
HEISENBERG’S UNCERTAINTY PRINCIPLE IN THE SENSE OF BEURLING

HAAKAN HEDENMALM

A. We shed new light on Heisenberg’s uncertainty principle in the sense of Beurling, by
offering an essentially different proof which allows us to weaken the assumptions substantially.
The new formulation is essentially optimal, as can be seen from examples. The proof involves
Fourier and Mellin transforms. We also introduce a version which applies to two given functions.
In addition, we show how our method applies in the higher dimensional setting.

1. I

1.1. Heisenberg’s uncertainty principle. In general terms, Heisenberg’s uncertainty principle
asserts that a function and its Fourier transform cannot both be too concentrated. See, e.g., the
book of Havin and Jöricke [6]. For a recent development connected with partial differential
equations, see [7], [3]. As for notation, we will write

f̂ (y) := lim
T→+∞

∫ T

−T
e−i2πyt f (t) dt, y ∈ R,

for the Fourier transform of the function f , whenever the limit exists. For f ∈ L1(R) the integral
converges absolutely, and f̂ is continuous on Rwith limit 0 at infinity (the Riemann-Lebesgue
lemma); writing C0(R) for the Banach space of all such functions, we are merely saying that
f̂ ∈ C0(R) whenever f ∈ L1(R).

1.2. Beurling’s version of the uncertainty principle. Building on work of Hardy [5], Beurling
(see [1], p. 372) found a version of Heisenberg’s uniqueness principle which is attractive for
its simplicity and beauty. It reads as follows.

Theorem 1.1. (Beurling) If f ∈ L1(R) and

(1.1)
∫
R

∫
R

| f (x) f̂ (y)| e2π|xy|dxdy < +∞,

then f = 0 a.e. on R.

Trivially, 1 ≤ e2π|xy|, so that if f ∈ L1(R) meets (1.1), then we must also have that

‖ f ‖L1(R)‖ f̂ ‖L1(R) =

∫
R

∫
R

| f (x) f̂ (y)|dxdy < +∞.

We see that the assumption (1.1) presupposes that f and f̂ are both in L1(R). As a result, f is in
the space L1(R)∩C0(R), which is contained in Lp(R) for all p with 1 ≤ p ≤ +∞. The statement in
[1], p. 372, was made without proof. Then in 1991 it turned out that Hörmander had retained
a copy of Beurling’s original proof. Hörmander writes in [8], p. 237: “The editors state that
no proof has been preserved. However, in my files I have notes which I made when Arne
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Beurling explained this result to me during a private conversation some time during the years
1964-1968 when we were colleagues at the Institute for Advanced Study.”

Here, we will find a way to reduce the assumption (1.1) of Theorem 1.1 while maintaining
the conclusion that f = 0 a.e.

1.3. Statement of the generalization of Beurling’s theorem. Our analysis of Beurling’s theo-
rem (Theorem 1.1) is based on the observation that under (1.1), the function

(1.2) F(λ) :=
∫
R

∫
R

f̄ (x) f̂ (y) ei2πλxydxdy

defines a bounded holomorphic function in the strip

S := {λ ∈ C : |Imλ| < 1}

which extends continuously to the closed strip S̄. Indeed, the complex exponentials ei2πλxy are
holomorphic in λ, and we have

|F(λ)| ≤
∫
R

∫
R

| f (x) f̂ (y)| e−2πxy Imλdxdy ≤
∫
R

∫
R

| f (x) f̂ (y)| e2π|xy|dxdy, λ ∈ S̄,

from which the claim is immediate, by, e.g., uniform convergence. Next, in view of the Fourier
inversion theorem, ∫

R

f̂ (y) ei2πλxydy = f (λx), x, λ ∈ R,

so the function F(λ) given by (1.2) may be expressed in the form

(1.3) F(λ) =
∫
R

f̄ (x) f (λx) dx, λ ∈ R.

It is easy to see that F(λ) is continuous onR× since f ∈ L2(R). Here,R× is shorthand forR \ {0}.
Moreover, letD := {λ ∈ C : |λ| < 1} denote the open unit disk in the complex plane C, and let
D̄ denote its closure (the closed unit disk). We let dA denote the area element in C.

