
Capacities: What are they
and what are they good for?

Every problem has its own capacity
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Physics: electrostatic capacity

Condenser (capacitor): K (cpt) ⊂ Ω

Distribute charge µ(K ) on K so that the energy
∫

Ω |∇u|
2 dx

of the induced electric field ~E = ∇u in Ω \ K is minimal

When Ω = Rn, n > 2: potential u(x) = Uµ(x) =

∫
dµ(y)

|x − y |n−2

n = 2: logarithmic potentials
Other Ω: use Green function for Ω

Capacity of K ⊂ Rn

cap2(K ) = inf

{∫
Rn

|∇u|2 dx : u ∈ C∞0 (Rn) and u ≥ 1 on K

}
Dual formulation

cap2(K ) = sup{µ(K ) : suppµ ⊂ K and Uµ ≤ 1 (on K )}

Extremal function and capacitary measure: u ∈W 1,2(Rn)
superharmonic in Rn, harmonic in Rn \ K and µ = −∆u
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Sobolev space W k,p, k ∈ N≥1, 1 < p <∞

Sobolev space W k,p(Rn) is normed by

‖u‖W k,p =

( ∑
0≤|α|≤k

∫
Rn

|Dαu|p dx
)1/p

, sum over multiindices α.

C∞0 (Rn) is dense in W k,p(Rn).

Calderón showed that u ∈W k,p(Rn) iff ∃g ∈ Lp(Rn) s.t.

u = Gk ∗ g , where Gk = F−1((1 + |ξ|2)−k/2),

(so g = (I −∆)k/2f ), and that

‖u‖k,p := ‖g‖Lp ' ‖u‖W k,p .

Makes sense also for noninteger k.
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Sobolev capacity

Definition

Sobolev capacity is for cpt K defined by

Ck,p(K ) = inf{‖ϕ‖p
W k,p : ϕ ∈ C∞0 (Rn), ϕ ≥ 1 on K}.

Extended to arbitrary sets by letting

Ck,p(G ) = sup{Ck,p(K ) : K ⊂ G , K cpt}, G open,

Ck,p(E ) = inf{Ck,p(G ) : G ⊃ E , G open}, E arbitrary.

For k = 1 minimizers are solutions of

−∆pu + u|u|p−2 = 0, where ∆pu = div(|∇u|p−2∇u),

which are very difficult to handle if p 6= 2.
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Properties of the Sobolev capacity

Monotonicity: Ck,p(E1) ≤ Ck,p(E2) if E1 ⊂ E2.

Subadditivity: Ck,p

( ∞⋃
j=1

Ej

)
≤
∞∑
j=1

Ck,p(Ej).

Outer measure, but lacks reasonable measurable sets.

Choquet capacity: for all Borel (even Suslin) sets E :

Ck,p(E ) = sup{Ck,p(K ) : K ⊂ E , K cpt}
= inf{Ck,p(G ) : G ⊃ E , G open}.

Finer notion than measure:

Ck,p(E ) = 0 ⇒ dimH(E ) ≤ n − kp,

Hn−kp(E ) <∞ ⇒ Ck,p(E ) = 0,

Singletons have positive capacity if kp > n.

Depends on the underlying Rn!
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Bessel capacity

Definition

Bessel capacity is for cpt K defined by

Bk,p(K ) = inf{‖ϕ‖pk,p : ϕ ∈ C∞0 (Rn), ϕ ≥ 1 on K}.

∃ capacitary measure µK s.t.

Bk,p(K ) = ‖(Gk ∗ µK )p
′−1‖pLp

The extremal function for Bk,p(K ) is

ϕK = Gk ∗ (Gk ∗ µK )p
′−1

and ϕK ≥ 1 on K , except for a set of cap zero.
Leads to the dual definition

Bk,p(K )1/p = sup{µ(K ) : ‖Gk ∗ µ‖Lp′ ≤ 1}.

Good for upper/lower estimates of capacity.
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Alternative capacity Nk ,p

Definition

Define for cpt K ,

Nk,p(K ) = inf{‖ϕ‖pk,p : ϕ ∈ C∞0 (Rn), ϕ = 1 on K}.

Formulas for the extremal elements also in this case, but they are
not measures, only distributions when k > 1.
Inconvenient drawback!

Theorem

Ck,p, Bk,p and Nk,p are comparable.

k = 1: Truncating is possible in W 1,p =⇒ N1,p = B1,p.

