1}, x_{i}\right)=l\right\}\right| .
$$

Magnitude Homology

Definition (Hepworth, Willerton, 2015)
The magnitude chain complex of G :

$$
\mathrm{MC}_{k, l}(G)=\left\langle\left(x_{0}, \ldots, x_{k}\right) \mid x_{i} \neq x_{i+1}, \ell\left(x_{0}, \ldots, x_{k}\right)=I\right\rangle
$$

Magnitude Homology

Definition (Hepworth, Willerton, 2015)
The magnitude chain complex of G :

$$
\mathrm{MC}_{k, l}(G)=\left\langle\left(x_{0}, \ldots, x_{k}\right) \mid x_{i} \neq x_{i+1}, \ell\left(x_{0}, \ldots, x_{k}\right)=I\right\rangle
$$

with boundary operator $\partial_{k, l}: \mathrm{MC}_{k, /}(G) \rightarrow \mathrm{MC}_{k-1, /}(G)$

$$
\partial_{k, l}\left(x_{0}, \ldots, x_{k}\right)=\sum_{i=0}^{k}(-1)^{i} \partial_{k, l}^{i}\left(x_{0}, \ldots, x_{k}\right)
$$

Magnitude Homology

Definition (Hepworth, Willerton, 2015)
The magnitude chain complex of G :

$$
\mathrm{MC}_{k, l}(G)=\left\langle\left(x_{0}, \ldots, x_{k}\right) \mid x_{i} \neq x_{i+1}, \ell\left(x_{0}, \ldots, x_{k}\right)=I\right\rangle
$$

with boundary operator $\partial_{k, l}: \mathrm{MC}_{k, /}(G) \rightarrow \mathrm{MC}_{k-1, /}(G)$

$$
\partial_{k, I}\left(x_{0}, \ldots, x_{k}\right)=\sum_{i=0}^{k}(-1)^{i} \partial_{k, l}^{i}\left(x_{0}, \ldots, x_{k}\right)
$$

Its homology $\mathrm{MH}_{k, l}(G)$ is called the magnitude homology of G.

Magnitude Homology

Definition (Hepworth, Willerton, 2015)
The magnitude chain complex of G :

$$
\mathrm{MC}_{k, I}(G)=\left\langle\left(x_{0}, \ldots, x_{k}\right) \mid x_{i} \neq x_{i+1}, \ell\left(x_{0}, \ldots, x_{k}\right)=I\right\rangle
$$

with boundary operator $\partial_{k, l}: \mathrm{MC}_{k, /}(G) \rightarrow \mathrm{MC}_{k-1, /}(G)$

$$
\partial_{k, I}\left(x_{0}, \ldots, x_{k}\right)=\sum_{i=0}^{k}(-1)^{i} \partial_{k, l}^{i}\left(x_{0}, \ldots, x_{k}\right)
$$

Its homology $\mathrm{MH}_{k, l}(G)$ is called the magnitude homology of G.
Proposition (Hepworth, Willerton, 2015)

$$
\operatorname{Mag}_{G}(t)=\sum_{l=0}^{\infty} \chi\left(\mathrm{MH}_{*, l}(G)\right) q^{l} \quad\left(q=e^{-t}\right)
$$

Rips Magnitude of Cycles Asymptotic Results

Example: 5-Cycle Graph C_{5}

$\mathrm{MC}_{k, l}$	0	1	2	3	4	$\mathrm{MH}_{k, l}$	0	1	2	3	4
0	5					0	5				
1		10				1		10			
2		10	20			2			10		
3			40	40		3			10	10	
4			20	120	80	4				30	10

Rips Magnitude of Cycles Asymptotic Results

Magnitude and Magnitude Homology
Persistent Homology and Rips Filtrations
Rips Magnitude

Example: A Directed Graph

$\mathrm{MC}_{k, l}$	0	1	2	3	4
0	3				
1		5			
2		1	8		
3			4	13	
4				10	21

$\mathrm{MH}_{k, l}$	0	1	2	3	4
0	3				
1		5			
2			7		
3				9	
4					11

Rips Magnitude of Cycles Asymptotic Results

Magnitude and Magnitude Homology
Persistent Homology and Rips Filtrations
Rips Magnitude

