
Stationary Phase

[Based on notes by Kim Petersen, TEX’ed by Jakob Østergaard Pedersen]
Introduction The stationary phase approximation deals with bounding the oscillation
of sine integrals. The methods were developed in the 19th century by George Gabriel
Stokes and Lord Kelvin.
We shall study integrals of the form

Iu,ϕ(λ) =
∫
Rn
u(x)eiλϕ(x)dx =

∫
Rn
ue−λϕdm , n ∈ N

for u ∈ C∞c (Rn), ϕ ∈ C∞(Rn,R) and λ ∈ R. Here u(x) is the amplitude and λϕ(x) is
the phase.

Example 1. When n = 1 and ϕ = −id we have

Iu,−id(λ) =
∫
R

u(x)e−iλxdx = Fu(λ)→ 0

as λ→ ±∞ by the Riemann-Lebesgue Lemma for u ∈ L1(R).

How does Iu,ϕ behave for general ϕ when λ→ ±∞? Actually, we see that

Iu,ϕ(−λ) =
∫
Rn
u(x)e−iλϕ(x)dx =

∫
Rn
u(x)eiλϕ(x)dx = Iu,ϕ(λ)

so we only need to concentrate on λ→∞.

Example 2. Setting n = 1, u > 0, and ϕ = 1 we get

Iu,1(λ) =
∫
Rn
u(x)eiλdx = eiλ‖u‖L1

so in this case the values of Iu,1 moves around the circle with centre 0 and radius ‖u‖L1

as depicted below.
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Theorem 3 (Principle of non-stationary phase). Let u ∈ C∞c (Rn) and let ϕ ∈ C∞(Rn,R)
such that ∇ϕ 6= 0 on supp u. Then

|Iu,ϕ(λ)| ≤ CN,u,ϕλ−N

for all N ∈ N0 and λ > 0.

Proof : First observe that on supp u we have

1
iλ

∇ϕ
|∇ϕ|2

· ∇eiλϕ =
1
iλ

∇ϕ
|∇ϕ|2

·
(
eiλϕ · iλ∇ϕ

)
= eiλϕ

so

Iu,ϕ(λ) =
1
iλ

∫
Rn
u
∇ϕ
|∇ϕ|2

∇eiλϕdm

= − 1
iλ

∫
Rn
∇
(
u · ∇ϕ
|∇ϕ|2

)
eiλϕdm

= − 1
iλ

∫
Rn
u1e

iλϕdm

= − 1
iλ
Iu1,ϕ(λ)

=
(
− 1
iλ

)2

Iu2,ϕ(λ)

...

=
(
− 1
iλ

)N
IuN ,ϕ(λ)

where ui = ∇
(
ui−1

∇ϕ
|∇ϕ|2

)
, i = 1, 2, . . . , N and u0 = u. Now using the triangle inequality

|Iu,ϕ(λ)| =

∣∣∣∣∣
(
− 1
iλ

)N
IuN ,ϕ(λ)

∣∣∣∣∣ ≤ λ−N
∣∣∣∣∫
Rn
uNe

iλϕdm

∣∣∣∣ = λ−N
∫

supp u
|uN |dm︸ ︷︷ ︸

:=CN,u,ϕ
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A consequence of this is that the essential contributions to the asymptotic behavior
of Iu,ϕ come from the stationary points of ϕ. (Recall that a stationary point is a point
x0 ∈ Rn where ∇ϕ(x0) = 0.) We shall in general assume that the stationary points of ϕ
satisfy det(∂i∂jϕ(x0))ij 6= 0, i.e. the stationary points are non-degenerate.

Lemma 4 (The Morse Lemma). Let x0 ∈ Rn be a non-degenerate stationary point
for ϕ ∈ C∞(Rn,R). Then there exists a neighbourhood V of x0 and U of 0, numbers
ε1, . . . , εn ∈ {±1} and a diffeomorphism H : V → U with H(x0) = 0 such that

ϕ ◦ H−1(x) = ϕ(x0) + ε1x
2
1 + . . .+ εnx

2
n = ϕ(x0) + 〈x, Ex〉

with E := diag(ε1, . . . , εn).

(Recall that a diffeomorphism is a bijective map with both it and its inverse being
differentiable.)

Remark. It can be shown that the number of +1’s amongst the ε1, . . . , ε2 is equal to the
number of positive eigenvalues of (∂i∂jϕ(x0))ij .

Remark. The lemma is named after Marston Morse for use in differential topology; he
wished to study the topology of a manifold using differential functions on that manifold.

