The magnitude function of domains

Magnus Goffeng

Department of Mathematical Sciences
University of Gothenburg and Chalmers University of Technology

Joint work with Heiko Gimperlein and Nikoletta Louca

$$
190704
$$

Magnitude 2019: Analysis, Category Theory, Applications

Set up

For a compact metric space X, and $M(X)$ denoting the finite Borel measures on X, we define

$$
Z_{R}: M(X) \rightarrow C(X), \quad Z_{R} \mu(x):=\int_{X} \mathrm{e}^{-R \mathrm{~d}(x, y)} \mathrm{d} \mu(y)
$$

A weighting measure is a solution μ_{R} to the equation $Z_{R} \mu_{R}=1$. In this case, the magnitude function of $(X, \mathrm{~d})$ is defined by

$$
\mathcal{M}_{X}(R)=\mu_{R}(X)
$$

Solutions might not exist. Using results of Meckes, we can however play rather fast and loose with what we mean by a solution...

The Leinster-Willerton conjecture

The questions we will be interested in stems from a conjecture by Leinster-Willerton claiming a certain asymptotic behaviour of $\mathcal{M}_{X}(R)$ for a compact convex subset $X \subseteq \mathbb{R}^{n}$.

The Leinster-Willerton conjecture

Let $X \subseteq \mathbb{R}^{n}$ be a compact convex subset. Then

$$
\mathcal{M}_{X}(R)=\sum_{k=0}^{n} \frac{V_{k}(X)}{k!\omega_{k}} R^{k}+o(1), \quad \text { as } R \rightarrow \infty
$$

where $V_{k}(X)$ denotes the k :th intrinsic volume of X.
For X a smooth convex body: $V_{n}(X)=\operatorname{vol}_{n}(X), V_{n-1}(X)=\operatorname{vol}_{n-1}(\partial X)$,
$V_{n-2}(X)=\int_{\partial X} H \mathrm{~d} S, \ldots, V_{0}(X)=\chi(X)$.

Motivating question

Can we analyze the asymptotics for solutions of the equation

$$
Z_{R} \mu_{R}=1
$$

in terms of the geometry of X ?

Set up, continued

We restrict to the case that $X \subseteq M$ is a compact domain with smooth boundary in a manifold. The distance function d needs to be (at least) regular near the diagonal. We fix a volume density $\mathrm{d} V$ on M and now view Z_{R} as an operator between "functions"

$$
Z_{R} f(x):=\int_{X} \mathrm{e}^{-R \mathrm{~d}(x, y)} f(y) \mathrm{d} V(y)
$$

Approach for domains

Set $m:=(\operatorname{dim}(M)+1) / 2$. We want to show that

$$
z_{R}: \dot{H}^{-m}(X) \rightarrow \bar{H}^{m}(X)=\dot{H}^{-m}(X)^{*},
$$

is an isomorphism and positive in form sense $\left(\left\langle f, Z_{R} f\right\rangle_{L^{2}}>0\right.$ for all $\left.f \neq 0\right)$, then

$$
\mathcal{M}_{X}(R)=\left\langle 1, Z_{R}^{-1} 1\right\rangle_{L^{2}(X)}
$$

(1) Semiclassical analysis of Z_{R} produces algorithms for computing coefficients $c_{j}(X, \mathrm{~d}) \in \mathbb{R}$ and an asymptotic expansion for $R \rightarrow \infty$

$$
\mathcal{M}_{X}(R)=\sum_{j=0}^{\infty} c_{j}(X, \mathrm{~d}) R^{n-j}+O\left(R^{-\infty}\right)
$$

General feature: the hard part is proving existence. Computing the terms is a matter of persistance.Soft functional analysis extends Z_{R}^{-1} meromorphically to R in a right half-plane in \mathbb{C}, and $\mathcal{M}_{X}(R)$ extends meromorphically.
(1) Set up
(2) The Barcelo-Carbery approach for Euclidean space
(3) Analysis of magnitude for odd dim Euclidean domains

