Magnitudes of compact sets in Euclidean spaces focusing on the boundary

Juan Antonio Barceló and Anthony Carbery

Universidad Politécnica de Madrid
University of Edinburgh \&
Maxwell Institute for Mathematical Sciences
Magnitude 2019: Analysis, Category Theory, Applications
Maxwell Institute for Mathematical Sciences
4th July 2019

Outline

(1) Introduction

- A Conjecture of Leinster and Willerton
(2) Techniques and results
- Potential theory
- Fourier analysis
- Elliptic boundary value and extension problems
- Symmetry revisited
- Combinatorics
- Magnitudes of balls in odd dimensions
(3) Final remarks

Magnitudes of compact metric spaces

Let (X, d) be a positive-definite compact metric space.
We have already defined the magnitude $|A|$ of a finite metric space A.
Definition. $|X|=\sup \{|A|: A \subseteq X, A$ finite $\}$.

Proposition (M. Meckes)

If there exists a finite signed Borel measure μ on X such that for all $x \in X$

$$
\int_{X} e^{-d(x, y)} d \mu(y)=1
$$

then $|X|=\mu(X)$.

Such a measure is called a weight measure for X.
Notation: The metric space $t X$ for $t>0$ is the point-set X with the metric $t d$.

Magnitudes of compact intervals in \mathbb{R}

Proposition

Let $X=[-R, R] \subseteq \mathbb{R}$ with the usual metric. Then

$$
|t X|=t R+1
$$

This is the only example of a compact convex set in euclidean space whose magnitude was (previously) known.

A bold conjecture

Conjecture (Leinster-Willerton)

Suppose $X \subseteq \mathbb{R}^{n}$ is compact and convex. Then $t \mapsto|t X|$ is a polynomial of degree n and moreover

$$
|t X|=\sum_{i=0}^{n} \frac{1}{i!\omega_{i}} V_{i}(X) t^{i}=\frac{\operatorname{Vol}(X)}{n!\omega_{n}} t^{n}+\frac{\operatorname{Surf}(X)}{2(n-1)!\omega_{n-1}} t^{n-1}+\cdots+1
$$

where ω_{i} is the volume of the unit ball in \mathbb{R}^{i} and $V_{i}(X)$ is the i 'th intrinsic volume of X.

The i 'th intrinsic volume $V_{i}(X)$ measures the important i-dimensional information concerning a convex body X. And for $i<n$ this relates to its boundary.

Methods based entirely on symmetry do not suffice to resolve the conjecture.

Leinster-Willerton Conjecture for euclidean balls

To fix ideas, the Leinster-Willerton conjecture predicts that for the ball B_{R} in \mathbb{R}^{n} we will have $\left|B_{R}\right|=$

$$
\begin{aligned}
& n=1: R+1 \\
& n=2: \frac{R^{2}}{2!}+\frac{\pi R}{2}+1 \\
& n=3: \frac{R^{3}}{3!}+R^{2}+2 R+1 \\
& n=4: \frac{R^{4}}{4!}+\frac{\pi R^{3}}{8}+\frac{3 R^{2}}{2}+\frac{3 \pi R}{4}+1 \\
& n=5: \frac{R^{5}}{5!}+\frac{R^{4}}{9}+\frac{2 R^{3}}{3}+2 R^{2}+\frac{8 R}{3}+1 \\
& n=6: \frac{R^{6}}{6!}+\frac{\pi R^{5}}{128}+\frac{5 R^{4}}{24}+\frac{5 \pi R^{3}}{16}+\frac{5 R^{2}}{2}+\frac{15 \pi R}{16}+1 \\
& n=7: \frac{R^{7}}{7!}+\frac{R^{6}}{225}+\frac{R^{5}}{20}+\frac{R^{4}}{3}+\frac{4 R^{3}}{3}+3 R^{2}+\frac{16 R}{5}+1
\end{aligned}
$$

etc.