Example: Icosahedral Graph

$\mathrm{MC}_{k, l}$	0	1	2	3	4	$\mathrm{MH}_{k, l}$	0	1	2	3	4
0	12					0	12				
1		60				1		60			
2		60	300			2			240		
3	12	600	1500		3				912		
4			420	4500	7500	4					3420

Magnitude of a Compact Metric Space

Definition (Meckes, 2010)

(X, d) compact positive definite metric space. The magnitude of X is:

$$
|X|=\sup \{|W| \mid W \subseteq X, W \text { finite. }\}
$$

Magnitude of a Compact Metric Space

Definition (Meckes, 2010)
(X, d) compact positive definite metric space. The magnitude of X is:

$$
|X|=\sup \{|W| \mid W \subseteq X, W \text { finite. }\}
$$

Example (Leinster, Willerton, 2009)

- $\mid t \cdot\left(S^{1}\right.$, euclidean $) \mid=\pi t+O\left(t^{-1}\right)$ as $t \rightarrow \infty$

Magnitude of a Compact Metric Space

Definition (Meckes, 2010)
(X, d) compact positive definite metric space. The magnitude of X is:

$$
|X|=\sup \{|W| \mid W \subseteq X, W \text { finite. }\}
$$

Example (Leinster, Willerton, 2009)

- $\mid t \cdot\left(S^{1}\right.$, euclidean $) \mid=\pi t+O\left(t^{-1}\right)$ as $t \rightarrow \infty$
- $\mid t \cdot\left(S^{1}\right.$, geodesic $) \left\lvert\,=\frac{\pi t}{1-e^{-\pi t}}\right.$

Outline

(1) Basic Definitions and Examples

- Magnitude and Magnitude Homology
- Persistent Homology and Rips Filtrations
- Rips Magnitude
(2) Rips Magnitude of Cycles
- Rips Filtrations of Cycle Graphs
- Rips Magnitude of Cycle Graphs
- Rips Magnitude of Euclidean Cycles
(3) Asymptotic Results
- Rips Magnitude of the Interval
- Rips Magnitude of the Circle

Persistent Homology

Definition (various authors)

Given a filtration functor $S:(I, \leq) \rightarrow \mathbf{S C x}(I \subseteq \mathbb{R}$ locally finite $)$,

$$
F=H_{k} \circ S
$$

is known as the k-th persistent homology of S.

Persistent Homology

Definition (various authors)

Given a filtration functor $S:(I, \leq) \rightarrow \mathbf{S C x}(I \subseteq \mathbb{R}$ locally finite $)$,

$$
F=H_{k} \circ S
$$

is known as the k-th persistent homology of S.
Described by barcodes. Isomorphism of categories:

$$
\operatorname{Vect}^{(l, \leq)} \cong \operatorname{Mod}_{k[t]}
$$

Persistent Homology

Definition (various authors)

Given a filtration functor $S:(I, \leq) \rightarrow \mathbf{S C x}(I \subseteq \mathbb{R}$ locally finite $)$,

$$
F=H_{k} \circ S
$$

is known as the k-th persistent homology of S.
Described by barcodes. Isomorphism of categories:

$$
\operatorname{Vect}^{(l, \leq)} \cong \operatorname{Mod}_{k[t]}
$$

Definition

Given (X, d) and $A \subseteq X$ finite, define the Rips filtration:

$$
A \in \mathcal{R}_{r}(X) \Longleftrightarrow \operatorname{diam} A \leq r
$$

Example: Rips Filtration of the 4-Cycle Graph C_{4}

Example: Rips Filtration of the 4-Cycle Graph C_{4}

$$
\begin{aligned}
& \mathrm{PH}_{0} \cong \frac{k[t]^{4}}{(t \cdot k[t])^{3}} \\
& \mathrm{PH}_{1} \cong \frac{t \cdot k[t]}{t^{2} \cdot k[t]}
\end{aligned}
$$