Proof of the Morse Lemma: We first prove the theorem for x0 = 0 and ϕ(0) = 0 and
then apply the result to the function x 7→ ϕ(x+x0)−ϕ(x0). We shall prove the following
statement by induction:
For all N ∈ {1, 2, . . . , n + 1} there exists neighbourhoods Vn, Un ⊆ Rn of 0, a diffeo-
morphism HN : Vn → UN with HN (0) = 0, numbers εm ∈ {±1}, and a set of functions
{q(N)
ij | i, j ∈ N, N ≤ i, j ≤ n} with

iN ) q
(N)
ij ∈ C∞(Vn)

iiN ) q
(N)
ij = q

(N)
ji

iiiN ) q
(N)
lk (0) 6= 0 for some l, k (non-zero for some particular l, k)

such that

ϕ ◦ H−1(x) =
N−1∑
m=1

εmx
2
m +

∑
N≤i,j≤n

q
(N)
ij (x)xixj . (1)
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The sums are 0 if respectivelyN = 1 orN = n+1 (because i, j = 0 and thus xi = xj = 0).
Induction start (N = 1): We use Taylor’s formula, [GG, (A.8)] and obtain

ϕ(x) = ϕ(0 + x) =
∑
|α|<2

xα

α!
∂αϕ(0) +

∑
|α|=2

2
α!
xα
∫ 1

0
(1− θ)∂αϕ(θx)dθ

=
∑

1≤i,j≤n
q

(1)
ij (x)xixj

with

q
(1)
ij (x) =

2
i!j!

∫ 1

0
(1− θ)∂i∂jϕ(θx)dθ

This equality is not really obvious but by being careful with the indices it can be verified
Note also that in Rn, if |α| = 2, we have the following cases: Case 1: αi = 2 and αj = 0
for all j 6= i; Case 2: αi = 1, αj = 1 for each j, and αk = 0 for k 6= i, j (the αs are
pairwise 1).
We just need to verify the three conditions on q

(1)
ij :

i1) ϕ ∈ C∞(Rn) so q(1)
ij is too.

ii1) This is obvious.

iii1) q
(1)
ij (0) = 2

i!j!∂i∂jϕ(0)
[
θ − 1

2θ
2
]1
0

= 1
i!j!∂i∂jϕ(0) so the claim follows as 0 is a non-

degenerate stationary point for ϕ.

So the formula holds for N = 1.

Induction step: Assume (1) holds for some N ∈ {1, 2, . . . , n} and without loss of
generality we may furthermore assume that q(N)

NN (0) 6= 0. So by continuity of q(N)
NN there

exists a neighbourhood W ⊂ VN of 0 on which q
(N)
NN 6= 0, so setting εN = sign(q(N)

NN (0))
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we get

ϕ ◦ H−1(x) =
N−1∑
m=1

εmx
2
m +

∑
N≤i,j≤n

q
(N)
ij (x)xixj

=
N−1∑
m=1

εmx
2
m +

∑
N≤i,j≤n

q
(N)
ij (x)xixj

+
∑

N+1≤i,j≤n

q
(N)
Ni (x)q(N)

Nj (x)

q
(N)
NN (x)

xixj −
∑

N+1≤i,j≤n

q
(N)
Ni (x)q(N)

Nj (x)

q
(N)
NN (x)

xixj

=
N−1∑
m=1

εmx
2
m +

∑
N+1≤i,j≤n

q
(N)
ij (x)xixj +

∑
N≤i,j≤n
i=N∨j=N

q
(N)
ij xixj

+
∑

N+1≤i,j≤n

q
(N)
Ni (x)q(N)

Nj (x)

q
(N)
NN (x)

xixj −
∑

N+1≤i,j≤n

q
(N)
Ni (x)q(N)

Nj (x)

q
(N)
NN (x)

xixj

=
N−1∑
m=1

εmx
2
m + εN

√|q(N)
NN (x)|xN +

εN√
|q(N)
NN (x)|

n∑
j=N+1

q
(N)
Nj (x)xj

2

+
∑

N+1≤i,j≤n

q(N)
ij (x)−

q
(N)
Ni (x)q(N)

Nj (x)

q
(N)
NN (x)

xixj

This stems from

`N :=
√
|q(N)
NN (x)|xN +

εN√
|q(N)
NN (x)|

n∑
j=N+1

q
(N)
Nj (x)xj ;

εN (`N )2 = εN

|q(N)
NN |x

2
N +

ε2
N

|q(N)
NN |

 n∑
j=N+1

q
(N)
Nj xj

( n∑
i=N+1

q
(N)
Ni xi

)
+ 2εN

n∑
j=N+1

q
(N)
Nj xNxj


=

∑
N+1≤i,j≤n

q
(N)
Ni q

(N)
Nj

q
(N)
NN

xixj +
∑

N≤i,j≤n
i=N∨j=N

q
(N)
ij xixj

and ∑
N≤i,j≤n

q
(N)
ij (x)xixj =

∑
N≤i,j≤n
i=N∨j=N

q
(N)
ij xixj +

∑
N+1≤i,j≤n

q
(N)
ij (x)xixj
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Consider then `N . This is a C∞-function on W with