Capacities in general impossible to calculate!
Estimates usually enough.
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Use of capacities: Removable singularities

Theorem

L elliptic linear PDO of order k < n with constant coefficients,
K cpt.
Then Ck,p(K ) = 0 iff K is removable for L in Lp, i.e.
if Ω ⊃ K is bdd and open, and u ∈ Lp(Ω \ K ) solves

Lu = 0 in Ω \ K ,

then ∃ũ ∈ Lp(Ω) s.t. Lũ = 0 in Ω, and ũ = u in Ω \ K .

Similarly C1,p(K ) = 0 characterizes removability for bdd
p-harmonic functions, i.e. solutions of

∆pu := div(|∇u|p−2∇u) = 0,

and for bdd p-superharmonic functions (i.e. −∆pu ≥ 0).
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Capacity and Sobolev spaces

Sets of zero capacity are not seen by Sobolev functions:

Theorem

Let E ⊂ Ω be relatively closed.

If Ck,p(E ) = 0, then E is removable for W k,p, i.e.

W k,p(Ω \ E ) = W k,p(Ω)

W k,p
0 (Ω \ E ) = W k,p

0 (Ω) iff Ck,p(E ) = 0.

W k,p
0 (Ω) = completion of C∞0 (Ω) in W 1,p-norm.

W k,p
0 can be used instead of C∞0 to define capacity.
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Lebesgue points and quasicontinuity

Theorem

u ∈W k,p(Rn) =⇒ u has Lebesgue pts outside E with Ck,p(E ) = 0

A function u : Rn → R is Ck,p-quasicontinuous if
∀ε > 0 ∃G open : Ck,p(G ) < ε and u|Rn\G is continuous.

Theorem

u ∈W k,p(Rn) =⇒ ∃ quasicontinuous representative of u.

If u1, u2 quasicontinuous then

u1 = u2 a.e. =⇒ u1 = u2 q.e. (quasieverywhere),

i.e. outside a set of capacity zero.

We can form a refined Sobolev space by only considering
quasicontinuous representatives (automatic later in metric spaces).
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Capacity and finer properties of Sobolev functions, k = 1

Variational capacity (of condensor (K ,Ω))

capp(K ,Ω) = inf

{∫
G
|∇u|p dx : u ∈ C∞0 (Ω) and u ≥ 1 on K

}
Definition

G finely open if for all x ∈ G ,∫ 1

0

(
capp(B(x , r) \ G ,B(x , 2r))

capp(B(x , r),B(x , 2r))

)1/(p−1) dr

r
<∞,

i.e. G c is thin at every x ∈ G

“Wiener integral”

Theorem

The fine topology is the coarsest topology making
p-superharmonic functions continuous.
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Examples of finely open sets

G open: integrand = 0 for small r ⇒ G finely open

G = open set \ set of capacity zero, e.g. G = (0, 1)2 \Q2:

Q2 has no influence on the capacity (if p ≤ 2)
G finely open but intG = ∅

Lebesgue spine
{
x ∈ R3 : x1 > 0 and

√
x2

2 + x2
3 ≤ e−1/x1

}
is thin at the origin when p ≤ 2

Well suited for potential theory and Sobolev functions

Theorem

Quasicontinuous (hence Sobolev) functions are finely continuous at
all pts outside a set of zero capacity.
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Wiener integral and boundary regularity

Dirichlet problem on bdd open Ω ⊂ Rn: Find u such that{
∆pu = 0 in Ω

u = f on ∂Ω

Theorem (Wiener criterion)

A boundary point x ∈ ∂Ω is regular, i.e.

lim
Ω3y→x

u(y) = f (x) for all continuous f ,

if and only if Rn \ Ω is not thin at x , i.e.∫ 1

0

(
capp(B(x , r) \ Ω,B(x , 2r))

capp(B(x , r),B(x , 2r))

)1/(p−1) dr

r
=∞.

Some partial results also for higher order (polyharmonic) operators
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Capacities must be seen within a space!

Examples

2-capacity of a 1-dimensional segment is zero in Rn, n > 2,
but positive in R2

Singletons have positive capacity when kp > n.

Capacity in metric spaces?

Need:

“gradient”

measure

space of test functions (e.g. Lipschitz, Sobolev)

Let X = (X , d , µ) metric space with a metric d and a Borel regular
measure µ s.t.