Theorem 1.2. Suppose f ∈ L2(R), and let F(λ) be given by (1.3) for λ ∈ R×. Suppose that F(λ) has a
holomorphic extension to a neighborhood of D̄ \ {±i}, such that

(1.4)
∫
D

|F(λ)|2|λ2 + 1|dA(λ) < +∞.

Then
(a) F(λ) ≡ c0(1 + λ2)−1/2 for some constant c0 ≥ 0, and
(b) if, in addition, we have infD |F(λ)|2|1 + λ2

| = 0, then F(λ) ≡ 0, and consequently f = 0 a.e.

In comparison with Theorem 1.1, Theorem 1.2 assumes analytic continuation of F(λ) to a
much smaller set, and the a priori assumption that f ∈ L2(R) is weaker. Also, in Beurling’s set-
ting, the weighted square integrability condition (1.4) is trivially fulfilled because the function
F(λ) is then bounded on the strip S, which also shows that infD |F(λ)|2|1+ λ2

| = 0. Heading (b)
then gives that f = 0 a.e.
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1.4. Applications of the Mellin transforms. To see what the heading (a) of Theorem 1.2 means
for the function f , we introduce the Mellin transforms M0 and M1 as follows:

(1.5) M0[ f ](τ) :=
∫
R×
|x|−

1
2+iτ f (x) dx, τ ∈ R.

and

(1.6) M1[ f ](τ) :=
∫
R×
|x|−

1
2+iτsgn(x) f (x) dx,

where sgn(x) = x/|x|. When the above integrals fail to be absolutely convergent, they should
be understood as the limits of integrals over the set ε < |x| < 1/ε, as ε → 0+. The L2 theory
for the Mellin transform is analogous to that of the Fourier transform (the Mellin transform
is associated with the multiplicative structure, while the Fourier transform is related with the
additive structure). We remark that the multiplicative group R× is isomorphic to the additive
group R ×Z2, where Z2 = Z/2Z. We see that

(1.7) M0[ f ](τ) =
∫
R+

x−
1
2+iτ
{ f (x) + f (−x)}dx = 2π

∫
R

ei2πtτ
{ f (e2πt) + f (−e2πt)} eπtdt

and

(1.8) M1[ f ](τ) =
∫
R+

x−
1
2+iτ
{ f (x) − f (−x)}dx = 2π

∫
R

ei2πtτ
{ f (e2πt) − f (−e2πt)} eπtdt,

which explains how the well-known L2 theory for the Fourier transform carries over to the
Mellin transforms. Here, R+ :=]0,+∞[ is the positive semi-axis. In particular, the Plancherel
identity reads as follows:

(1.9)
1

4π

∫
R

{
|M0[ f ](τ)|2 + |M1[ f ](τ)|2

}
dτ =

∫
R

| f (x)|2dx.

Theorem 1.3. Suppose f ∈ L2(R), and let F(λ) be given by (1.3) forλ ∈ R×. Then F(λ) ≡ c0(1+λ2)−1/2

holds for some constant c0 ≥ 0 if and only if f is even (i.e., f (−x) = f (x) holds a.e.), and

|M0[ f ](τ)| =
√

c0

π1/4
|Γ( 1

4 +
i
2τ)|, τ ∈ R.

Remark 1.4. To better appreciate how much weaker the assumptions of Theorem 1.2 are com-
pared with those of Beurling’s result, we may consider the assertion (a) of Theorem 1.2 com-
bined with Theorem 1.3. We then know the modulus of the Mellin transform M0[ f ], while
it is clear from the L2 theory of the Mellin transforms that the argument of M0[ f ] may be an
arbitrary measurable function. So we get plenty of functions f which solve (1.3) for the given
F(λ) = c0(1 + λ2)−1/2. One of these is of course the Gaussian f (x) = c1e−παx2

, where α > 0 and
|c1|

2 = c0α1/2. This contrasts with the analogues of Beurling’s theorem where the constant (or
polynomial) multiples of a Gaussian e−παx2

are the only solutions [2].