Potential theory

There is a strong analogy between what we are addressing and classical potential theory.
Indeed, a variant of our problem is to calculate

$$
\sup \left\{\mu(X): \int_{X} e^{-|x-y|} \mathrm{d} \mu(y) \leq 1 \text { on } X\right\}
$$

where the sup is taken over all finite Borel measures supported on X.
Compare this with the classical Newtonian capacity ($n \geq 3$ case)

$$
\operatorname{Cap}(X)=\sup \left\{\mu(X): \int_{X} \frac{\mathrm{~d} \mu(y)}{|x-y|^{n-2}} \leq 1 \text { on } X\right\}
$$

- which can also be calculated as the energy integral

$$
C_{n} \inf \left\{\int_{\mathbb{R}^{n}}|\nabla h|^{2}: h \in \dot{H}^{1}\left(\mathbb{R}^{n}\right), h \equiv 1 \text { on } X\right\}
$$

[Formally, if $h=I_{2} \mu=|x|^{-(n-2)} * \mu=1$ on X then

$$
\left.\mu(X)=\int_{X \times X} \frac{\mathrm{~d} \mu(x) \mathrm{c} \mathrm{~d} \mu(y)}{|x-y|^{n-2}}=\int h \mathrm{~d} \mu=-C_{n} \int h \Delta h=C_{n} \int|\nabla h|^{2} .\right]
$$

Variational formulation of magnitude

Similarly, the Fourier transform of $e^{-|x|}$ is $n!\omega_{n}\left(1+4 \pi^{2}|\xi|^{2}\right)^{-(n+1) / 2}$, so

$$
e^{-|\cdot|} * f=n!\omega_{n}(I-\Delta)^{-(n+1) / 2} f
$$

and this leads to:

Theorem (M. Meckes)

If $X \subseteq \mathbb{R}^{n}$ is compact, then

$$
|X|=\frac{1}{n!\omega_{n}} \inf \left\{\|h\|_{H^{(n+1) / 2}\left(\mathbb{R}^{n}\right)}^{2}: h \in H^{(n+1) / 2}\left(\mathbb{R}^{n}\right), h \equiv 1 \text { on } X\right\}
$$

and moreover there exists a unique extremiser.
Note. It's important that the $H^{s}\left(\mathbb{R}^{n}\right)$ norm is given precisely by

$$
\|h\|_{H^{s}\left(\mathbb{R}^{n}\right)}^{2}=\left\|(I-\Delta)^{s / 2} h\right\|_{2}^{2}=\int_{\mathbb{R}^{n}}|\widehat{h}(\xi)|^{2}\left(1+4 \pi^{2}|\xi|^{2}\right)^{s} \mathrm{~d} \xi
$$

Classical Bessel capacity

One should compare Meckes' theorem

$$
|X|=\frac{1}{n!\omega_{n}} \inf \left\{\|h\|_{H^{(n+1) / 2}\left(\mathbb{R}^{n}\right)}^{2}: h \in H^{(n+1) / 2}\left(\mathbb{R}^{n}\right), h \equiv 1 \text { on } X\right\}
$$

with the classical Bessel capacity of order $n+1$ (a.k.a. maximum diversity) given by
$\operatorname{Cap}_{n+1}(X)=\frac{1}{n!\omega_{n}} \inf \left\{\|h\|_{H^{(n+1) / 2}\left(\mathbb{R}^{n}\right)}^{2}: h \in H^{(n+1) / 2}\left(\mathbb{R}^{n}\right), h \geq 1\right.$ on $\left.X\right\}$.
The capacity version featuring " \geq " is certainly a more stable quantity analytically. On the other hand the associated PDE corresponds to an obstacle problem, rather than a BVP.
Explicit computations of capacities, even for balls?
Does capacity of convex bodies have geometric characteristics - say in terms of intrinsic volumes?

Asymptotics

Leinster (also Meckes): for nonempty compact sets in \mathbb{R}^{n}

$$
|X| \geq \frac{\operatorname{Vol}(X)}{n!\omega_{n}}
$$

Theorem (JAB and AC)

Let X be a nonempty compact set in \mathbb{R}^{n}. Then (continuity at 0)

$$
|R X| \rightarrow 1 \text { as } R \rightarrow 0
$$

and

$$
R^{-n}|R X| \rightarrow \frac{\operatorname{Vol}(X)}{n!\omega_{n}} \text { as } R \rightarrow \infty
$$

So the Leinster-Willerton magnitude conjecture is true for general compact sets, at least as far as leading terms, in both asymptotic regimes $R \rightarrow \infty$ and $R \rightarrow 0$.

