The magnitude function of domains

Magnus Goffeng

Department of Mathematical Sciences University of Gothenburg and Chalmers University of Technology

Joint work with Heiko Gimperlein and Nikoletta Louca 190704 Magnitude 2019: Analysis, Category Theory, Applications

| 4 同 🕨 🛛 🖃 🕨 🤘

Set up

For a compact metric space X, and M(X) denoting the finite Borel measures on X, we define

$$Z_R: M(X) \to C(X), \quad Z_R \mu(x) := \int_X \mathrm{e}^{-R\mathrm{d}(x,y)} \mathrm{d}\mu(y).$$

A weighting measure is a solution μ_R to the equation $Z_R\mu_R = 1$. In this case, the magnitude function of (X, d) is defined by

$$\mathcal{M}_X(R) = \mu_R(X).$$

Solutions might not exist. Using results of Meckes, we can however play rather fast and loose with what we mean by a solution...

イロト イヨト イヨト

The Leinster-Willerton conjecture

The questions we will be interested in stems from a conjecture by Leinster-Willerton claiming a certain asymptotic behaviour of $\mathcal{M}_X(R)$ for a compact convex subset $X \subseteq \mathbb{R}^n$.

Set up

The Leinster-Willerton conjecture

Let $X \subseteq \mathbb{R}^n$ be a compact convex subset. Then

$$\mathcal{M}_X(R) = \sum_{k=0}^n rac{V_k(X)}{k!\omega_k} R^k + o(1), \quad ext{as } R o \infty,$$

where $V_k(X)$ denotes the k:th intrinsic volume of X.

For X a smooth convex body: $V_n(X) = \operatorname{vol}_n(X)$, $V_{n-1}(X) = \operatorname{vol}_{n-1}(\partial X)$, $V_{n-2}(X) = \int_{\partial X} H dS$, ..., $V_0(X) = \chi(X)$.

Motivating question

Can we analyze the asymptotics for solutions of the equation

$$Z_R \mu_R = 1$$
,

in terms of the geometry of X?

Set up

The Barcelo-Carbery approach for Euclidean space Analysis of magnitude for odd dim Euclidean domains

Set up, continued

We restrict to the case that $X \subseteq M$ is a compact domain with smooth boundary in a manifold. The distance function d needs to be (at least) *regular near the diagonal*. We fix a volume density dV on M and now view Z_R as an operator between "functions"

$$Z_R f(x) := \int_X e^{-R d(x,y)} f(y) dV(y).$$

Approach for domains

Set $m := (\dim(M) + 1)/2$. We want to show that

$$Z_R: \dot{H}^{-m}(X) \to \bar{H}^m(X) = \dot{H}^{-m}(X)^*,$$

is an isomorphism and positive in form sense ($\langle f, Z_R f \rangle_{1^2} > 0$ for all $f \neq 0$), then

$$\mathcal{M}_X(R) = \langle 1, Z_R^{-1} 1 \rangle_{L^2(X)}$$

Semiclassical analysis of Z_R produces algorithms for computing coefficients $c_j(X, d) \in \mathbb{R}$ and an asymptotic expansion for $R \to \infty$

$$\mathcal{M}_X(R) = \sum_{j=0}^{\infty} c_j(X, \mathrm{d}) R^{n-j} + O(R^{-\infty}).$$

General feature: the hard part is proving existence. Computing the terms is a matter of persistance.

Soft functional analysis extends Z_R^{-1} meromorphically to R in a right half-plane in \mathbb{C} , and $\mathcal{M}_X(R)$ extends meromorphically.