0 < µ(B) <∞ ∀ balls B ⊂ X

(Can think of Rn and its subsets, e.g. nice open sets, also fractals)
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Upper gradients

Definition (Heinonen, Koskela, 1998)

g ≥ 0 is an upper gradient of u : X → R if

|u(x)− u(y)| ≤
∫
γ
g ds (∗)

for all rectifiable curves γ in X . (x , y = endpoints of γ)

Koskela, MacManus, Shanmugalingam, 1998:

∃ minimal p-weak upper gradient gu:

minimal in Lp and pointwise a.e.

(∗) holds for p-almost all curves (Modp = 0)

Difficulties:

scalar, not vector

gu+v 6= gu + gv in general
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Sobolev (Newtonian) spaces on metric spaces, k=1

Definition (Shanmugalingam, 2000)

Newtonian space

N1,p(X ) =

{
u :

∫
X

(|u|p + gp
u ) dµ <∞

}
(E , d |E , µ|E ) as metric space gives N1,p(E ) for measurable E

Examples:

In Rn: gu = |∇u| a.e.

N1,p(Ω) = W 1,p(Ω) ∀ open Ω ⊂ Rn,
but N1,p has only quasicontinuous representatives
(defined up to sets of zero capacity)

X discrete or von Koch’s snowflake curve:
no rectifiable curves ⇒ gu ≡ 0 ∀u and N1,p(X ) = Lp(X )
(also if “bad” measure)
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Capacity (Depends on the underlying space X !)

Newtonian functions better defined than usual Sobolev functions
(i.e. up to sets of zero capacity) and are automatically
quasicontinuous under standard assumptions.

Definition (Sobolev capacity, k = 1)

Cp(E ) = inf

∫
X

(|u|p + gp
u ) dµ

with infimum taken over all u ∈ N1,p(X ) such that u = 1 on E .

Definition (Variational capacity, k = 1)

capp(E ,Ω) = inf

∫
X
gp
u dµ

with infimum taken over all u ∈ N1,p(X ) such that u = 1 on E
and u = 0 outside Ω.

17



Nice metric spaces

Much of the Rn theory for Sobolev spaces, capacity, p-harmonic
functions extended to metric spaces under standard assumptions:

µ doubling: µ(2B) ≤ Cµ(B) ∀ balls B ⊂ X

p-Poincaré inequality: ∀ balls B ⊂ X and ∀u∫
B
|u − uB | dµ ≤ C diamB

(∫
λB

gp
u dµ

)1/p
,

where uB =

∫
B
u dµ =

1

µ(B)

∫
B
u dµ

(X complete)

OK if X has many well-behaved curves, nice geometry

Higher order Sobolev spaces and capacities not
developed in metric spaces.
Problem: higher order gradients.

18



Spaces satisfying assumptions:

Weighted Rn, e.g. with Muckenhoupt Ap weights (or |x |α)

Manifolds and their Gromov–Hausdorff limits

Graphs

Reasonable closed subsets of Rn: disc, half-space,

interior of von Koch snowflake curve,

and closures of other uniform domains

Glueing spaces together
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Heisenberg group H1 = C× R (popular by physicists)

Metric = shortest path tangential to span(X ;Y )

X =
∂

∂x
+ 2y

∂

∂t
and Y =

∂

∂y
− 2x

∂

∂t

Comparable to the norm

‖(x , y , t)‖ =
(
(x2 + y2)2 + t2

)1/4

Three different dimensions:

Topologically R3

“gradient” (Xu,Yu) is 2-dimensional

Vol(Br ) ' r4 (measure theoretically)
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Sierpiński carpet

Scale factors

an =
1

odd number

with
∞∑
n=1

an <∞

Here a1 = 1
3 , a2 = 1

5 , a3 = 1
7 .

Doubling + Poincaré inequality OK:
Mackay–Tyson–Wildrick 2013
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Other “gradients” and Sobolev type spaces

Definition (Haj lasz space and gradient)

u ∈ M1,p(X ) if u ∈ Lp(X ) and ∃ Haj lasz gradient g ∈ Lp(X ) s.t.

|u(x)− u(y)| ≤ d(x , y)(g(x) + g(y)) for a.e. x , y ∈ X .

In Rn: g corresponds to maximal function M|∇u|.
Minimal Haj lasz gradient exists, but impossible to calculate and
thus also capacity.

Cheeger (vector-valued) gradient −→ Sobolev type space

Gradients and Sobolev spaces based on Poincaré inequalities

Under standard assumptions, all such spaces on X coincide.
(But not on all open subsets.)
Gradients (and thus capacities) need not be comparable.

Thank you for your attention!
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