
Magnitudes of compact sets in Euclidean spaces –
focusing on the boundary

Juan Antonio Barceló and Anthony Carbery
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University of Edinburgh &

Maxwell Institute for Mathematical Sciences

Magnitude 2019: Analysis, Category Theory, Applications
Maxwell Institute for Mathematical Sciences

4th July 2019



Outline

1 Introduction
A Conjecture of Leinster and Willerton

2 Techniques and results
Potential theory
Fourier analysis
Elliptic boundary value and extension problems
Symmetry revisited
Combinatorics
Magnitudes of balls in odd dimensions

3 Final remarks



Introduction

Magnitudes of compact metric spaces

Let (X ,d) be a positive-definite compact metric space.

We have already defined the magnitude |A| of a finite metric space A.

Definition. |X | = sup{|A| : A ⊆ X , A finite }.

Proposition (M. Meckes)
If there exists a finite signed Borel measure µ on X such that for all
x ∈ X ∫

X
e−d(x ,y)dµ(y) = 1

then |X | = µ(X ).

Such a measure is called a weight measure for X .

Notation: The metric space tX for t > 0 is the point-set X with the
metric td .



Introduction

Magnitudes of compact intervals in R

Proposition

Let X = [−R,R] ⊆ R with the usual metric. Then

|tX | = tR + 1.

This is the only example of a compact convex set in euclidean space
whose magnitude was (previously) known.



Introduction A Conjecture of Leinster and Willerton

A bold conjecture

Conjecture (Leinster–Willerton)

Suppose X ⊆ Rn is compact and convex. Then t 7→ |tX | is a
polynomial of degree n and moreover

|tX | =
n∑

i=0

1
i!ωi

Vi(X )t i =
Vol(X )

n!ωn
tn +

Surf(X )

2(n − 1)!ωn−1
tn−1 + · · ·+ 1

where ωi is the volume of the unit ball in Ri and Vi(X ) is the i’th
intrinsic volume of X.

The i ’th intrinsic volume Vi(X ) measures the important i-dimensional
information concerning a convex body X . And for i < n this relates to
its boundary.

Methods based entirely on symmetry do not suffice to resolve the
conjecture.
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Leinster–Willerton Conjecture for euclidean balls

To fix ideas, the Leinster–Willerton conjecture predicts that for the ball
BR in Rn we will have |BR| =

n = 1 : R + 1

n = 2 :
R2

2!
+
πR
2

+ 1

n = 3 :
R3

3!
+ R2 + 2R + 1

n = 4 :
R4

4!
+
πR3

8
+

3R2

2
+

3πR
4

+ 1

n = 5 :
R5

5!
+

R4

9
+

2R3

3
+ 2R2 +

8R
3

+ 1

n = 6 :
R6

6!
+
πR5

128
+

5R4

24
+

5πR3

16
+

5R2

2
+

15πR
16

+ 1

n = 7 :
R7

7!
+

R6

225
+

R5

20
+

R4

3
+

4R3

3
+ 3R2 +

16R
5

+ 1

etc.
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Potential theory

There is a strong analogy between what we are addressing and
classical potential theory.

Indeed, a variant of our problem is to calculate

sup{µ(X ) :

∫
X

e−|x−y |dµ(y) ≤ 1 on X}

where the sup is taken over all finite Borel measures supported on X .

Compare this with the classical Newtonian capacity (n ≥ 3 case)

Cap(X ) = sup{µ(X ) :

∫
X

dµ(y)

|x − y |n−2 ≤ 1 on X}

– which can also be calculated as the energy integral

Cn inf
{∫

Rn
|∇h|2 : h ∈ Ḣ1(Rn), h ≡ 1 on X

}
.

[Formally, if h = I2µ = |x |−(n−2) ∗ µ = 1 on X then
µ(X ) =

∫
X×X

dµ(x)dµ(y)
|x−y |n−2 =

∫
hdµ = −Cn

∫
h∆h = Cn

∫
|∇h|2.]
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Variational formulation of magnitude

Similarly, the Fourier transform of e−|x | is n!ωn(1 + 4π2|ξ|2)−(n+1)/2, so

e−|·| ∗ f = n!ωn(I −∆)−(n+1)/2f ,

and this leads to:

Theorem (M. Meckes)

If X ⊆ Rn is compact, then

|X | =
1

n!ωn
inf
{
‖h‖2H(n+1)/2(Rn)

: h ∈ H(n+1)/2(Rn), h ≡ 1 on X
}
,

and moreover there exists a unique extremiser.

Note. It’s important that the Hs(Rn) norm is given precisely by

‖h‖2Hs(Rn) = ‖(I −∆)s/2h‖22 =

∫
Rn
|ĥ(ξ)|2(1 + 4π2|ξ|2)sdξ.
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Classical Bessel capacity

One should compare Meckes’ theorem

|X | =
1

n!ωn
inf
{
‖h‖2H(n+1)/2(Rn)

: h ∈ H(n+1)/2(Rn), h ≡ 1 on X
}

with the classical Bessel capacity of order n + 1 (a.k.a. maximum
diversity) given by

Capn+1(X ) =
1

n!ωn
inf
{
‖h‖2H(n+1)/2(Rn)

: h ∈ H(n+1)/2(Rn), h ≥ 1 on X
}
.

