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.
I will talk about
..

.

A complete description of the magnitude homology of a

geodesic metric space which satisfies a certain non-branching

assumption [arXiv:1902.07044].

The homology is described in terms of geodesics.

Examples cover complete and connected Riemannian

manifolds as well as uniquely geodesic spaces such as

CAT(0)-spaces.
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Review of magnitude homology

The notion of magnitude homology is first introduced by

Hepworth-Willerton (2015) for simple graphs, and then

generalized by Leinster-Schulman (2017) to certain

enriched categories, which cover metric spaces and

simple graphs.

My talk concerns with only the magnitude homology of

metric spaces. So I review here its definition to fix

notations.
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Chains

Let (X, d) be a metric space, namely, a set X equipped

with a distance function d : X × X → R≥0.

For a non-negative integer n, a (proper) n-chain

⟨x0, · · · , xn⟩ is a sequence of n + 1 points x0, · · · , xn

on X such that x0 ̸= x1 ̸= · · · ̸= xn.

I will call “n” the degree of a chain.

The length of an n-chain is defined by

ℓ(⟨x0, · · · , xn⟩) = d(x0, x1) + · · · + d(xn−1, xn).

P ℓ
n : the set of (proper) n-chains of length ℓ.

Cℓ
n =

⊕
γ∈P ℓ

n
Zγ : the free abelian group generated by

(proper) n-chains of length ℓ.
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Some terminology

A point y is between x and z (x < y < z) when

x ̸=y ̸= z, d(x, y) + d(y, z) = d(x, z).

In an n-chain ⟨x0, · · · , xn⟩, a point xi (i ̸= 0, n) is said

to be smooth (straight) if xi−1 < xi < xi+1, according

to Kaneta-Yoshinaga (or Jubin)

In other words, xi is smooth in ⟨x0, · · · , xn⟩ iff

ℓ(⟨x0, · · · , xn⟩) = ℓ(⟨x0, · · · , xi−1, xi+1, · · · , xn⟩).

Otherwise, xi will be called singular (crooked).

By definition, x0 and xn are singular in ⟨x0, · · · , xn⟩.
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The magnitude homology

For γ = ⟨x0, · · · , xn⟩ ∈ P ℓ
n and i ̸= 0, n, let us define

∂iγ =

{
⟨x0, · · · , xi−1, xi+1, · · · , xn⟩, (xi−1 < xi < xi+1)

0. (otherwise)

∂γ =

n−1∑
i=1

(−1)i∂iγ

The linear extension ∂ : Cℓ
n → Cℓ

n−1 satisfies ∂∂ = 0.

(For n < 0, we regard Cℓ
n = 0 and ∂ = 0.)

Thus, we get a chain complex (Cℓ
∗, ∂).

Its homology is the magnitude homology Hℓ
n(X).
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Complete calculations of magnitude homology

Generally, magnitude homology is difficult to calculate.

So far, complete calculations are known for some graphs.

The complete graph KN [Hepworth-Willerton]

The path graph PN (apply Mayer-Vietoris to K2)

The cycle graph CN [Yuzhou Gu]

· · ·

Other complete calculations appear to be obtained for

Menger-convex geodetic spaces without 4-cut [Jubin]:

convex subsets in RN [Kaneta-Yoshinaga],

connected, complete and geodetic Riemannian manifolds

[Jubin].

In these cases, Hℓ
n(X) = 0 for n > 0.

The main theorem adds non-trivial examples of complete

calculations.
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Main theorem

To state the main theorem, let us recall the notion of

geodesics on a metric space (X, d). (This is different

from that in differential geometry.)

A geodesic joining x to y is a map f : [0, d(x, y)] → X,

d(f(t), f(t′)) = |t − t′|. (t, t′ ∈ [0, d(x, y)])

It follows that a geodesic is a continuous map.

A metric space is said to be geodesic if, for any points

x, y ∈ X, there exists a geodesic joining x to y.

Typical examples are connected and complete

Riemannian manifolds, whereas graphs are not.

Geod(x, y) denotes the set of geodesics joining x to y.
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A non-branching assumption

The non-branching assumption on a geodesic space in

the main theorem is as follows:

.
Assumption
..

.

For any x, y ∈ X, if f, g ∈ Geod(x, y) admit

s ∈ (0, d(x, y)) such that f(s) = g(s), then f = g.