Example: Rips Filtration of the 4-Cycle Graph C_{4}

$$
\begin{aligned}
& \mathrm{PH}_{0} \cong[0, \infty) \oplus[0,1)^{3} \\
& \mathrm{PH}_{1} \cong[1,2)
\end{aligned}
$$

Outline

(1) Basic Definitions and Examples

- Magnitude and Magnitude Homology
- Persistent Homology and Rips Filtrations
- Rips Magnitude
(2) Rips Magnitude of Cycles
- Rips Filtrations of Cycle Graphs
- Rips Magnitude of Cycle Graphs
- Rips Magnitude of Euclidean Cycles
(3) Asymptotic Results
- Rips Magnitude of the Interval
- Rips Magnitude of the Circle

Rips Magnitude

Definition

The Rips magnitude of (X, d) is the filtered Euler characteristic of the Rips complex $\mathcal{R}_{r}(X)$:

$$
\begin{aligned}
\operatorname{RMag}_{X}(t) & =\sum_{\emptyset \neq A \subseteq X}(-1)^{|A|-1} e^{-t \operatorname{diam}(A)} \\
& =\sum_{i=0}^{n} \chi\left(\mathcal{R}_{r_{i}}(X)\right)\left(e^{-r_{i} t}-e^{-r_{i+1} t}\right) \\
& =\sum_{j=1}^{m}(-1)^{\left|\beta_{i}\right|}\left(e^{-a_{j} t}-e^{-b_{j} t}\right)
\end{aligned}
$$

Rips Magnitude

Definition
The Rips magnitude of (X, d) is the filtered Euler characteristic of the Rips complex $\mathcal{R}_{r}(X)$:

$$
\begin{aligned}
\operatorname{RMag}_{X}(t) & =\sum_{\emptyset \neq A \subseteq X}(-1)^{|A|-1} e^{-t \operatorname{diam}(A)} \\
& =\sum_{i=0}^{n} \chi\left(\mathcal{R}_{r_{i}}(X)\right)\left(e^{-r_{i} t}-e^{-r_{i+1} t}\right) \\
& =\sum_{j=1}^{m}(-1)^{\left|\beta_{i}\right|}\left(e^{-a_{j} t}-e^{-b_{j} t}\right)
\end{aligned}
$$

Remark

This can be generalized beyond Rips filtrations.

Properties of Rips Magnitude

Observation

The Rips magnitude function of a finite metric space (X, d) satisfies

$$
\lim _{t \downarrow 0} \operatorname{RMag}_{X}(t)=1, \quad \lim _{t \rightarrow \infty} \operatorname{RMag}_{X}(t)=|X|
$$

Properties of Rips Magnitude

Observation

The Rips magnitude function of a finite metric space (X, d) satisfies

$$
\lim _{t \downarrow 0} \operatorname{RMag}_{X}(t)=1, \quad \lim _{t \rightarrow \infty} \operatorname{RMag}_{X}(t)=|X|
$$

Question

What other properties does it have?

- Is it increasing and convex?
- Do its values always lie in $[1,|X|]$?
- Does it make sense for infinite subsets $X \subseteq \mathbb{R}^{n}$?
- For instance, does $\lim _{n \rightarrow \infty} \operatorname{RMag}\left(E C_{n}\right)(t)$ exist?

Example: Bipartite Graphs

Interesting examples among graphs:

- $\operatorname{RMag}_{K_{2,3}}(t)=5-6 e^{-t}+2 e^{-2 t}$ non-convex,

Example: Bipartite Graphs

Interesting examples among graphs:

- $\operatorname{RMag}_{K_{2,3}}(t)=5-6 e^{-t}+2 e^{-2 t}$ non-convex,
- $\operatorname{RMag}_{K_{4,4}}(t)=8-16 e^{-t}+9 e^{-2 t}$ non-increasing,

Example: Bipartite Graphs

Interesting examples among graphs:

- $\operatorname{RMag}_{K_{2,3}}(t)=5-6 e^{-t}+2 e^{-2 t}$ non-convex,
- $\operatorname{RMag}_{K_{4,4}}(t)=8-16 e^{-t}+9 e^{-2 t}$ non-increasing,
- $\operatorname{RMag}_{K_{5,6}}(t)=11-30 e^{-t}+20 e^{-2 t}$ non-positive.