Asymptotics: $R \rightarrow \infty$

If $f \in H^{(n+1) / 2}\left(\mathbb{R}^{n}\right)$ satisfies $f \equiv 1$ on a compact set X, it must manifestly satisfy $\|f\|_{H^{(n+1) / 2}\left(\mathbb{R}^{n}\right)}^{2} \geq\|f\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2} \geq \operatorname{Vol}(X)$, so that

$$
\begin{equation*}
|X| \geq \frac{\operatorname{Vol}(X)}{n!\omega_{n}} \tag{1}
\end{equation*}
$$

(Leinster, Meckes). But also

$$
\begin{gathered}
\left\|f\left(R^{-1} \cdot\right)\right\|_{H^{(n+1) / 2}\left(\mathbb{R}^{n}\right)}^{2}=\int_{\mathbb{R}^{n}}\left|R^{n} \widehat{f}(R \xi)\right|^{2}\left(1+4 \pi^{2}|\xi|^{2}\right)^{(n+1) / 2} \mathrm{~d} \xi \\
=\left.R^{n} \int_{\mathbb{R}^{n}} \widehat{f}(\xi)\right|^{2}\left(1+4 \pi^{2}(|\xi| / R)^{2}\right)^{(n+1) / 2} \mathrm{~d} \xi
\end{gathered}
$$

so that, by the monotone (or dominated) convergence theorem,

$$
\begin{equation*}
R^{-n}\left\|f\left(R^{-1} \cdot\right)\right\|_{H^{(n+1) / 2}\left(\mathbb{R}^{n}\right)}^{2} \rightarrow \int_{\mathbb{R}^{n}}|\widehat{f}(\xi)|^{2} \mathrm{~d} \xi=\int_{\mathbb{R}^{n}}|f(x)|^{2} \mathrm{~d} x \tag{2}
\end{equation*}
$$

as $R \rightarrow \infty$.

Asymptotics: $R \rightarrow \infty$, cont'd

So we have

$$
\frac{\operatorname{Vol}(X)}{n!\omega_{n}} \leq R^{-n}|R X| \leq \frac{R^{-n}\left\|f\left(R^{-1} \cdot\right)\right\|_{H^{(n+1) / 2}\left(\mathbb{R}^{n}\right)}^{2}}{n!\omega_{n}} \rightarrow \frac{\int_{\mathbb{R}^{n}}|f(x)|^{2} \mathrm{~d} x}{n!\omega_{n}}
$$

using (1), the extremal characterisation of magnitude, and (2) successively.

But we can find $f \in H^{(n+1) / 2}\left(\mathbb{R}^{n}\right)$ with $f \equiv 1$ on X such that $\|f\|_{2}^{2}$ is as close as we like to $\operatorname{Vol}(X)$.

Therefore

$$
R^{-n}|R X| \rightarrow \frac{\operatorname{Vol}(X)}{n!\omega_{n}}
$$

as $R \rightarrow \infty$.
The argument for $R \rightarrow 0$ is at a similar level of difficulty.

PDE formulation of variational problem

There is a unique extremiser (Meckes) to the problem

$$
|X|=\inf \left\{\|h\|_{H^{(n+1) / 2}\left(\mathbb{R}^{n}\right)}^{2}: h \in H^{(n+1) / 2}\left(\mathbb{R}^{n}\right), h \equiv 1 \text { on } X\right\} .
$$

Its Euler-Lagrange equation is, unsurprisingly,

$$
(I-\Delta)^{(n+1) / 2} h=0 \text { weakly on } X^{c} .
$$

So the related PDE problem is

$$
\begin{gathered}
(I-\Delta)^{(n+1) / 2} h=0 \text { on } X^{c} \\
h \in H^{(n+1) / 2}\left(\mathbb{R}^{n}\right), h \equiv 1 \text { on } X
\end{gathered}
$$

Existence of solutions is guaranteed by existence of solution to extremal problem.
Note that this is really a PDE problem only when n is odd.

Analysis of the PDE

$$
\begin{gathered}
(I-\Delta)^{(n+1) / 2} h=0 \text { weakly on } X^{c} \\
h \in H^{(n+1) / 2}\left(\mathbb{R}^{n}\right), h \equiv 1 \text { on } X
\end{gathered}
$$

- Not a standard BVP - more a mixed BVP/extension problem
- Higher-order
- Exterior domain
- Results in literature tend to deal with $(-\Delta)^{m}$ for $m=1,2, \ldots$
- (More recently for $(-\Delta)^{s}$ for $s>0$)
- Existence of solutions guaranteed by existence of extremisers

No "off the shelf" theory we found to handle this equation...
But...