Fourier transforming $\mathrm{e}^{-|x|}$

On \mathbb{R}^{n}, we have the operator

$$
Z_{R} f(x):=\int_{\mathbb{R}^{n}} \mathrm{e}^{-R|x-y|} f(y) \mathrm{d} V(y)=g_{R} * f(x)
$$

where $g_{R}(x):=\mathrm{e}^{-R|x|}$. Under Fourier transformation

$$
\mathcal{F} f(\xi)=\hat{f}(\xi)=\int_{\mathbb{R}^{n}} f(x) \mathrm{e}^{-i x \xi} \mathrm{~d} V(\xi)
$$

we have that

$$
\mathcal{F} Z_{R} f=\hat{g}_{R} \mathcal{F} f
$$

It will later be important to note that

$$
\hat{\mathrm{g}}_{R}(\xi)=n!\omega_{n} R\left(R^{2}+|\xi|^{2}\right)^{-(n+1) / 2},
$$

and in particular that

$$
Z_{R}=n!\omega_{n} R\left(R^{2}-\Delta\right)^{-(n+1) / 2}
$$

For n odd, Z_{R}^{-1} is a bafflingly nice differential operator! For n even, Z_{R}^{-1} is the worst.

Meckes' reformulation of magnitude

For a positive definite metric space X_{0}, Meckes defined a Hilbert space \mathcal{H}_{R} of certain functions on X_{0} from the inner product

$$
\langle f, g\rangle=\int_{X_{0}} f Z_{R}^{-1}(g) \mathrm{d} V
$$

For $X_{0}=\mathbb{R}^{n}, \mathcal{H}_{R}=H^{(n+1) / 2}\left(\mathbb{R}^{n}\right)=\left(R^{2}-\Delta\right)^{-(n+1) / 4} L^{2}\left(\mathbb{R}^{n}\right)$.
Meckes' Hilbert space formulation for positive definite spaces
If $X \subseteq X_{0}$ is a compact subset of the positive definite metric space X_{0},

$$
\mathcal{M}_{X}(R)=\inf \left\{\|h\|_{\mathcal{H}_{R}}^{2}: h=1 \text { on } \mathrm{X}\right\} .
$$

In particular, if $X_{0}=\mathbb{R}^{n}$, then $\mathcal{M}_{X}(R)=\frac{1}{n!\omega_{n} R}\left\|\left(R^{2}-\Delta\right)^{(n+1) / 4} h_{R}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}$, where $h_{R} \in H^{(n+1) / 2}\left(\mathbb{R}^{n}\right)$ solves

$$
\begin{cases}\left(R^{2}-\Delta\right)^{(n+1) / 2} h_{R} & =0 \text { weakly in } \mathbb{R}^{n} \backslash X \\ h_{R} & =1 \text { on } X\end{cases}
$$

The boundary value problem of Barcelo-Carbery

Barcelo and Carbery refined Meckes' results into a boundary value problem and provided an interesting formula for the magnitude of a compact convex body. Let $X \subseteq \mathbb{R}^{n}$ be a compact smooth domain and set $\Omega:=\mathbb{R}^{n} \backslash X$. For $h \in C^{\infty}(\bar{\Omega})$, we use the notation

$$
\mathcal{D}_{R}^{j} h:=\left\{\begin{array}{l}
\left.\left(R^{2}-\Delta\right)^{j / 2} h\right|_{\partial \Omega}, j \text { even, } \\
\left.\partial_{\nu}\left(R^{2}-\Delta\right)^{(j-1) / 2} h\right|_{\partial \Omega}, j \text { odd },
\end{array}\right.
$$

The BC-boundary value problem

Let $n=2 m-1$ be odd. The boundary value problem

$$
\begin{cases}\left(R^{2}-\Delta\right)^{m} h_{R} & =0 \text { in } \Omega \\ \mathcal{D}_{R}^{j} h_{R} & =R^{j} \text { on } \partial \Omega \text { for even } j=1, \ldots, m-1, \\ \mathcal{D}_{R}^{i} h_{R} & =0 \text { on } \partial \Omega \text { for odd } j=1, \ldots, m-1,\end{cases}
$$

has a unique solution $h_{R} \in H^{2 m}(\Omega)$. Moreover,

$$
\mathcal{M}_{X}(R)=\frac{\operatorname{vol}_{n}(X)}{n!\omega_{n}} R^{n}-\frac{1}{n!\omega_{n}} \sum_{\frac{m}{2}<j \leq m} R^{n-2 j} \int_{\partial X} \mathcal{D}_{R}^{2 j-1} h_{R} \mathrm{~d} S
$$