Example: Cycle Graphs C_{n}

The Rips magnitude RMag $c_{c_{n}}$ of cycle graphs is:

- convex for $n=1,2,3,4,5,6,9,10,12,15,18, \ldots$
- non-convex for $n=7,8,11,13,14,16,17,19,20, \ldots$

Magnitude and Magnitude Homology
Persistent Homology and Rips Filtrations
Rips Magnitude

Example: Does $\mathrm{RMag}_{E C_{n}}$ converge?

The asymptotic behaviour of $\mathrm{RMag}_{E C_{n}}\left(\frac{1}{2}\right)$ seems strange:

Outline

(1) Basic Definitions and Examples

- Magnitude and Magnitude Homology
- Persistent Homology and Rips Filtrations
- Rips Magnitude
(2) Rips Magnitude of Cycles
- Rips Filtrations of Cycle Graphs
- Rips Magnitude of Cycle Graphs
- Rips Magnitude of Euclidean Cycles
(3) Asymptotic Results
- Rips Magnitude of the Interval
- Rips Magnitude of the Circle

Rips Filtrations of Cycles

Theorem (Adamaszek, 2011)
Let $0 \leq r<\frac{n}{2}$ and let $\mathcal{R}_{r}\left(C_{n}\right)$ be the r-th stage of the Rips filtration corresponding to the n-cycle graph. Then

$$
\mathcal{R}_{r}\left(C_{n}\right) \simeq \begin{cases}\bigvee_{n-2 r-1} S^{2 \prime} ; & r=\frac{1}{2 l+1} n \\ S^{2 l+1} ; & \frac{1}{2 l+1} n<r<\frac{1+1}{2 l+3} n\end{cases}
$$

Rips Filtrations of Cycles

Theorem (Adamaszek, 2011)

Let $0 \leq r<\frac{n}{2}$ and let $\mathcal{R}_{r}\left(C_{n}\right)$ be the r-th stage of the Rips filtration corresponding to the n-cycle graph. Then

$$
\mathcal{R}_{r}\left(C_{n}\right) \simeq \begin{cases}\bigvee_{n-2 r-1} S^{2 l} ; & r=\frac{1}{21+1} n, \\ S^{2 l+1} ; & \frac{1}{21+1} n<r<\frac{l+1}{2 l+3} n .\end{cases}
$$

Remark

We have computational evidence that the number of i-simplices in $\mathcal{R}_{r}\left(C_{n}\right)$ for $r<\operatorname{diam} C_{n}$ is given by

$$
N_{n, r, i}=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{n}{2 k+1}\binom{(2 k+1) r-k n+2 k}{2 k}\binom{(2 k+1) r-k n}{i-2 k}
$$

Outline

Basic Definitions and Examples

- Magnitude and Magnitude Homology
- Persistent Homology and Rips Filtrations
- Rips Magnitude
(2) Rips Magnitude of Cycles
- Rips Filtrations of Cycle Graphs
- Rips Magnitude of Cycle Graphs
- Rips Magnitude of Euclidean Cycles
(3) Asymptotic Results
- Rips Magnitude of the Interval
- Rips Magnitude of the Circle

Rips Filtrations of Cycle Graphs Rips Magnitude of Cycle Graphs
Rips Magnitude of Euclidean Cycles

Rips Magnitude of Cycle Graphs

Corollary

$$
\chi\left(\mathcal{R}_{r}\left(C_{n}\right)\right)= \begin{cases}n-2 r ; & \frac{n}{n-2 r} \text { odd integer } \\ 1 ; & n=2 r \\ 0 ; & \text { otherwise }\end{cases}
$$