2 The Barcelo-Carbery approach for Euclidean space

3 Analysis of magnitude for odd dim Euclidean domains

Magnus Goffeng The magnitude function of domains

→ < Ξ → <</p>

Fourier transforming $e^{-|x|}$

On \mathbb{R}^n , we have the operator

$$Z_R f(x) := \int_{\mathbb{R}^n} \mathrm{e}^{-R|x-y|} f(y) \mathrm{d} V(y) = g_R * f(x).$$

where $g_R(x) := e^{-R|x|}$. Under Fourier transformation

$$\mathcal{F}f(\xi) = \hat{f}(\xi) = \int_{\mathbb{R}^n} f(x) \mathrm{e}^{-ix\xi} \mathrm{d}V(\xi),$$

we have that

$$\mathcal{F}Z_R f = \hat{g}_R \mathcal{F}f.$$

It will later be important to note that

$$\hat{g}_R(\xi) = n! \omega_n R(R^2 + |\xi|^2)^{-(n+1)/2},$$

and in particular that

$$Z_R = n! \omega_n R(R^2 - \Delta)^{-(n+1)/2}.$$

For *n* odd, Z_R^{-1} is a bafflingly nice differential operator! For *n* even, Z_R^{-1} is the worst.

Meckes' reformulation of magnitude

For a positive definite metric space X_0 , Meckes defined a Hilbert space \mathcal{H}_R of certain functions on X_0 from the inner product

$$\langle f,g\rangle = \int_{X_0} f Z_R^{-1}(g) \mathrm{d} V.$$

For $X_0 = \mathbb{R}^n$, $\mathcal{H}_R = H^{(n+1)/2}(\mathbb{R}^n) = (R^2 - \Delta)^{-(n+1)/4} L^2(\mathbb{R}^n)$.

Meckes' Hilbert space formulation for positive definite spaces

If $X \subseteq X_0$ is a compact subset of the positive definite metric space X_0 ,

$$\mathcal{M}_X(R) = \inf\{\|h\|_{\mathcal{H}_R}^2 : h = 1 \text{ on } X\}.$$

In particular, if $X_0 = \mathbb{R}^n$, then $\mathcal{M}_X(R) = \frac{1}{n!\omega_n R} \|(R^2 - \Delta)^{(n+1)/4} h_R\|_{L^2(\mathbb{R}^n)}^2$, where $h_R \in H^{(n+1)/2}(\mathbb{R}^n)$ solves

$$\begin{cases} (R^2 - \Delta)^{(n+1)/2} h_R &= 0 \text{ weakly in } \mathbb{R}^n \setminus X, \\ h_R &= 1 \text{ on } X. \end{cases}$$

The boundary value problem of Barcelo-Carbery

Barcelo and Carbery refined Meckes' results into a boundary value problem and provided an interesting formula for the magnitude of a compact convex body. Let $X \subseteq \mathbb{R}^n$ be a compact smooth domain and set $\Omega := \mathbb{R}^n \setminus X$. For $h \in C^{\infty}(\overline{\Omega})$, we use the notation

$$\mathcal{D}^{j}_{R}h := egin{cases} (R^{2}-\Delta)^{j/2}hert_{\partial\Omega}, \ j \ ext{even},\ \partial_{
u}(R^{2}-\Delta)^{(j-1)/2}hert_{\partial\Omega}, \ j \ ext{odd}, \end{cases}$$

The BC-boundary value problem

Let n = 2m - 1 be odd. The boundary value problem

$$\begin{cases} (R^2 - \Delta)^m h_R &= 0 \text{ in } \Omega, \\ \mathcal{D}_R^j h_R &= R^j \text{ on } \partial\Omega \text{ for even } j = 1, \dots, m-1, \\ \mathcal{D}_R^j h_R &= 0 \text{ on } \partial\Omega \text{ for odd } j = 1, \dots, m-1, \end{cases}$$

has a unique solution $h_R \in H^{2m}(\Omega)$. Moreover,

$$\mathcal{M}_X(R) = \frac{\operatorname{vol}_n(X)}{n!\omega_n} R^n - \frac{1}{n!\omega_n} \sum_{\frac{m}{2} < j \le m} R^{n-2j} \int_{\partial X} \mathcal{D}_R^{2j-1} h_R \, \mathrm{d}S$$

