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Set up

For a compact metric space X , and M(X ) denoting the finite Borel measures on X ,
we define

ZR : M(X )→ C(X ), ZRµ(x) :=

∫
X
e−Rd(x,y)dµ(y).

A weighting measure is a solution µR to the equation ZRµR = 1. In this case, the
magnitude function of (X , d) is defined by

MX (R) = µR(X ).

Solutions might not exist. Using results of Meckes, we can however play rather fast
and loose with what we mean by a solution...
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The Leinster-Willerton conjecture

The questions we will be interested in stems from a conjecture by Leinster-Willerton
claiming a certain asymptotic behaviour of MX (R) for a compact convex subset
X ⊆ Rn.

The Leinster-Willerton conjecture

Let X ⊆ Rn be a compact convex subset. Then

MX (R) =
n∑

k=0

Vk (X )

k!ωk
Rk + o(1), as R →∞,

where Vk (X ) denotes the k:th intrinsic volume of X .

For X a smooth convex body: Vn(X ) = voln(X ), Vn−1(X ) = voln−1(∂X ),
Vn−2(X ) =

∫
∂X HdS, ..., V0(X ) = χ(X ).

Motivating question

Can we analyze the asymptotics for solutions of the equation

ZRµR = 1,

in terms of the geometry of X?

Magnus Goffeng The magnitude function of domains



Set up
The Barcelo-Carbery approach for Euclidean space

Analysis of magnitude for odd dim Euclidean domains

Set up, continued
We restrict to the case that X ⊆ M is a compact domain with smooth boundary in a manifold. The distance
function d needs to be (at least) regular near the diagonal. We fix a volume density dV on M and now view ZR as
an operator between “functions”

ZR f (x) :=

∫
X
e
−Rd(x,y)f (y)dV (y).

Approach for domains

Set m := (dim(M) + 1)/2. We want to show that

ZR : Ḣ−m(X )→ H̄m(X ) = Ḣ−m(X )∗,

is an isomorphism and positive in form sense (〈f , ZR f 〉L2 > 0 for all f 6= 0), then

MX (R) = 〈1, Z−1
R 1〉

L2(X )
.

1 Semiclassical analysis of ZR produces algorithms for computing coefficients cj (X , d) ∈ R and an
asymptotic expansion for R →∞

MX (R) =
∞∑
j=0

cj (X , d)Rn−j + O(R−∞).

General feature: the hard part is proving existence. Computing the terms is a matter of persistance.

2 Soft functional analysis extends Z−1
R

meromorphically to R in a right half-plane in C, andMX (R)
extends meromorphically.
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Fourier transforming e−|x |

On Rn, we have the operator

ZR f (x) :=

∫
Rn

e−R|x−y|f (y)dV (y) = gR ∗ f (x).

where gR(x) := e−R|x|. Under Fourier transformation

F f (ξ) = f̂ (ξ) =

∫
Rn

f (x)e−ixξdV (ξ),

we have that
FZR f = ĝRF f .

It will later be important to note that

ĝR(ξ) = n!ωnR(R2 + |ξ|2)−(n+1)/2,

and in particular that
ZR = n!ωnR(R2 −∆)−(n+1)/2.

For n odd, Z−1
R is a bafflingly nice differential operator! For n even, Z−1

R is the worst.
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Meckes’ reformulation of magnitude

For a positive definite metric space X0, Meckes defined a Hilbert space HR of certain
functions on X0 from the inner product

〈f , g〉 =

∫
X0

fZ−1
R (g)dV .

For X0 = Rn, HR = H(n+1)/2(Rn) = (R2 −∆)−(n+1)/4L2(Rn).

Meckes’ Hilbert space formulation for positive definite spaces

If X ⊆ X0 is a compact subset of the positive definite metric space X0,

MX (R) = inf{‖h‖2
HR

: h = 1 on X}.

In particular, if X0 = Rn, then MX (R) = 1
n!ωnR

‖(R2 −∆)(n+1)/4hR‖2
L2(Rn)

, where

hR ∈ H(n+1)/2(Rn) solves{
(R2 −∆)(n+1)/2hR = 0 weakly in Rn \ X ,
hR = 1 on X .
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The boundary value problem of Barcelo-Carbery

Barcelo and Carbery refined Meckes’ results into a boundary value problem and
provided an interesting formula for the magnitude of a compact convex body.
Let X ⊆ Rn be a compact smooth domain and set Ω := Rn \ X . For h ∈ C∞(Ω), we
use the notation

Dj
Rh :=

{
(R2 −∆)j/2h|∂Ω, j even,

∂ν(R2 −∆)(j−1)/2h|∂Ω, j odd,

The BC-boundary value problem

Let n = 2m − 1 be odd. The boundary value problem
(R2 −∆)mhR = 0 in Ω,

Dj
RhR = R j on ∂Ω for even j = 1, . . . ,m − 1,

Dj
RhR = 0 on ∂Ω for odd j = 1, . . . ,m − 1,

has a unique solution hR ∈ H2m(Ω). Moreover,

MX (R) =
voln(X )

n!ωn
Rn −

1

n!ωn

∑
m
2
<j≤m

Rn−2j
∫
∂X
D2j−1

R hR dS
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Reformulation to a problem on the boundary

To find the general structure of the magnitude, we will go further into the BC-BVP.
For h ∈ C∞(Ω), write

D+
R h := (Dj

Rh)m−1
j=0 and D−R h := (Dj

Rh)2m−1
j=m .