A branching example:

..x . y.

f

.

g

An example is a connected and complete Riemannian

manifold. (A geodesic is locally characterized by ODE.)
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Main theorem

.
Theorem [G, arXiv:1902.07044]
..

.

Let X be a geodesic space which satisfies Assumption.

(a) If n is odd, then Hℓ
n(X) = 0 for any ℓ.

(b) If n = 2q is even, then

Hℓ
n(X) ∼=

⊕
ℓi

⊕
φi

⊕
fi

Z(f1, . . . , fq).

ℓ1, . . . , ℓq > 0 are such that ℓ1 + · · · + ℓq = ℓ,

φ0, . . . , φq ∈ X are such that d(φi−1, φi) = ℓi,

fi ∈ Geod(φi−1, φi) are such that fi ̸= f i,

where f i ∈ Geod(φi−1, φi) are arbitrary references.

In particular, Hℓ
n(X) is torsion free.
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Details about the even homology

.

.

Hℓ
2q(X) ∼=

⊕
ℓi

⊕
φi

⊕
fi

Z(f1, . . . , fq)

ℓ1, . . . , ℓq > 0 are such that ℓ1 + · · · + ℓq = ℓ,

φ0, . . . , φq ∈ X are such that d(φi−1, φi) = ℓi,

fi ∈ Geod(φi−1, φi) are such that fi ̸= f i,

where f i ∈ Geod(φi−1, φi) are arbitrary references.

..
φ0

.

φ1

.
φ2

.

φ3
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.

.
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.
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Details about the even homology

.

.

Hℓ
2q(X) ∼=
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..
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.
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.

f1
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.

f2

.

f3

. f3
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Details about the even homology

.

.

Hℓ
2q(X) ∼=

⊕
ℓi

⊕
φi

⊕
fi

Z(f1, . . . , fq)

ℓ1, . . . , ℓq > 0 are such that ℓ1 + · · · + ℓq = ℓ,

φ0, . . . , φq ∈ X are such that d(φi−1, φi) = ℓi,

fi ∈ Geod(φi−1, φi) are such that fi ̸= f i,

where f i ∈ Geod(φi−1, φi) are arbitrary references.

For a non-trivial contribution to Hℓ
2q(X), there must be

more than two geodesics joining φi−1 to φi.

In particular, Hℓ
n(X) = 0, (n > 0) for uniquely geodesic

spaces X, such as CAT(k) with k ≤ 0.
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The second homology of the circle
.

.

Hℓ
2(X) ∼=

⊕
⟨φ0,φ1⟩∈P ℓ

1

⊕
f∈Geod(φ0,φ1)

f ̸=f

Z(f)

Let S1 be the circle of radius r > 0 with geodesic

metric. For any x ∈ S1, let x̌ ∈ S1 be the antipodal

point (the unique point such that d(x, x̌) = πr).

⇒ Geod(x, y) =

{
{fx,y}, (y ̸= x̌)

{fx,x̌, fx,x̌}. (y = x̌)

..

x

.

y

.

x̌

. fx,y
..

x

.

x̌

. fx,x̌

.fx,x̌
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The second homology of the circle

..

x

.

x̌

. fx,x̌

.fx,x̌

Thus, if ℓ ̸= πr, then Hℓ
2(S

1) = 0, and

Hπr
2 (S1) ∼=

⊕
⟨x,y⟩∈Pπr

1

⊕
f∈Geod(x,y)

f ̸=f

Z(f)

∼=
⊕
x∈S1

Z(fx,x̌)

∼= Z[S1],

as known by Leinster-Schulman and Kaneta-Yoshinaga.
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The fourth homology

Similarly, the fourth homology is described as follows.

Hℓ
4(X) ∼=

⊕
ℓ1,ℓ2>0

ℓ1+ℓ2=ℓ

⊕
⟨φ0,φ1,φ2⟩∈Pℓ

2
d(φi−1,φi)=ℓi

⊕
fi∈Geod(φi−1,φi)

fi ̸=fi

Z(f1, f2)

We have Hℓ
4(S

1) = 0 if ℓ ̸= 2πr.

In the case of ℓ = 2πr, the 4th magnitude homology

Hℓ
4(S

1) is non-trivial: If ℓ1 = ℓ2 = πr, φ0 = x ∈ S1,

φ1 = x̌, and φ2 = ˇ̌x = x, then

Geod(φ0, φ1) = {fx,x̌, fx,x̌},
Geod(φ1, φ2) = {fx̌,x, f x̌,x}.
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The fourth homology of the circle

..