1.5. Analysis of the sharpness of the results. It is of interest to analyze the sharpness of
Theorems 1.2 and 1.3. We look at the example

f (x) = e−πβx
2
,

where Re β > 0. Then f ∈ L2(R), and the associated function F(λ) is

F(λ) =
∫
R

f̄ (x) f (λx)dx = β̄−1/2
(
1 +
β

β̄
λ2
)−1/2

.
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This function F(λ) is holomorphic in D but it possesses two square root branch points at the
roots of λ2 = −β̄/β. These roots lie on the unit circle T = {z ∈ C : |z| = 1}. This means that
permitting just two such square root branch points along T in the formulation of Theorem 1.2
already falsifies the assertion of the theorem. SupposeD ⊂ D is a proper convex subset, which
is symmetric under reflexion in the origin (λ 7→ −λ). Then if, in the formulation of Theorem
1.2, the unit diskD is replaced byD, the conclusion of the theorem would fail.

2. A    

2.1. The bilinear forms. Let us consider the bilinear forms

(2.1) B[ f , g](λ) :=
∫
R

f (t) g(λt) dt, λ ∈ R×,

for f , g ∈ L2(R). The function B[ f , g] is then continuous on R×. It has the symmetry property

(2.2) B[ f , g](λ) =
1
|λ|

B[g, f ]
( 1
λ

)
, λ ∈ R×,

as we see by an elementary change of variables. It also enjoys the complex conjugation
symmetry

(2.3) B[ f , g](λ) = B[ f̄ , ḡ](λ), λ ∈ R×.

2.2. Relation to multiplicative convolution. It is well-known that the multiplicative convo-
lution

f1 ~ f2(x) :=
∫
R×

f1(t) f2
(x

t

) dt
|t|
,

understood in the sense of Lebesgue, is commutative (i.e., f1 ~ f2 = f2 ~ f1). The relationship
with the above bilinear forms B[ f , g](λ) is

B[ f , g](λ) = g ~ f̃ (λ) =
1
|λ|

f ~ g̃
( 1
λ

)
, λ ∈ R×,

where

f̃ (t) :=
1
|t|

f
(1

t

)
, g̃(t) :=

1
|t|

g
(1

t

)
.

3. T       

Proof of Theorem 1.2. A comparison of (1.3) and (2.1) reveals that F(λ) = B[ f̄ , f ](λ) for λ ∈ R×.
In view of (2.2) and (2.3), F(λ) has the symmetry property

(3.1) F(λ) =
1
|λ|

F̄
( 1
λ

)
, λ ∈ R×.

Let J(λ) be the function

J(λ) :=
√

1 + λ2,

which defines a single-valued holomorphic function in the slit complex plane C \ i(R\]−1, 1[)
with value 1 at λ = 0. Next, we consider the function Φ := FJ, which is a well-defined and
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continuous along R, while it defines a holomorphic function in (a neighborhood of) D̄ \ {±i}.
Along the real line, we have, in view of (3.1),

(3.2) Φ(λ) = F(λ)J(λ) =
1
|λ|

J(λ)F̄
( 1
λ

)
=

√

1 + λ2

|λ|
F̄
( 1
λ

)
=

√
1 +

1
λ2 F̄
( 1
λ

)
= Φ̄
( 1
λ

)
= Φ̄
( 1
λ̄

)
, λ ∈ R×.

As a consequence, Φ is real-analytic on R, and has two holomorphic extensions, one to (a
neighborhood of) D̄ \ {±i}, and the other to (a neighborhood of) D̄e \ {±i}; here, D̄e := C \D is
the closed exterior disk. These two holomorphic continuations must then coincide. So, we see
that Φ extends to a holomorphic function in C \ {±i}, which is bounded in a neighborhood of
infinity, by inspection of (3.2). The integrability assumption of the theorem says that∫

D

|Φ(λ)|2dA(λ) < +∞,

and the symmetry property (3.2) gives the corresponding integrability in the exterior disk
De = C \ D̄: ∫

De

|Φ(λ)|2
dA(λ)
|λ|4

< +∞.

In particular, Φ is square area-integrable in a neighborhood of {±i}. But then Φ extends
holomorphically across ±i (one explanation among many: a two-point set has logarithmic
capacity 0, see [4]). Now Φ is entire and bounded, so Liouville’s theorem tells us that Φ is
constant: Φ(λ) ≡ c0. That c0 ≥ 0 follows from

c0 = Φ(1) = J(1)F(1) =
√

2
∫
R

f̄ (x) f (x)dx =
√

2
∫
R

| f (x)|2dx ≥ 0.