Reformulation to a problem on the boundary

To find the general structure of the magnitude, we will go further into the BC-BVP. For $h \in C^{\infty}(\Omega)$, write

$$\mathcal{D}^+_Rh:=(\mathcal{D}^j_Rh)_{j=0}^{m-1}\quad\text{and}\quad \mathcal{D}^-_Rh:=(\mathcal{D}^j_Rh)_{j=m}^{2m-1}.$$

We also write $\mathcal{H}_+ := \bigoplus_{j=0}^{m-1} H^{2m-1/2-j}(\partial \Omega)$ and $\mathcal{H}_- := \bigoplus_{j=m}^{2m-1} H^{2m-1/2-j}(\partial \Omega)$. Note that $\mathcal{D}_R^+ : H^{2m}(\Omega) \to \mathcal{H}_+$ and $\mathcal{D}_R^- : H^{2m}(\Omega) \to \mathcal{H}_-$.

The Dirichlet-Neumann operator

Let n=2m-1 be odd. Define the operator $\Lambda(R):\mathcal{H}_+ o\mathcal{H}_-$ by

$$\Lambda(R)ec{g}:=\mathcal{D}_R^-h_R, \quad ext{where } h_R\in H^{2m}(\Omega) ext{ solves } egin{cases} (R^2-\Delta)^mh_R &=0 ext{ in } \Omega, \ \mathcal{D}_R^+h=ec{g}. \end{cases}$$

Then $\Lambda(R)$ is a classical parameter dependent pseudo-differential operator which is parameter elliptic in an Agmon-Douglis-Nirenberg sense. Finally,

$$\mathcal{M}_X(R) = \frac{\operatorname{vol}_n(X)}{n!\omega_n} R^n - (w(R), \Lambda(R)v(R))_{L^2(\partial\Omega)},$$

for vectors v and w that are polynomial in R and constant on $\partial \Omega$.

More on the Dirichlet-Neumann operator

The operator $\Lambda(R) = (\Lambda_{ij})_{i,j=0}^{m-1}$ is a pseudodifferential operator with parameter with Λ_{ij} being of order m + j - i. In other words we can in local coordinates write

$$\Lambda_{ij}f(x) = \int e^{i\xi \cdot x} a_{ij}(x,\xi,R) \hat{f}(\xi) d\xi = \iint e^{i\xi \cdot (x-y)} a_{ij}(x,\xi,R) f(y) dy d\xi$$

for an aij satisfying

$$|\partial_x^{\alpha}\partial_{\xi}^{\beta}\partial_R^k a_{ij}(x,\xi,R)| \lesssim (1+|R|+|\xi|)^{m+j-i-|\beta|-k}.$$
(1)

Classical= built in asymptotic expansions in terms of functions homogeneous in (R,ξ)

Crucial feature

$$(1, \Lambda_{ij}(R)1)_{L^2(\partial\Omega)} = \int_{\partial\Omega} a_{ij}(x, 0, R) \mathrm{d}S(x) + O(R^{-\infty}).$$

Exercise (not related to Z_R)

For $f \in C^{\infty}_{c}(\mathbb{R})$, define $g \in C^{\infty}(\mathbb{R})$ by $g(x) := -\partial_{y}u(x, 0)$, where $u \in L^{2}$ solves

$$\begin{cases} (R^2 - \partial_x^2 - \partial_y^2)u(x, y) = 0, & x \in \mathbb{R}, y > 0, \\ u(x, 0) = f(x), & x \in \mathbb{R}. \end{cases}$$

Show that $\hat{g}(\xi) = \sqrt{R^2 + \xi^2} \hat{f}(\xi)$. In other words, show that $\sqrt{R^2 - \partial_x^2}$ is the D-N operator for $R^2 - \Delta$ on the upper half-plane. (Extra credit: show that $\sqrt{R^2 + \xi^2}$ satisfies (1) for R > 0 with m = i = 0, j = 1.)