Rips Magnitude of Cycle Graphs

Corollary

$$
\chi\left(\mathcal{R}_{r}\left(C_{n}\right)\right)= \begin{cases}n-2 r ; & \frac{n}{n-2 r} \text { odd integer } \\ 1 ; & n=2 r \\ 0 ; & \text { otherwise }\end{cases}
$$

Theorem

Writing $q=e^{-t}$, we have:

$$
\operatorname{RMag}_{C_{n}}(t)=\sum_{\substack{o d d r \mid n \\ r \neq n}} \frac{n}{r} q^{\frac{n}{r} \frac{r-1}{2}}(1-q)+q^{\left\lfloor\frac{n}{2}\right\rfloor} .
$$

Outline

(1) Basic Definitions and Examples

- Magnitude and Magnitude Homology
- Persistent Homology and Rips Filtrations
- Rips Magnitude
(2) Rips Magnitude of Cycles
- Rips Filtrations of Cycle Graphs
- Rips Magnitude of Cycle Graphs
- Rips Magnitude of Euclidean Cycles
(3) Asymptotic Results
- Rips Magnitude of the Interval
- Rips Magnitude of the Circle

Rips Magnitude of Euclidean Cycles

Theorem

The Rips magnitude of Euclidean cycles is given by:

$$
\operatorname{RMag}_{E C_{n}}(t)=\sum_{\substack{\text { odd } r \mid n \\ r \neq n}} \frac{n}{r}\left(e^{-\delta_{r} t}-e^{-\delta_{r, n} t}\right)+e^{-\delta_{n} t}
$$

Rips Magnitude of Euclidean Cycles

Theorem

The Rips magnitude of Euclidean cycles is given by:

$$
\operatorname{RMag}_{E C_{n}}(t)=\sum_{\substack{o d d r \mid n}} \frac{n}{r}\left(e^{-\delta_{r} t}-e^{-\delta_{r, n} t}\right)+e^{-\delta_{n} t}
$$

where

$$
\delta_{r}=\operatorname{diam}\left(E C_{r}\right)=2 \sin \pi \frac{\left\lfloor\frac{r}{2}\right\rfloor}{r} \quad \text { and } \quad \delta_{r, n}=2 \sin \pi\left(\frac{1}{n}+\frac{\left\lfloor\frac{r}{2}\right\rfloor}{r}\right)
$$

Outline

(1) Basic Definitions and Examples

- Magnitude and Magnitude Homology
- Persistent Homology and Rips Filtrations
- Rips Magnitude
(2) Rips Magnitude of Cycles
- Rips Filtrations of Cycle Graphs
- Rips Magnitude of Cycle Graphs
- Rips Magnitude of Euclidean Cycles
(3) Asymptotic Results
- Rips Magnitude of the Interval
- Rips Magnitude of the Circle

Interval

Proposition

Let $I=[0,1]$. Given a finite subset $A \subseteq I$, we have

$$
\operatorname{RMag}_{A}(t)=n-\sum_{j=1}^{n-1} e^{-t\left(a_{j}-a_{j-1}\right)}
$$

Interval

Proposition

Let $I=[0,1]$. Given a finite subset $A \subseteq I$, we have

$$
\operatorname{RMag}_{A}(t)=n-\sum_{j=1}^{n-1} e^{-t\left(a_{j}-a_{j-1}\right)}
$$

Corollary
The Rips magnitude function of the closed interval I is given by

$$
\operatorname{RMag}(I)(t)=1+t .
$$

Outline

(1) Basic Definitions and Examples

- Magnitude and Magnitude Homology
- Persistent Homology and Rips Filtrations
- Rips Magnitude
(2) Rips Magnitude of Cycles
- Rips Filtrations of Cycle Graphs
- Rips Magnitude of Cycle Graphs
- Rips Magnitude of Euclidean Cycles
(3) Asymptotic Results
- Rips Magnitude of the Interval
- Rips Magnitude of the Circle