This gives us the first assertion as well as the second. The proof is complete. �

Proof of Theorem 1.3. We need to show that if

F(λ) =
∫
R

f̄ (x) f (λx)dx ≡ c0(1 + λ2)−1/2,

on R×, then the Mellin transform M0[ f ] has the indicated form. By symmetry, we see that
M1[F](τ) ≡ 0, while a computation reveals that

M0[F](τ) = c0

∫
R×
|λ|−

1
2+iτ(1 + λ2)−1/2dλ =

c0
√
π
|Γ( 1

4 +
i
2τ)|

2,

If we apply the Mellin transforms M0,M1 to (1.3), we find that M1[ f ] ≡ 0 and that

|M0[ f ](τ)|2 =M0[F](τ).

Here, the natural way to verify the right-hand side equality is to apply the inverse Mellin
transform to the two sides. The assertion that M1[ f ] ≡ 0 holds if and only if f is an even
function (cf. (1.8)). The proof is complete. �
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4. A    

4.1. A problem involving two functions. We consider two functions f , g ∈ L2R), and intro-
duce the functions

(4.1) F1(λ) :=
∫
R

f̄ (x)g(λx)dx, F2(λ) :=
∫
R

ḡ(x) f (λx)dx.

We quickly observe that if f is even and g is odd, then F1(λ) ≡ F2(λ) ≡ 0 on R×. The same
conclusion holds if f is odd and g is even. This means that we cannot hope to claim that one
of the functions f , g must vanish from the knowledge that F1(λ) ≡ F2(λ) ≡ 0. But sometimes
this combination of even and odd is the only obstruction, as we shall see.

Theorem 4.1. Suppose f , g ∈ L2(R), and let F j(λ) be given by (1.3) for λ ∈ R× and j = 1, 2. Suppose
that both F j(λ) have a holomorphic extensions toD such that∫

D

|F j(λ)|2|λ2 + 1|dA(λ) < +∞, j = 1, 2.

Suppose, moreover, that one of the functions, say F1, has a holomorphic extension to a neighborhood of
D̄ \ {±i}. Then

(a) F j(λ) ≡ c j(1 + λ2)−1/2 for j = 1, 2, for some constants c1, c2 ∈ C with c2 = c̄1, and
(b) if in (a) we have c1 = 0, then F1(λ) ≡ F2(λ) ≡ 0.

If we compare with Beurling’s result, it is clear that if

(4.2)
∫
R

∫
R

(
| f (x)ĝ(y)| + |g(x) f̂ (y)|

)
e2π|xy|dxdy < +∞,

then we are in the setting of part (b) of Theorem 4.1.

4.2. Application of the Mellin transforms. The application of the Mellin transforms leads to
the following result.

Theorem 4.2. Suppose f , g ∈ L2(R), and let F1(λ) be given by (4.1) for λ ∈ R×. Then F1(λ) ≡
c1(1 + λ2)−1/2 holds for some constant c1 ∈ C if and only if

M1[ f ](τ)M1[g](τ) = 0, a.e. τ ∈ R,

and

M0[ f ](τ) M0[g](τ) =
c1
√
π
|Γ( 1

4 +
i
2τ)|

2, a.e. τ ∈ R.

The assertion of Theorem 4.2 gives a very precise answer as to what f , g can be in the setting
of Theorem 4.1. It may however at times be difficult to see what the conditions actually say
when f , g are explicitly given. So we will explain a couple of cases when we can be more
precise. The support of a function f ∈ L2(R) – written supp f – is the intersection of all closed
sets E ⊂ R such that f = 0 a.e. on R \ E. Let us agree to say that a function f ∈ L2(R) has
dilationally one-sided support if (i) supp f is bounded in R, or if (ii) supp f ⊂ R× = R \ {0}.