A formula for extremiser

$$
\begin{gathered}
(I-\Delta)^{m} h=0 \text { on } X^{c} \\
h \in H^{m}\left(\mathbb{R}^{n}\right), h \equiv 1 \text { on } X
\end{gathered}
$$

Theorem (JAB and AC)
If $m \in \mathbb{N}$ and $X \subseteq \mathbb{R}^{n}$ is convex and compact with nonempty interior, then there is a unique solution h to this problem which satisfies

$$
\|h\|_{H^{m}\left(\mathbb{R}^{n}\right)}^{2}=\operatorname{Vol}(X)+\sum_{\frac{m}{2}<j \leq m}(-1)^{j}\binom{m}{j} \int_{\partial X_{+}} \frac{\partial}{\partial \nu} \Delta^{j-1} h \mathrm{~d} S .
$$

Here, ν is the unit normal pointing out of X and $\int_{\partial X_{+}}$is a limit of integrals taken over $\partial(r X)$ as $r \downarrow 1$. (N.B. $\|h\|_{H^{m}\left(\mathbb{R}^{n}\right)}^{2}$ also equals $\int_{\mathbb{R}^{n}} h$, but the Leinster-Willerton conjectures inspired us to look for a formula emphasising the geometrical characteristics of X reflected in ∂X.)

Inner product

We use the inner product

$$
\langle f, g\rangle_{H^{m}(\Omega)}:=\sum_{j=0}^{m}\binom{m}{j} \int_{\Omega} D^{i} f \cdot D^{j} g
$$

which gives rise to the norm $\|\cdot\|_{\mu^{m}}$ on $H^{m}\left(\mathbb{R}^{n}\right)$. Here,

$$
D^{i} f=\Delta^{j / 2} f \quad \text { for } j \text { even }
$$

and

$$
D^{j} f=\nabla \Delta^{(j-1) / 2} f \quad \text { for } j \text { odd } .
$$

It's convenient to work with general $g \in H^{m}\left(\mathbb{R}^{n}\right)$ and then substitute $g=h$ later.
So, for $g \in H^{m}\left(\mathbb{R}^{n}\right)$ with compact support we have, by the dominated convergence theorem,

$$
\langle g, h\rangle_{H^{m}\left(\mathbb{R}^{n}\right)}=\int_{X} g+\sum_{j=0}^{m}\binom{m}{j} \lim _{r \downarrow 0} \int_{\{d(x, X) \geq r\}} D^{j} g \cdot D^{j} h .
$$

Integration by parts

Now h satisfies an elliptic equation on $\{d(x, X) \geq r\}$ for each $r>0$, and so, by elliptic regularity, h is smooth here. So we can study

$$
\int_{\{d(x, X) \geq r\}} D^{j} g \cdot D^{j} h
$$

by integrating by parts, systematically using Green's formulae

$$
\int_{\Omega} \nabla \phi \cdot \nabla \psi=-\int_{\Omega} \phi \Delta \psi-\int_{\partial \Omega} \phi \frac{\partial \psi}{\partial \nu} \mathrm{d} S
$$

$$
\text { and } \int_{\Omega}(\Delta \phi) \psi=-\int_{\Omega} \nabla \phi \cdot \nabla \psi-\int_{\partial \Omega} \frac{\partial \phi}{\partial \nu} \psi \mathrm{d} S .
$$

We are always trying to increase the differentiability of ψ, which will be a function of h, and decrease that of ϕ, which will be a function of g. Since g has compact support, there are no boundary terms at ∞. Eventually we'll be able to use the equation satisfied by h, do a limiting argument to extend the validity of the expressions obtained to all g, plug in $g=h$ and arrive at our desired formula.