φ0 = x

.

φ1 = x̌

. fx,x̌

.fx,x̌ .

φ2 = x

.

φ1 = x̌

. f x̌,x

. fx̌,x

H2πr
4 (S1) ∼=

⊕
ℓ1,ℓ2>0

ℓ1+ℓ2=2πr

⊕
⟨φ0,φ1,φ2⟩∈P2πr

2
d(φi−1,φi)=ℓi

⊕
fi∈Geod(φi−1,φi)

fi ̸=fi

Z(f1, f2)

∼=
⊕
x∈S1

Z(fx,x̌, fx̌,x) ∼= Z[S1],

Hℓ
2q(S

1) ∼=

{
Z[S1], (ℓ = qπr ≥ 0)

0. (otherwise)
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Representative of the homology class

So far, I explained the detail of the description of the

generators of the homology group.

Each generator (f1, . . . , fq) ∈ Hℓ
2q(X) has an explicit

representative.

For example, a representative of (f1, f2) ∈ H2πr
4 (S1) is

⟨φ0, x
f1 − xf1, φ1, x

f2 − xf2, φ2⟩

:= ⟨φ0, x
f1, φ1, x

f2, φ2⟩ − ⟨φ0, x
f1, φ1, x

f2, φ2⟩

−⟨φ0, x
f1, φ1, x

f2, φ2⟩ + ⟨φ0, x
f1, φ1, x

f2, φ2⟩,

where xfi and xfi lie on fi, f i ∈ Geod(φi−1, φi) so

that φ1 is singular in each chain. (xfi and xfi are

automatically smooth.)
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A representative of (f1, f2) ∈ H2πr
4

⟨φ0, x
f1, φ1, x

f2, φ2⟩ − ⟨φ0, x
f1, φ1, x

f2, φ2⟩

− ⟨φ0, x
f1, φ1, x

f2, φ2⟩ + ⟨φ0, x
f1, φ1, x

f2, φ2⟩

..

φ0 = φ2

.

φ1

.

xf1

.

xf2

.f1, f2 .

φ0 = φ2

.

φ1

.

xf1

.

xf2

. f1. f2

..

φ0 = φ2

.

φ1

.

xf1

.

xf2

. f1

. f2.

φ0 = φ2

.

φ1

.

xf1

.

xf2

. f1, f2
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Representatives in general

The general case is similar, and a representative of

(f1, . . . , fq) ∈ Hℓ
2q(X) is

⟨φ0, x
f1 − xf1, φ1, · · · , φq−1, x

fq − xfq , φq⟩
= ⟨φ0, x

f1, φ1, · · · , φq−1, x
fq , φq⟩ + · · ·

· · · + (−1)q⟨φ0, x
f1, φ1, · · · , φq−1, x

fq , φq⟩,

where xfi, xfi lie on fi, f i ∈ Geod(φi−1, φi) so that

φj are singular in each chain.

Such a choice of the points xfi and xfi is possible,

because of the non-branching assumption.
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Outline of the proof

The proof is a direct calculation based on the

smoothness spectral sequence [G, arXiv:1809.06593].

This is associated to a filtration of the magnitude

complex given by the number of smooth points in chains.

In the setup of the main theorem, the spectral sequence

turns out to degenerate at E2.

The calculation of E2 (namely, the homology of E1) is

based on constructions of homotopy operators which

make a given element in E1 into the form of the

representatives of generators of Hℓ
even(X) step by step.

The concrete constructions of the homotopies are

intricate, and I will not explain it moreover.
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A generalization
.
Proposition
..

.

For a dense subspace X ⊂ X in a geodesic space X which

satisfies Assumption, the following holds true.

(a) If n is odd, then Hℓ
n(X) = 0 for any ℓ.

(b) If n = 2q is even, then

Hℓ
n(X) ∼=

⊕
ℓi

⊕
φi

⊕
fi

Z(f1, . . . , fq).

ℓ1, . . . , ℓq > 0 are such that ℓ1 + · · · + ℓq = ℓ,

φ0, . . . , φq ∈ X are such that d(φi−1, φi) = ℓi,

fi ∈ GeodX(φi−1, φi) are such that fi ̸= f i,

where f i ∈ GeodX(φi−1, φi) are arbitrary references.

Thank you!
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