Theorem 4.3. Suppose f , g ∈ L2(R), and let F1(λ) be given by (4.1) for λ ∈ R×, and suppose that
F1(λ) ≡ 0. If one of f , g has dilationally one-sided support, say f does, then either: (a) f is even and g
is odd, (b) f is odd and g is even, or (c) f = 0 a.e. or g = 0 a.e.
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4.3. A comparison with the Beurling-type condition (4.2). We compare the assumptions of
Theorem 4.3 with the Beurling-type condition (4.2). Clearly (4.2) is a very strong assumption,
as it actually forces f = 0 a.e. or g = 0 a.e. This can be shown by, e.g., a suitable modification
of the argument in the Appendix in [2].

This suggests that if we strengthen the assumptions in Theorem 4.3 slightly, we should be
able to rule out the alternatives (a)–(b). To this end, we consider the functions f∗(x) := f (x) sgn(x)
and g∗(x) := g(x) sgn(x), and put

F3(λ) :=
∫
R

∫
R

f̄∗(x)ĝ(y) ei2πλxydxdy =
∫
R

f̄∗(x)g(λx)dx, λ ∈ R,

and

F4(λ) :=
∫
R

∫
R

ḡ∗(x) f̂ (y) ei2πλxydxdy =
∫
R

ḡ∗(x) f (λx)dx, λ ∈ R.

If we were to assume (4.2), we would know that F3,F4 both extend holomorphically and
boundedly to the strip S. We shall assume less, namely that both extend holomorphically to
the open unit diskD, are area-L2 integrable onD, and that one of them extends holomorphically
to (a neighborhood of) D̄ \ {±i}. It is easy to verify that

F3(λ) =
1
λ

F̄4

( 1
λ̄

)
, λ ∈ R×,

holds. So F3(λ) has a holomorphic extension to C \ {±i}which is area-L2 integrable near ±i and
vanishes at infinity. Then the singularities at ±i are removable, and Liouville’s theorem gives
F3(λ) ≡ 0. At the same time, we know that F1(λ) ≡ 0 from Theorem 4.1, since we ask that c1 = 0
as in Theorem 4.3. Theorem 4.2 and its proof tell us that for j = 0, 1,

M j[ f ](τ) M j[g](τ) = 0, a.e. τ ∈ R,

and
M j[ f∗](τ) M j[g](τ) = 0, a.e. τ ∈ R.

Next, as in Theorem 4.3, we assume that f or g has dilationally one-sided support. Then
Theorem 4.3 and its proof show that the only possibility is that f = 0 a.e. or g = 0 a.e.

5. P      

Proof of Theorem 4.1. A comparison of (1.3) and (2.1) reveals that F1(λ) = B[ f̄ , g](λ) and F2(λ) =
B[ḡ, f ](λ) for λ ∈ R×. In view of (2.2) and (2.3), F j(λ), for j = 1, 2, have the symmetry property

(5.1) F1(λ) =
1
|λ|

F̄2

( 1
λ

)
, λ ∈ R×.

If we put Φ j := F j J, where J(λ) = (1 + λ2)1/2 as before, then (5.1) says that

Φ1(λ) = Φ̄2

( 1
λ̄

)
, λ ∈ R×.

The given assumptions on F1,F2 show thatΦ1 has a holomorphic extension toC \ {±i}, which is
area-L2 integrable locally around {±i}. As a consequence, the singularities at {±i} are removable
(see, e.g., [4]), and Liouville’s theorem tells us that Φ1 is constant. The remaining assertions
are easy consequences of this. �

Proof of Theorem 4.2. The proof is immediate by taking the Mellin transforms, as in the proof of
Theorem 1.3. We omit the details. �
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Proof of Theorem 4.3. In view of Theorem 4.2, we have that

(5.2) M0[ f ](τ) M0[g](τ) =M1[ f ](τ)M1[g](τ) = 0, a.e. τ ∈ R.

The assumption that f has dilationally one-sided support means in terms of Mellin transforms
that up to a complex exponential factor, the functions M j[ f ], j = 0, 1, both extend to a function
in H2 of either the upper or the lower half-plane. In any case, Privalov’s theorem guarantees
that for a given j ∈ {0, 1}, either M j[ f ] = 0 a.e. onR, or M j[ f ] , 0 a.e. onR. This leaves us with
four distinct possibilities.

