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Introduction

Magnitudes of compact metric spaces

Let (X, d) be a positive-definite compact metric space.
We have already defined the magnitude |A| of a finite metric space A.
Definition. | X| = sup{|A| : A C X, Afinite }.

Proposition (M. Meckes)

If there exists a finite signed Borel measure 1. on X such that for all
xeX

[ e au(y) =1
X

then | X| = p(X).

Such a measure is called a weight measure for X.

Notation: The metric space tX for t > 0 is the point-set X with the
metric td.



Introduction
Magnitudes of compact intervals in R

Proposition
Let X = [—R, R] C R with the usual metric. Then

tX| = tR+ 1.

This is the only example of a compact convex set in euclidean space
whose magnitude was (previously) known.
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A bold conjecture

Conijecture (Leinster—Willerton)

Suppose X C R" is compact and convex. Then t — |tX| is a
polynomial of degree n and moreover

n
1  Vol(X
‘tX’:ZTinf(X)t’: (X)

i=0

oy Surf(X)

=1
nlwp 2(n—1)lwp_4 Tt

where wj is the volume of the unit ball in R’ and V;(X) is the i’th
intrinsic volume of X.

The 7'th intrinsic volume V;(X) measures the important i-dimensional
information concerning a convex body X. And for i < n this relates to
its boundary.

Methods based entirely on symmetry do not suffice to resolve the
conjecture.
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Leinster—Willerton Conjecture for euclidean balls

To fix ideas, the Leinster—Willerton conjecture predicts that for the ball
Bgr in R” we will have |Bg| =

n=1:R+1
R> =R
RS

n:3:§+R2+2R+1

_54+WR3+3R2+3WR+1

" 41 8 2 4

R R* 2R® __, B8R
n_5.a+?+7+25’ +?+1
_56+ TR° n 5R* n 57R® n 5R? n 157R
" 6! 128 24 16 2 16
R’ RS RS R* 4R° > 16R

+1

etc.
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Potential theory

There is a strong analogy between what we are addressing and
classical potential theory.

Indeed, a variant of our problem is to calculate

sup{(X) : [ e Vdu(y) < 1on X}

where the sup is taken over all finite Borel measures supported on X.
Compare this with the classical Newtonian capacity (n > 3 case)

du(y)
— <
Cap(X) = sup{u(X / Xy = 1 on X}
— which can also be calculated as the energy integral

Cninf{ IVh[? : he H'(R"), h=1on x}.
Rn

[Formally, if h = hy = |x|~( x ;=1 0n X then
HIX) = [yox B2 = / hd,, = —Cn [ hAh = C, [ |Vh[2]
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Variational formulation of magnitude

Similarly, the Fourier transform of e~ Xl is nlw,(1 + 472|¢[2)~("t1)/2 50
e M« f = nlw, (1 — A)~(H1/2f,

and this leads to:

Theorem (M. Meckes)
If X C R" js compact, then

X| = me{HhHHn+1 e ¢ hE HOFVE@D), h=1on X},

and moreover there exists a unique extremiser.

Note. It's important that the H*(R") norm is given precisely by

1AlZeqgey = II( = 25723 = / [RE)E(1 + 4n?le e,
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Classical Bessel capacity

One should compare Meckes’ theorem
1 (n+1)/2 (mpn _
IX| = —lnf{HhHH(n ovegny @ hEH (R"), h=1on x}

with the classical Bessel capacity of order n+ 1 (
) given by

1
Cappy(X) = 1 inf {10120 0/2gm) = h € HOTD2®RT), h>10n X}

The capacity version featuring “>” is certainly a more stable quantity
analytically. On the other hand the associated PDE corresponds to an
obstacle problem, rather than a BVP.

Explicit computations of capacities, even for balls?

Does capacity of convex bodies have geometric characteristics — say
in terms of intrinsic volumes?
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Asymptotics

Leinster (also Meckes): for nonempty compact sets in R”
Vol(X)

n!OJn ’

|1 X| >

Theorem (JAB and AC)

Let X be a nonempty compact set in R". Then (continuity at0)
|IRX| = 1asR—0

and

R~"|RX| — as R — oc.

Vol(X)
!

So the Leinster—Willerton magnitude conjecture is true for general
compact sets, at least as far as leading terms, in both asymptotic
regimes R — oo and R — 0.
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Asymptotics: R — o~

If f ¢ H("+1)/2(R") satisfies f = 1 on a compact set X, it must

manifestly satisfy ||f||Z,,,, ye(ny 2 HfHL2 (&n) = Vol(X), so that

Vol(X)

Nnlwn

| X| >

(Leinster, Meckes). But also

Hf(R71')||i/(n+1)/2(Rn) = /]R” \Rn7(R£)|2(1 + 4772|5‘2)(”+1)/2d€

— A" / B2 + an2(e]/R)2) ™2
Rn

so that, by the monotone (or dominated) convergence theorem,

AR B = [ FORIE= [ 100Pax @)

as R — oo.
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Asymptotics: R — oo, contd

So we have
—n 1 2
VOI X o ”f(R )H (n+1)/2 ]R" n |f |2dX
n|£J ) < R n|RX‘ o fR |
“n .(JJn n(/Jn

using (1), the extremal characterisation of magnitude, and (2)
successively.

But we can find f € H(™")/2(R™) with f = 1 on X such that |/f||3 is as
close as we like to Vol(X).

Therefore
Vol(X)

n!Wn

R™"IRX| —
as R — oo.