Circle (Euclidean)

Theorem

$$
\lim _{\substack{p \rightarrow \infty \\ p \text { prime }}} \mathrm{RMag}_{E C_{p}}(t)=e^{-2 t}+2 \pi t
$$

Circle (Euclidean)

Theorem

$$
\lim _{\substack{p \rightarrow \infty \\ p \text { prime }}} \mathrm{RMag}_{E C_{3 p}}(t)=e^{-2 t}+2 \pi t+\frac{\pi t}{3} e^{-\sqrt{3} t}
$$

Circle (Euclidean)

Theorem

For q prime:

$$
\lim _{\substack{p \rightarrow \infty \\ p \text { prime }}} \mathrm{RMag}_{E C_{q p}}(t)=e^{-2 t}+2 \pi t+\frac{2 \pi t}{q} e^{-2 t \cos \frac{\pi}{2 q}} \sin \frac{\pi}{2 q}
$$

Circle (Euclidean)

Theorem

For any $n \in \mathbb{N}$:

$$
\lim _{\substack{p \rightarrow \infty \\ p \text { prime }}} \mathrm{RMag}_{E C_{n p}}(t)=e^{-2 t}+2 \pi t \sum_{\text {odd } r \mid n} \frac{1}{r} e^{-2 t \cos \frac{\pi}{2 r} \sin \frac{\pi}{2 r}}
$$

Circle (Euclidean)

Theorem

For any $n \in \mathbb{N}$:

$$
\lim _{\substack{p \rightarrow \infty \\ p \text { prime }}} \mathrm{RMag}_{E C_{n p}}(t)=e^{-2 t}+2 \pi t \sum_{\text {odd } r \mid n} \frac{1}{r} e^{-2 t \cos \frac{\pi}{2 r} \sin \frac{\pi}{2 r}}
$$

Theorem

The Rips magnitudes of Euclidean cycles $E C_{n}$ satisfy

$$
\liminf _{n \rightarrow \infty} \operatorname{RMag}_{E C_{n}}(t)=e^{-2 t}+2 \pi t
$$

and

$$
\limsup _{n \rightarrow \infty} \operatorname{RMag}_{E C_{n}}(t)=e^{-2 t}+2 \pi t \sum_{r \text { odd }} \frac{1}{r} e^{-2 t \cos \frac{\pi}{2 r} \sin \frac{\pi}{2 r} . . . ~ . ~ . ~}
$$

Rips Magnitude of the Interval Rips Magnitude of the Circle

Asymptotic Behaviour of $\mathrm{RMag}_{E C_{n}}\left(\frac{1}{2}\right)$

Circle (Geodesic)

Normalize the cycle graph C_{n} so that the length is 2π.
Call the resulting metric space $G C_{n}$.

Circle (Geodesic)

Normalize the cycle graph C_{n} so that the length is 2π.
Call the resulting metric space $G C_{n}$.

Theorem

The Rips magnitudes of geodesic cycles $G C_{n}$ satisfy

$$
\liminf _{n \rightarrow \infty} \operatorname{RMag}_{G C_{n}}(t)=e^{-\pi t}+2 \pi t
$$

Circle (Geodesic)

Normalize the cycle graph C_{n} so that the length is 2π.
Call the resulting metric space $G C_{n}$.

Theorem

The Rips magnitudes of geodesic cycles $G C_{n}$ satisfy

$$
\liminf _{n \rightarrow \infty} \operatorname{RMag}_{G C_{n}}(t)=e^{-\pi t}+2 \pi t
$$

and

$$
\limsup _{n \rightarrow \infty} \operatorname{RMag}_{G C_{n}}(t)=\infty
$$

Asymptotic Behaviour of RMag $_{G C_{n}}\left(\frac{1}{2}\right)$

Future Work

- Asymptotics for higher-dimensional spaces,
- Čech magnitude,
- Connections to number theory?

Future Work

- Asymptotics for higher-dimensional spaces,
- Čech magnitude,
- Connections to number theory?

Thank you for your attention!