∂k`N (x) =


0 , 1 ≤ k < N

εNq
|q(N)
NN (x)

 n∑
j=N

∂kq(N)
Nj (x)−

∂kq
(N)
NN (x)q(N)

Nj (x)

2q(N)
NN (x)

xj + q
(N)
Nk (x)

 , N ≤ k ≤ n
,

so defining H : W → Rn by

H(x) = (x1, x2, . . . , xN−1, `N (x), xN+1, . . . , xn)− (y1, . . . , yN , . . . , yn)

gives a C∞-map with

det JH(0) =
N ’th→

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
. . .

1
εN q

(N)
NN (0)q
|q(N)
NN (0)|

εN q
(N)
N(N+1)

(0)q
|q(N)
NN (0)|

. . .
εN q

(N)
Nn (0)q
|q(N)
NN (0)|

1
. . .

1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
√
|q(N)
NN (0)| 6= 0

where JH is the Jacobian of H with 0s everywhere else. The Inverse Function Theorem
gives then the existence of open sets VN+1 ⊂ W,UN+1 ⊂ Rn such that 0 ∈ VN+1, 0 =
H(0) ∈ UN+1, and H|VN+1

is a diffeomorphism VN+1 → UN+1.
Hence

(ϕ ◦ H−1
N ◦ H|

−1
VN+1︸ ︷︷ ︸

H−1
N+1 diffeomorphism

)(y) =
N−1∑
m=1

εmy
2
m + εNy

2
N +

∑
N+1≤i,j≤n

q(N)
ij −

q
(N)
Ni q

(N)
Nj

q
(N)
NN

 ◦ H|−1
VN+1

(y)

︸ ︷︷ ︸
q
(N+1)
ij (y)

yiyj

=
N∑
m=1

εmy
2
m +

∑
N+1≤i,j≤n

q
(N+1)
ij (y)yiyj

where q(N+1)
ij satisfies iN+1)-iiiN+1):

iN+1) q
(N+1)
ij ∈ C∞(VN+1): q(N)

ij is C∞ so this is trivial

iiN+1) q
(N+1)
ij = q

(N+1)
ji : Obvious

iiiN+1) q
(N+1)
lk (0) 6= 0: By the chain rule

(∂l∂k(ϕ ◦ H−1
N+1)(0)) = [DH−1

N+1(0)]T (∂i∂jϕ(0))DH−1
N+1(0)

so [iiiN+1)]r would imply that det(∂i∂jϕ(0)) = 0
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It is left as an exercise to apply the result to the function x 7→ ϕ(x+ x0)− ϕ(x0). Thus
The Morse Lemma is proved.

A consequence of The Morse Lemma is the following corollary, which will not be proved:

Corollary 5. A non-degenerate stationary point x0 of ϕ ∈ C∞(Rn,R) is an isolated
stationary point.

Furthermore, the compact set supp u can only contain finitely many non-degenerate
stationary points of ϕ. Let {Oj}Nj=0 be a finite open cover of supp u such that Oj contains
precisely one stationary point of ϕ as shown on the picture below.

Then Partition of Unity [GG, Theorem 2.17] gives that for ψj ∈ C∞c (Oj , [0, 1]) with∑N
j=0 ψj = 1 on supp u, we have

Iu,ϕ(λ) =
N∑
j=0

∫
Rn
ψj(x)u(x)eiλϕ(x)dx =

N∑
j=0

Iuψj ,ϕ(λ) , ψju ∈ C∞c (Oj)

so we can assume that ϕ has one and only one stationary point in supp u. (In the above,
we just multiplied with 1 under the integral.)

The Morse Lemma inspires us to consider the case ϕ(x) = 〈x,Ax〉, where A is a real,
symmetric, and invertible n× n-matrix. We need the following lemma:

Lemma 6. Let A be a real, symmetric, and invertible n× n-matrix.

F(eiλ〈x,Ax〉)(ξ) =
(

det
(
A

πi

))− 1
2

λ−
n
2 e−i

〈ξ,Aξ〉
4λ .

Proof : The Lemma will not be proved but it follows from Exercise 1a) with B = −iλA
and then some convergence analysis of B + εI as ε→ 0+.

Proposition 7. Let A be a real, symmetric, and invertible n × n-matrix. Then for all
u ∈ C∞c (Rn), λ > 0, and all integers k > 0 and s > π

2 we have∣∣∣∣∣∣Iu,〈x,Ax〉(λ)−
(

det
(
A

πi

))− 1
2

·
k−1∑
j=0

〈D,A−1D〉ju(0)
(4i)jj!