Reformulation to a problem on the boundary

To find the general structure of the magnitude, we will go further into the BC-BVP.
For $h \in C^{\infty}(\Omega)$, write

$$
\mathcal{D}_{R}^{+} h:=\left(\mathcal{D}_{R}^{j} h\right)_{j=0}^{m-1} \quad \text { and } \quad \mathcal{D}_{R}^{-} h:=\left(\mathcal{D}_{R}^{j} h\right)_{j=m}^{2 m-1}
$$

We also write $\mathcal{H}_{+}:=\bigoplus_{j=0}^{m-1} H^{2 m-1 / 2-j}(\partial \Omega)$ and $\mathcal{H}_{-}:=\bigoplus_{j=m}^{2 m-1} H^{2 m-1 / 2-j}(\partial \Omega)$. Note that $\mathcal{D}_{R}^{+}: H^{2 m}(\Omega) \rightarrow \mathcal{H}_{+}$and $\mathcal{D}_{R}^{-}: H^{2 m}(\Omega) \rightarrow \mathcal{H}_{-}$.

The Dirichlet-Neumann operator

Let $n=2 m-1$ be odd. Define the operator $\Lambda(R): \mathcal{H}_{+} \rightarrow \mathcal{H}_{-}$by

$$
\Lambda(R) \vec{g}:=\mathcal{D}_{R}^{-} h_{R}, \quad \text { where } h_{R} \in H^{2 m}(\Omega) \text { solves }\left\{\begin{array}{l}
\left(R^{2}-\Delta\right)^{m} h_{R}=0 \text { in } \Omega \\
\mathcal{D}_{R}^{+} h=\vec{g}
\end{array}\right.
$$

Then $\Lambda(R)$ is a classical parameter dependent pseudo-differential operator which is parameter elliptic in an Agmon-Douglis-Nirenberg sense. Finally,

$$
\mathcal{M}_{X}(R)=\frac{\operatorname{vol}_{n}(X)}{n!\omega_{n}} R^{n}-(w(R), \Lambda(R) v(R))_{L^{2}(\partial \Omega)}
$$

for vectors v and w that are polynomial in R and constant on $\partial \Omega$.

More on the Dirichlet-Neumann operator

The operator $\Lambda(R)=\left(\Lambda_{i j}\right)_{i, j=0}^{m-1}$ is a pseudodifferential operator with parameter with $\Lambda_{i j}$ being of order $m+j-i$. In other words we can in local coordinates write

$$
\Lambda_{i j} f(x)=\int \mathrm{e}^{i \xi \cdot x)} a_{i j}(x, \xi, R) \hat{f}(\xi) \mathrm{d} \xi=\iint \mathrm{e}^{i \xi \cdot(x-y)} a_{i j}(x, \xi, R) f(y) \mathrm{d} y \mathrm{~d} \xi
$$

for an $a_{i j}$ satisfying

$$
\begin{equation*}
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} \partial_{R}^{k} a_{i j}(x, \xi, R)\right| \lesssim(1+|R|+|\xi|)^{m+j-i-|\beta|-k} \tag{1}
\end{equation*}
$$

Classical $=$ built in asymptotic expansions in terms of functions homogeneous in (R, ξ)

Crucial feature

$$
\left(1, \Lambda_{i j}(R) 1\right)_{L^{2}(\partial \Omega)}=\int_{\partial \Omega} a_{i j}(x, 0, R) \mathrm{d} S(x)+O\left(R^{-\infty}\right)
$$

Exercise (not related to Z_{R})
For $f \in C_{c}^{\infty}(\mathbb{R})$, define $g \in C^{\infty}(\mathbb{R})$ by $g(x):=-\partial_{y} u(x, 0)$, where $u \in L^{2}$ solves

$$
\begin{cases}\left(R^{2}-\partial_{x}^{2}-\partial_{y}^{2}\right) u(x, y)=0, & x \in \mathbb{R}, y>0 \\ u(x, 0)=f(x), & x \in \mathbb{R}\end{cases}
$$

Show that $\hat{g}(\xi)=\sqrt{R^{2}+\xi^{2}} \hat{f}(\xi)$. In other words, show that $\sqrt{R^{2}-\partial_{x}^{2}}$ is the D-N operator for $R^{2}-\Delta$ on the upper half-plane. (Extra credit: show that $\sqrt{R^{2}+\xi^{2}}$ satisfies (1) for $R \gg 0$ with $m=i=0, j=1$.)