The argument for R — 0 is at a similar level of difficulty.
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PDE formulation of variational problem

There is a unique extremiser (Meckes) to the problem

IX| = inf {Hhui,(nm/g(m . he HO 2R h=1on x}.

Its Euler—Lagrange equation is, unsurprisingly,

(I — )" 1/2h — 0 weakly on X°.

So the related PDE problem is
(I — A)™D/2h — 0 on X©
he HMD/2(RM), h=1o0n X

Existence of solutions is guaranteed by existence of solution to
extremal problem.
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Analysis of the PDE

(I — A)™/2p — 0 weakly on X°
he HMD/2(RM), h=1o0n X

@ Not a standard BVP — more a mixed BVP/extension problem
@ Higher-order

@ Exterior domain

@ Results in literature tend to deal with (—A)" form=1,2,...
@ (More recently for (—A)*® for s > 0)

@ Existence of solutions guaranteed by existence of extremisers

No “off the shelf” theory we found to handle this equation...
But...
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A formula for extremiser

(I-—A)"h=0o0n X°¢
he H"(R"), h=1on X

Theorem (JAB and AC)

Ifme N and X C R" is convex and compact with nonempty interior,
then there is a unique solution h to this problem which satisfies

/m o0 i
1A Fimgny = VOI(X) + > (—1)/( )/8 5 ThdS.

, J X, OV
T <j<m +

Here, v is the unit normal pointing out of X and [, is a limit of
integrals taken over 9(rX) as r | 1. (N.B. \|h||2m(Rn) also equals [, h,

but the Leinster—Willerton conjectures inspired us to look for a formula
emphasising the geometrical characteristics of X reflected in 9X.)
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Inner product

We use the inner product

which gives rise to the norm || - ||y» on H™(R"). Here,
D'f = A/?f  for jeven
and _ _
D'f =vAU=D/2f forjodd .
It's convenient to work with general g € H™(R") and then substitute
g = hlater.

So, for g € H™(R™) with compact support we have, by the dominated
convergence theorem,

5 m(en)y = + Ilm/ D/ Djh
(9, h) pm(gn) /g Z( )rw rxon 29
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Integration by parts

Now h satisfies an elliptic equation on {d(x, X) > r} for each r > 0,
and so, by elliptic regularity, h is smooth here. So we can study

/ Dig- Dk
{d(x,X)>r}

by integrating by parts, systematically using Green’s formulae

and

We are always trying to increase the differentiability of ), which will be
a function of h, and decrease that of ¢, which will be a function of g.
Since g has compact support, there are no boundary terms at cc.

Eventually we’ll be able to use the equation satisfied by h, do a limiting
argument to extend the validity of the expressions obtained to all g,
plug in g = h and arrive at our desired formula.
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Back to magnitude

So the game is now to find the unique solution to
(I— A)D/2h — 0 on X©
he HMD/2(RM), h=10on X
and then calculate the quantities

o
Ai(X) = —~ A'hdS.
j( ) 8X+ ay

The magnitude of the compact convex X for n odd will then be given by
1 n+1
XI= o v+ 5 (2 )40
Ewn ntl _ i nid j
E

(It will also be given by (nlwp)~ fR,, .
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Spherical symmetry

When X is a ball we can work in polar coordinates to reduce matters to
ODEs, and make explicit calculations.
First, we identify the solutions belonging to H("+1)/2(R") of

as linear combinations
(n—1)/2

> oy
j=0

where
2j—1

- |-k
pi(x) = e M " cilx]
k=j

and where the cj( are determined by combinatorial considerations.
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Pascal’s Triangle

Indeed, ¢, is given by

1 6 15 15
1 10 45 105 105
1 15 105420 945 945

In fact, cj’ = 1 and an explicit representation for cj( forj<k<2j—1is
given by

(k= 1)(k—2)--(2j— k)

5= 2k=i(k — )!
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Boundary conditions

Next we have to find the «; such that h = Z(” 1/ a,w,- satisfies the
(n+ 1)/2 boundary conditions

h(R) =1
H(R)=0
Ah(R)=0
(Ah)Y(R)=0

(AD4p)(R) = 0 or (A3/4hy(R) =0

(depending on whether (n — 1) or (n — 3) is a multiple of 4). In either
case, this gives us (n+ 1)/2 linear conditions on the (n+ 1)/2
unknowns ay, . . ., a(n—1)/2 Which therefore determine them. (xx)

Thus our his (in principle) determined, and we can plug it into the
previous formula to obtain the magnitude of Bg in R” for n odd.
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Magnitudes of balls

To cut a long story short, what we obtain is:

Theorem (JAB and AC)

The magnitude of the closed ball of radius R in R" is:
n=1:R+1
R3
n:3:§+R2+2R+1
_— R° N 724+ 216R + 216R? + 105R% + 27R* + 3R°
] 24(R + 3)
he7 A 60 + 240R + 360R2 + 1S RS + 145R4 + 189R5 4 31 R6 4
T 60 + 48R + 12R? + RS
etc.
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Final remarks

In general, the magnitude of the ball By is a rational function of R,
with rational coefficients, but not a polynomial. What, if any, is the
significance of its poles (R = —3 in the case n = 5)?

In the algorithmic procedure for deriving |Bg| in R" for n odd, the
formula for |Bg| in R"~2 makes a mysterious appearance.

Relation with capacity? Capacities of balls?

Magnitudes of balls in even dimensions? The “calculus” of fractional
Bessel potentials such as (/ — A)'/2? (The calculus for (—A)'/2 is
much better established...) Possibly use superposition but perhaps not
so helpful for a precise calculus? Lift the problem to a space of one
greater dimension?
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