We also write H+ :=
⊕m−1

j=0 H2m−1/2−j (∂Ω) and H− :=
⊕2m−1

j=m H2m−1/2−j (∂Ω).

Note that D+
R : H2m(Ω)→H+ and D−R : H2m(Ω)→H−.

The Dirichlet-Neumann operator

Let n = 2m − 1 be odd. Define the operator Λ(R) : H+ →H− by

Λ(R)~g := D−R hR , where hR ∈ H2m(Ω) solves

{
(R2 −∆)mhR = 0 in Ω,

D+
R h = ~g .

Then Λ(R) is a classical parameter dependent pseudo-differential operator which is
parameter elliptic in an Agmon-Douglis-Nirenberg sense. Finally,

MX (R) =
voln(X )

n!ωn
Rn − (w(R),Λ(R)v(R))L2(∂Ω),

for vectors v and w that are polynomial in R and constant on ∂Ω.
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More on the Dirichlet-Neumann operator

The operator Λ(R) = (Λij )
m−1
i,j=0 is a pseudodifferential operator with parameter with

Λij being of order m + j − i . In other words we can in local coordinates write

Λij f (x) =

∫
eiξ·x)aij (x , ξ,R)f̂ (ξ)dξ =

∫∫
eiξ·(x−y)aij (x , ξ,R)f (y)dydξ,

for an aij satisfying

|∂αx ∂
β
ξ ∂

k
Raij (x , ξ,R)| . (1 + |R|+ |ξ|)m+j−i−|β|−k . (1)

Classical= built in asymptotic expansions in terms of functions homogeneous in (R, ξ)

Crucial feature

(1,Λij (R)1)L2(∂Ω) =
∫
∂Ω aij (x , 0,R)dS(x) + O(R−∞).

Exercise (not related to ZR )

For f ∈ C∞c (R), define g ∈ C∞(R) by g(x) := −∂y u(x, 0), where u ∈ L2 solves

{
(R2 − ∂2

x − ∂
2
y )u(x, y) = 0, x ∈ R, y > 0,

u(x, 0) = f (x), x ∈ R.

Show that ĝ(ξ) =
√

R2 + ξ2 f̂ (ξ). In other words, show that
√

R2 − ∂2
x is the D-N operator for R2 − ∆ on the

upper half-plane. (Extra credit: show that
√

R2 + ξ2 satisfies (1) for R >> 0 with m = i = 0, j = 1.)
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Asymptotic expansions

Asymptotic expansions

Let X ⊆ Rn be compact with smooth boundary and n = 2m − 1. There are constants
(ck (X ))k∈N such that for all N ∈ N

MX (R) =
1

n!ωn

n+N∑
k=0

ck (X )Rn−k + O(R−N).

The first four coefficients are given by

c0(X ) = voln(X ), c1(X ) = mvoln−1(∂X ),

c2(X ) =
m2

2
(n − 1)

∫
∂X

H dS ,

c3(X ) = αn

∫
∂X

H2 dS

Here H is the mean curvature of ∂X . For j ≥ 4, the coefficient cj (X ) is an integral
over ∂X of a universal polynomial in covariant derivatives of the fundamental form of
total order j − 2 and total degree j − 1.
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Consequences for the Leinster-Willerton conjecture

Asymptotic inclusion/exclusion

Let n = 2m − 1. If A,B ⊆ Rn, as well as A ∪ B and A ∩ B, are smooth compact
domains then

MA∪B(R) +MA∩B(R) =MA(R) +MB(R) + O(R−∞).

In particular, if k is such that

X 7→ (cj (X ))kj=0 and X 7→ MX (R) mod o(Rn−k ),

are Hausdorff continuous then there are constants β0, . . . , βk such that

MX (R) =
k∑

j=0

βjVn−j (X )Rn−j + o(Rn−k ),

for all convex compact subsets X ⊆ Rn.
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On the merry Christmas of 2018

This makes it look feasible that the Leinster-Willerton conjecture could
hold, it is “just” a question of Hausdorff continuity. However, it fails:

Failure of Hausdorff continuity and definite failure of the
Leinster-Willerton conjecture

The coefficient c3(X ) = αn

∫
∂X

H2dS is proportional to the Willmore
energy which is not Hausdorff continuous and not an intrinsic volume.
Indeed, if that would have been the case then c3(X ) would need to be
proportional to the Euler characteristic if n = 3 which it can not be since
c3 can be made arbitrarily large on surfaces of genus zero.
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Meromorphic extension

The magnitude function extends meromorphically

Let X ⊆ Rn be compact with smooth boundary and n = 2m − 1 is
odd. Then MX extends to a meromorphic function of R ∈ C. Its
poles are located outside a sector in the right half-plane.

The proof is based on the identity

MX (R) =
voln(X )

n!ωn
Rn − (w(R),Λ(R)v(R))L2(∂Ω),

for vectors v and w that are polynomial in R and constant on ∂Ω.
Now Λ(R) is constructed from inverting and multiplying
holomorphic Fredholm operator valued functions on C defined
from the fundamental solution e−R|x−y |.
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Thanks

Thank you for your attention!

More details in: arXiv:1706.06839
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