The capacity version featuring “≥” is certainly a more stable quantity
analytically. On the other hand the associated PDE corresponds to an
obstacle problem, rather than a BVP.

Explicit computations of capacities, even for balls?

Does capacity of convex bodies have geometric characteristics – say
in terms of intrinsic volumes?



Techniques and results Fourier analysis

Asymptotics

Leinster (also Meckes): for nonempty compact sets in Rn

|X | ≥ Vol(X )

n!ωn
.

Theorem (JAB and AC)

Let X be a nonempty compact set in Rn. Then (continuity at 0)

|RX | → 1 as R → 0

and
R−n|RX | → Vol(X )

n!ωn
as R →∞.

So the Leinster–Willerton magnitude conjecture is true for general
compact sets, at least as far as leading terms, in both asymptotic
regimes R →∞ and R → 0.
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Asymptotics: R →∞
If f ∈ H(n+1)/2(Rn) satisfies f ≡ 1 on a compact set X , it must
manifestly satisfy ‖f‖2H(n+1)/2(Rn)

≥ ‖f‖2L2(Rn)
≥ Vol(X ), so that

|X | ≥ Vol(X )

n!ωn
(1)

(Leinster, Meckes). But also

‖f (R−1·)‖2H(n+1)/2(Rn)
=

∫
Rn
|Rn f̂ (Rξ)|2(1 + 4π2|ξ|2)(n+1)/2dξ

= Rn
∫
Rn
|̂f (ξ)|2(1 + 4π2(|ξ|/R)2)(n+1)/2dξ

so that, by the monotone (or dominated) convergence theorem,

R−n‖f (R−1·)‖2H(n+1)/2(Rn)
→
∫
Rn
|̂f (ξ)|2dξ =

∫
Rn
|f (x)|2dx (2)

as R →∞.
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Asymptotics: R →∞, cont’d

So we have

Vol(X )

n!ωn
≤ R−n|RX | ≤

R−n‖f (R−1·)‖2H(n+1)/2(Rn)

n!ωn
→
∫
Rn |f (x)|2dx

n!ωn

using (1), the extremal characterisation of magnitude, and (2)
successively.

But we can find f ∈ H(n+1)/2(Rn) with f ≡ 1 on X such that ‖f‖22 is as
close as we like to Vol(X ).

Therefore
R−n|RX | → Vol(X )

n!ωn

as R →∞.

The argument for R → 0 is at a similar level of difficulty.
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PDE formulation of variational problem

There is a unique extremiser (Meckes) to the problem

|X | = inf
{
‖h‖2H(n+1)/2(Rn)

: h ∈ H(n+1)/2(Rn), h ≡ 1 on X
}
.

Its Euler–Lagrange equation is, unsurprisingly,

(I −∆)(n+1)/2h = 0 weakly on X c .

So the related PDE problem is

(I −∆)(n+1)/2h = 0 on X c

h ∈ H(n+1)/2(Rn), h ≡ 1 on X

Existence of solutions is guaranteed by existence of solution to
extremal problem.
Note that this is really a PDE problem only when n is odd.
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Analysis of the PDE

(I −∆)(n+1)/2h = 0 weakly on X c

h ∈ H(n+1)/2(Rn), h ≡ 1 on X

Not a standard BVP – more a mixed BVP/extension problem
Higher-order
Exterior domain
Results in literature tend to deal with (−∆)m for m = 1,2, . . .
(More recently for (−∆)s for s > 0)
Existence of solutions guaranteed by existence of extremisers

No “off the shelf” theory we found to handle this equation...

But...
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A formula for extremiser

(I −∆)mh = 0 on X c

h ∈ Hm(Rn), h ≡ 1 on X

Theorem (JAB and AC)

If m ∈ N and X ⊆ Rn is convex and compact with nonempty interior,
then there is a unique solution h to this problem which satisfies

‖h‖2Hm(Rn) = Vol(X ) +
∑

m
2 <j≤m

(−1)j
(

m
j

)∫
∂X+

∂

∂ν
∆j−1hdS.

Here, ν is the unit normal pointing out of X and
∫
∂X+

is a limit of
integrals taken over ∂(rX ) as r ↓ 1. (N.B. ‖h‖2Hm(Rn) also equals

∫
Rn h,

but the Leinster–Willerton conjectures inspired us to look for a formula
emphasising the geometrical characteristics of X reflected in ∂X .)
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Inner product

We use the inner product

〈f ,g〉Hm(Ω) :=
m∑

j=0

(
m
j

)∫
Ω

Dj f · Djg

which gives rise to the norm ‖ · ‖Hm on Hm(Rn). Here,

Dj f = ∆j/2f for j even

and
Dj f = ∇∆(j−1)/2f for j odd .