Back to magnitude

So the game is now to find the unique solution to

$$
\begin{gathered}
(I-\Delta)^{(n+1) / 2} h=0 \text { on } X^{c} \\
h \in H^{(n+1) / 2}\left(\mathbb{R}^{n}\right), h \equiv 1 \text { on } X
\end{gathered}
$$

and then calculate the quantities

$$
\mathcal{A}_{j}(X)=\int_{\partial X_{+}} \frac{\partial}{\partial \nu} \Delta^{j-1} h \mathrm{~d} S .
$$

The magnitude of the compact convex X for n odd will then be given by

$$
|X|=\frac{1}{n!\omega_{n}}\left(\operatorname{Vol}(X)+\sum_{\frac{n+1}{4}<j \leq \frac{n+1}{2}}(-1)^{j}\binom{\frac{n+1}{2}}{j} \mathcal{A}_{j}(X)\right)
$$

(It will also be given by $\left(n!\omega_{n}\right)^{-1} \int_{\mathbb{R}^{n}} h$.)

Spherical symmetry

When X is a ball we can work in polar coordinates to reduce matters to ODEs, and make explicit calculations.

First, we identify the solutions belonging to $H^{(n+1) / 2}\left(\mathbb{R}^{n}\right)$ of

$$
(I-\Delta)^{(n+1) / 2} h=0 \text { on } \mathbb{R}^{n} \backslash\{0\}
$$

as linear combinations

$$
\sum_{j=0}^{(n-1) / 2} \alpha_{j} \psi_{j}
$$

where

$$
\psi_{j}(x)=e^{-|x|} \sum_{k=j}^{2 j-1} c_{k}^{j}|x|^{-k}
$$

and where the c_{k}^{j} are determined by combinatorial considerations.

Pascal's Triangle

Indeed, c_{k}^{j} is given by

In fact, $c_{j}^{j}=1$ and an explicit representation for c_{k}^{j} for $j<k \leq 2 j-1$ is given by

$$
c_{k}^{j}:=\frac{(k-1)(k-2) \cdots(2 j-k)}{2^{k-j}(k-j)!} .
$$

Boundary conditions

Next we have to find the α_{j} such that $h=\sum_{j=0}^{(n-1) / 2} \alpha_{j} \psi_{j}$ satisfies the $(n+1) / 2$ boundary conditions

$$
\begin{aligned}
h(R) & =1 \\
h^{\prime}(R) & =0 \\
\Delta h(R) & =0 \\
(\Delta h)^{\prime}(R) & =0
\end{aligned}
$$

$$
\left(\Delta^{(n-1) / 4} h\right)(R)=0 \text { or }\left(\Delta^{(n-3) / 4} h\right)^{\prime}(R)=0
$$

(depending on whether $(n-1)$ or $(n-3)$ is a multiple of 4$)$. In either case, this gives us $(n+1) / 2$ linear conditions on the $(n+1) / 2$ unknowns $\alpha_{0}, \ldots, \alpha_{(n-1) / 2}$ which therefore determine them. $(* *)$
Thus our h is (in principle) determined, and we can plug it into the previous formula to obtain the magnitude of B_{R} in \mathbb{R}^{n} for n odd.

Magnitudes of balls

To cut a long story short, what we obtain is:

Theorem (JAB and AC)

The magnitude of the closed ball of radius R in \mathbb{R}^{n} is:

$$
\begin{aligned}
& n=1: R+1 \\
& n=3: \frac{R^{3}}{3!}+R^{2}+2 R+1 \\
& n=5: \frac{R^{5}}{5!}+\frac{72+216 R+216 R^{2}+105 R^{3}+27 R^{4}+3 R^{5}}{24(R+3)} \\
& n=7: \frac{R^{7}}{7!}+\frac{60+240 R+360 R^{2}+\frac{1165}{4} R^{3}+145 R^{4}+\frac{189}{4} R^{5}+\frac{31}{3} R^{6}-}{60+48 R+12 R^{2}+R^{3}}
\end{aligned}
$$

etc.

Final remarks

In general, the magnitude of the ball B_{R} is a rational function of R, with rational coefficients, but not a polynomial. What, if any, is the significance of its poles ($R=-3$ in the case $n=5$)?
In the algorithmic procedure for deriving $\left|B_{R}\right|$ in \mathbb{R}^{n} for n odd, the formula for $\left|B_{R}\right|$ in \mathbb{R}^{n-2} makes a mysterious appearance.
Relation with capacity? Capacities of balls?
Magnitudes of balls in even dimensions? The "calculus" of fractional Bessel potentials such as $(I-\Delta)^{1 / 2}$? (The calculus for $(-\Delta)^{1 / 2}$ is much better established...) Possibly use superposition but perhaps not so helpful for a precise calculus? Lift the problem to a space of one greater dimension?