CASE 1. M0[ f ] = 0 a.e.and M1[ f ] = 0 a.e.. Then f = 0 a.e.is immediate, so we find ourselves
in the setting of (c).

CASE 2. M0[ f ] = 0 a.e. and M1[ f ] , 0 a.e. Then (5.2) gives that M1[g] = 0 a.e., so that f is
odd and g is even (cf. (1.7)-(1.8)), and we are in the setting of (b).

CASE 3. M0[ f ] , 0 a.e. and M1[ f ] = 0 a.e. Then (5.2) gives that M0[g] = 0 a.e., and we
conclude that f is even and g is odd (cf. (1.7)-(1.8)), and we are in the setting of (a).

CASE 4. M0[ f ] , 0 a.e. and M1[ f ] , 0 a.e. Then (5.2) shows that M0[g] =M1[g] = 0 a.e., so
that g = 0 a.e., and we are in the setting of (c). �

6. A   

6.1. The bilinear form in higher dimensions. We present an analogue of Theorem 1.2 forRn,
n = 1, 2, 3, . . .; dvoln is volume measure in Rn. For f ∈ L2(Rn), let F(λ) be the function

(6.1) F(λ) =
∫
Rn

f̄ (x) f (λx) dvoln(x), λ ∈ R×.

This function arises if we write

F(λ) =
∫
Rn

∫
Rn

f̄ (x) f̂ (y)ei2πλ〈x,y〉dvoln(x)dvoln(y),

where

f̂ (y) =
∫
Rn

e−i2π〈x,y〉dvoln(x)

is the usual Fourier transform. Here,

〈x, y〉 = x1y1 + · · · + xnyn, x = (x1, . . . , xn), y = (y1, . . . , yn),

is the usual inner product in Rn.

6.2. The higher-dimensional extension of the generalized Beurling theorem. We can now
formulate the extension of Theorem 1.2 to the setting of Rn.

Theorem 6.1. Suppose f ∈ L2(Rn), and let F(λ) be given by (6.1) for λ ∈ R×. Suppose that F(λ) has
a holomorphic extension to a neighborhood of D̄ \ {±i}, such that∫

D

|F(λ)|2|λ2 + 1|n dA(λ) < +∞.

Then
(a) F(λ) ≡ c0(1 + λ2)−n/2 for some constant c0 ≥ 0, and
(b) if, in addition, we have infD |F(λ)|2|1 + λ2

|
n = 0, then F(λ) ≡ 0, and consequently f = 0 a.e.
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7. P     

Proof of Theorem 6.1. We indicate what differs from the case n = 1, which is covered by the proof
of Theorem 1.2. An exercise involving a change of variables shows that F(λ) has the symmetry
property

(7.1) F(λ) =
1
|λ|n

F̄
( 1
λ

)
, λ ∈ R×.

Let Jn(λ) be the function
Jn(λ) := (1 + λ2)n/2.

Next, we consider the function Φ := FJn, which is a well-defined and continuous along R,
while it defines a holomorphic function in (a neighborhood of) D̄ \ {±i}. Along the real line,
we have, in view of (7.1),

(7.2) Φ(λ) = F(λ)Jn(λ) =
1
|λ|n

Jn(λ)F̄
( 1
λ

)
=

(1 + λ2)n/2

|λ|n
F̄
( 1
λ

)
=
(
1 +

1
λ2

)n/2
F̄
( 1
λ

)
= Φ̄
( 1
λ

)
= Φ̄
( 1
λ̄

)
, λ ∈ R×.

As a consequence of the assumptions, Φ extends to a holomorphic function in C \ {±i}, which
is bounded in a neighborhood of infinity, by inspection of (7.2). The integrability assumption
of the theorem says that Φ is area-L2 integrable near {±i}, so that the singularities at ±i are
removable. Liouville’s theorem tells us that Φ is constant: Φ(λ) ≡ c0. That c0 ≥ 0 follows from

c0 = Φ(1) = Jn(1)F(1) = 2n/2
∫
Rn

f̄ (x) f (x)dvoln(x) = 2n/2
∫
Rn
| f (x)|2dvoln(x) ≥ 0.

This gives us the first assertion as well as the second. The proof is complete. �

R
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