Asymptotic expansions

Asymptotic expansions

Let $X \subseteq \mathbb{R}^{n}$ be compact with smooth boundary and $n=2 m-1$. There are constants $\left(c_{k}(X)\right)_{k \in \mathbb{N}}$ such that for all $N \in \mathbb{N}$

$$
\mathcal{M}_{X}(R)=\frac{1}{n!\omega_{n}} \sum_{k=0}^{n+N} c_{k}(X) R^{n-k}+O\left(R^{-N}\right)
$$

The first four coefficients are given by

$$
\begin{aligned}
& c_{0}(X)=\operatorname{vol}_{n}(X), c_{1}(X)=m \operatorname{vol}_{n-1}(\partial X) \\
& c_{2}(X)=\frac{m^{2}}{2}(n-1) \int_{\partial X} H \mathrm{~d} S \\
& c_{3}(X)=\alpha_{n} \int_{\partial X} H^{2} \mathrm{~d} S
\end{aligned}
$$

Here H is the mean curvature of ∂X. For $j \geq 4$, the coefficient $c_{j}(X)$ is an integral over ∂X of a universal polynomial in covariant derivatives of the fundamental form of total order $j-2$ and total degree $j-1$.

Consequences for the Leinster-Willerton conjecture

Asymptotic inclusion/exclusion

Let $n=2 m-1$. If $A, B \subseteq \mathbb{R}^{n}$, as well as $A \cup B$ and $A \cap B$, are smooth compact domains then

$$
\mathcal{M}_{A \cup B}(R)+\mathcal{M}_{A \cap B}(R)=\mathcal{M}_{A}(R)+\mathcal{M}_{B}(R)+O\left(R^{-\infty}\right)
$$

In particular, if k is such that

$$
X \mapsto\left(c_{j}(X)\right)_{j=0}^{k} \quad \text { and } \quad X \mapsto \mathcal{M}_{X}(R) \quad \bmod o\left(R^{n-k}\right)
$$

are Hausdorff continuous then there are constants $\beta_{0}, \ldots, \beta_{k}$ such that

$$
\mathcal{M}_{X}(R)=\sum_{j=0}^{k} \beta_{j} V_{n-j}(X) R^{n-j}+o\left(R^{n-k}\right)
$$

for all convex compact subsets $X \subseteq \mathbb{R}^{n}$.

On the merry Christmas of 2018

This makes it look feasible that the Leinster-Willerton conjecture could hold, it is "just" a question of Hausdorff continuity. However, it fails:

Failure of Hausdorff continuity and definite failure of the
 Leinster-Willerton conjecture

The coefficient $c_{3}(X)=\alpha_{n} \int_{\partial X} H^{2} \mathrm{~d} S$ is proportional to the Willmore energy which is not Hausdorff continuous and not an intrinsic volume. Indeed, if that would have been the case then $c_{3}(X)$ would need to be proportional to the Euler characteristic if $n=3$ which it can not be since c_{3} can be made arbitrarily large on surfaces of genus zero.

Meromorphic extension

The magnitude function extends meromorphically

Let $X \subseteq \mathbb{R}^{n}$ be compact with smooth boundary and $n=2 m-1$ is odd. Then \mathcal{M}_{X} extends to a meromorphic function of $R \in \mathbb{C}$. Its poles are located outside a sector in the right half-plane.

The proof is based on the identity

$$
\mathcal{M}_{X}(R)=\frac{\operatorname{vol}_{n}(X)}{n!\omega_{n}} R^{n}-(w(R), \Lambda(R) v(R))_{L^{2}(\partial \Omega)}
$$

for vectors v and w that are polynomial in R and constant on $\partial \Omega$.
Now $\Lambda(R)$ is constructed from inverting and multiplying holomorphic Fredholm operator valued functions on \mathbb{C} defined from the fundamental solution $\mathrm{e}^{-R|x-y|}$.

Thank you for your attention!

More details in: arXiv:1706.06839