It’s convenient to work with general g ∈ Hm(Rn) and then substitute
g = h later.

So, for g ∈ Hm(Rn) with compact support we have, by the dominated
convergence theorem,

〈g,h〉Hm(Rn) =

∫
X

g +
m∑

j=0

(
m
j

)
lim
r↓0

∫
{d(x ,X)≥r}

Djg · Djh.
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Integration by parts

Now h satisfies an elliptic equation on {d(x ,X ) ≥ r} for each r > 0,
and so, by elliptic regularity, h is smooth here. So we can study∫

{d(x ,X)≥r}
Djg · Djh

by integrating by parts, systematically using Green’s formulae∫
Ω
∇φ · ∇ψ = −

∫
Ω
φ∆ψ −

∫
∂Ω
φ
∂ψ

∂ν
dS

and
∫

Ω
(∆φ)ψ = −

∫
Ω
∇φ · ∇ψ −

∫
∂Ω

∂φ

∂ν
ψ dS.

We are always trying to increase the differentiability of ψ, which will be
a function of h, and decrease that of φ, which will be a function of g.
Since g has compact support, there are no boundary terms at∞.

Eventually we’ll be able to use the equation satisfied by h, do a limiting
argument to extend the validity of the expressions obtained to all g,
plug in g = h and arrive at our desired formula.
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Back to magnitude

So the game is now to find the unique solution to

(I −∆)(n+1)/2h = 0 on X c

h ∈ H(n+1)/2(Rn), h ≡ 1 on X

and then calculate the quantities

Aj(X ) =

∫
∂X+

∂

∂ν
∆j−1hdS.

The magnitude of the compact convex X for n odd will then be given by

|X | =
1

n!ωn

Vol(X ) +
∑

n+1
4 <j≤ n+1

2

(−1)j
(n+1

2
j

)
Aj(X )

 .

(It will also be given by (n!ωn)−1 ∫
Rn h.)
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Spherical symmetry

When X is a ball we can work in polar coordinates to reduce matters to
ODEs, and make explicit calculations.

First, we identify the solutions belonging to H(n+1)/2(Rn) of

(I −∆)(n+1)/2h = 0 on Rn \ {0}

as linear combinations
(n−1)/2∑

j=0

αjψj

where

ψj(x) = e−|x |
2j−1∑
k=j

c j
k |x |

−k

and where the c j
k are determined by combinatorial considerations.



Techniques and results Combinatorics

Pascal’s Triangle

Indeed, c j
k is given by

1
1 1

1 3 3
1 6 15 15

1 10 45 105 105
1 15 105 420 945 945

...

In fact, c j
j = 1 and an explicit representation for c j

k for j < k ≤ 2j − 1 is
given by

c j
k :=

(k − 1)(k − 2) · · · (2j − k)

2k−j(k − j)!
.
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Boundary conditions

Next we have to find the αj such that h =
∑(n−1)/2

j=0 αjψj satisfies the
(n + 1)/2 boundary conditions

h(R) = 1
h′(R) = 0

∆h(R) = 0
(∆h)′(R) = 0

...

(∆(n−1)/4h)(R) = 0 or (∆(n−3)/4h)′(R) = 0

(depending on whether (n − 1) or (n − 3) is a multiple of 4). In either
case, this gives us (n + 1)/2 linear conditions on the (n + 1)/2
unknowns α0, . . . , α(n−1)/2 which therefore determine them. (∗∗)

Thus our h is (in principle) determined, and we can plug it into the
previous formula to obtain the magnitude of BR in Rn for n odd.



Techniques and results Magnitudes of balls in odd dimensions

Magnitudes of balls

To cut a long story short, what we obtain is:

Theorem (JAB and AC)

The magnitude of the closed ball of radius R in Rn is:

n = 1 : R + 1

n = 3 :
R3

3!
+ R2 + 2R + 1

n = 5 :
R5

5!
+

72 + 216R + 216R2 + 105R3 + 27R4 + 3R5

24(R + 3)

n = 7 :
R7

7!
+

60 + 240R + 360R2 + 1165
4 R3 + 145R4 + 189

4 R5 + 31
3 R6 + 3

2R7 + 2
15R8 + 1

180R9

60 + 48R + 12R2 + R3

etc.



Final remarks

Final remarks

In general, the magnitude of the ball BR is a rational function of R,
with rational coefficients, but not a polynomial. What, if any, is the
significance of its poles (R = −3 in the case n = 5)?

In the algorithmic procedure for deriving |BR| in Rn for n odd, the
formula for |BR| in Rn−2 makes a mysterious appearance.

Relation with capacity? Capacities of balls?

Magnitudes of balls in even dimensions? The “calculus” of fractional
Bessel potentials such as (I −∆)1/2? (The calculus for (−∆)1/2 is
much better established...) Possibly use superposition but perhaps not
so helpful for a precise calculus? Lift the problem to a space of one
greater dimension?
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