Asymptotic expansions

Asymptotic expansions

Let $X \subseteq \mathbb{R}^n$ be compact with smooth boundary and n = 2m - 1. There are constants $(c_k(X))_{k \in \mathbb{N}}$ such that for all $N \in \mathbb{N}$

$$\mathcal{M}_X(R) = rac{1}{n!\omega_n} \sum_{k=0}^{n+N} c_k(X) R^{n-k} + O(R^{-N}).$$

The first four coefficients are given by

$$\begin{aligned} c_0(X) &= \operatorname{vol}_n(X), \ c_1(X) = m \operatorname{vol}_{n-1}(\partial X), \\ c_2(X) &= \frac{m^2}{2} \ (n-1) \int_{\partial X} H \, \mathrm{d}S, \\ c_3(X) &= \alpha_n \int_{\partial X} H^2 \, \mathrm{d}S \end{aligned}$$

Here *H* is the mean curvature of ∂X . For $j \ge 4$, the coefficient $c_j(X)$ is an integral over ∂X of a universal polynomial in covariant derivatives of the fundamental form of total order j - 2 and total degree j - 1.

Consequences for the Leinster-Willerton conjecture

Asymptotic inclusion/exclusion

Let n = 2m - 1. If $A, B \subseteq \mathbb{R}^n$, as well as $A \cup B$ and $A \cap B$, are smooth compact domains then

$$\mathcal{M}_{A\cup B}(R)+\mathcal{M}_{A\cap B}(R)=\mathcal{M}_{A}(R)+\mathcal{M}_{B}(R)+O(R^{-\infty}).$$

In particular, if k is such that

$$X\mapsto (c_j(X))_{j=0}^k$$
 and $X\mapsto \mathcal{M}_X(R) \mod o(R^{n-k}),$

are Hausdorff continuous then there are constants β_0, \ldots, β_k such that

$$\mathcal{M}_X(R) = \sum_{j=0}^k \beta_j V_{n-j}(X) R^{n-j} + o(R^{n-k}),$$

for all convex compact subsets $X \subseteq \mathbb{R}^n$.

< ロ > < 同 > < 三 > < 三

On the merry Christmas of 2018

This makes it look feasible that the Leinster-Willerton conjecture could hold, it is "just" a question of Hausdorff continuity. However, it fails:

Failure of Hausdorff continuity and **definite** failure of the Leinster-Willerton conjecture

The coefficient $c_3(X) = \alpha_n \int_{\partial X} H^2 dS$ is proportional to the Willmore energy which is not Hausdorff continuous and not an intrinsic volume. Indeed, if that would have been the case then $c_3(X)$ would need to be proportional to the Euler characteristic if n = 3 which it can not be since c_3 can be made arbitrarily large on surfaces of genus zero.

- 4 同 6 4 日 6 4 日

Meromorphic extension

The magnitude function extends meromorphically

Let $X \subseteq \mathbb{R}^n$ be compact with smooth boundary and n = 2m - 1 is odd. Then \mathcal{M}_X extends to a meromorphic function of $R \in \mathbb{C}$. Its poles are located outside a sector in the right half-plane.

The proof is based on the identity

$$\mathcal{M}_X(R) = rac{\operatorname{vol}_n(X)}{n!\omega_n} R^n - (w(R), \Lambda(R)v(R))_{L^2(\partial\Omega)},$$

for vectors v and w that are polynomial in R and constant on $\partial\Omega$. Now $\Lambda(R)$ is constructed from inverting and multiplying holomorphic Fredholm operator valued functions on \mathbb{C} defined from the fundamental solution $e^{-R|x-y|}$.

< ロ > < 同 > < 三 > < 三 >

Thanks

Thank you for your attention!

More details in: arXiv:1706.06839

▲ □ ▶ ▲ □ ▶ ▲