λ−
n
2
−j

∣∣∣∣∣∣ ≤ Ck
(∥∥A−1

∥∥
λ

)n
2

+k∑
|α|≤s+2k

‖Dαu‖L2
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where D = 1
i (∂1, . . . , ∂n) as usual.

Proof : First note that

Iu,〈x,Ax〉(λ) =
∫
Rn
u(x)eiλ〈x,Ax〉dx

F−1 = (2π)−nF → = 〈eiλ〈x,Ax〉,F(2π)−nFu〉

=
(

det
(
A

πi

))− 1
2

λ−
n
2 (2π)−n

∫
Rn
e0
(
e−i

〈ξ,Aξ〉
4λ Fu(ξ)

)
dξ

=
(

det
(
A

πi

))− 1
2

λ−
n
2F−1

(
e−i

〈ξ,Aξ〉
4λ Fu

)
(0)

so ∣∣∣∣∣∣Iu,〈x,Ax〉(λ)−
(

det
(
A

πi

))− 1
2

·
k−1∑
j=0

λ−
n
2
−j 〈D,A−1D〉ju

(4i)jj!
(0)

∣∣∣∣∣∣
2

=
∣∣∣∣det

(
A

πi

)∣∣∣∣−1

︸ ︷︷ ︸
∝|det(A−1)|≤‖A−1‖n

λ−n

∣∣∣∣∣∣F−1
(
e−i

〈ξ,Aξ〉
4λ Fu

)
(0)−

k−1∑
j=0

λ−j
〈D,A−1D〉ju

(4i)jj!
(0)

∣∣∣∣∣∣
2

.

(∥∥A−1
∥∥

2

)n ∥∥∥∥∥∥F−1
(
e−i

〈ξ,Aξ〉
4λ Fu

)
−
k−1∑
j=0

λ−j
〈D,A−1D〉ju

(4i)jj!

∥∥∥∥∥∥
2

∞

(Sobolev) .

(∥∥A−1
∥∥

2

)n ∑
|α|≤s

∥∥∥∥∥∥DαF−1
(
e−i

〈ξ,Aξ〉
4λ Fu

)
−Dα

k−1∑
j=0

λ−j
〈D,A−1D〉j

(4i)jj!
u

∥∥∥∥∥∥
2

L2

(Parseval) w

(∥∥A−1
∥∥

2

)n ∑
|α|≤s

∥∥∥∥∥
∣∣∣∣∣∣e−i 〈ξ,Aξ〉4λ −

k−1∑
j=0

λ−j
〈ξ, A−1ξ〉j

(4i)jj!

∣∣∣∣∣∣︸ ︷︷ ︸
(∗)

FDαu

∥∥∥∥∥
2

L2

.

(∥∥A−1
∥∥

2

)n ∑
|α|≤s

∥∥∥∥ ∣∣∣∣〈ξ, A−1ξ〉
λ

∣∣∣∣k︸ ︷︷ ︸
≤(‖A−1‖/λ)k|ξ|2k

FDαu

∥∥∥∥2

L2

.

(∥∥A−1
∥∥

2

)n+2k ∑
|α|≤s

‖Dαu‖2L2

Note that the Dα act on Fu and u respectively in the above 4th line, (Sobolev) refers to
Sobolev’s Embedding Theorem [GG, Theorem 6.11], (Parseval) refers to the Parseval-
Plancherel Theorem [GG, Theorem 5.5], and we remark that putting w = −i 〈ξ,Aξ〉4λ , we
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get that

(∗) =

∣∣∣∣∣∣ew −
k−1∑
j=0

wj

j

∣∣∣∣∣∣ ≤
∣∣∣∣ kk!

wk
∫ 1

0
(1− θ)k−1eθwdw

∣∣∣∣ ≤ |w|kk!

where the first inequality follows from Taylor’s formula, [GG, (A.8)], and the second
inequality stems form w being imaginary.
The desired result follows now by taking square roots on both sides and using the fact
that

√
a+ b ≤

√
a+
√
b for a, b ≥ 0.

Now for the main theorem:

Theorem 8 (Principle of stationary phase). Let u ∈ C∞c (Rn) and consider a ϕ ∈
C∞(Rn,R) with one and only one stationary point x0 in supp u; this is assumed to be
non-degenerate. Then for all integers k > 0 we have∣∣∣∣∣∣Iu,ϕ(λ)− eiλϕ(x0)

k−1∑
j=0

Tju(x0)λ−
n
2
−j

∣∣∣∣∣∣ ≤ Ck,n,u,ϕλ−n2−k,
where Tj is a differential operator of order 2j with C∞-coefficients.

Proof : Let H : V → U be as in Morse’s Lemma and choose χ ∈ C∞c (V ) with χ = 1
near x0.

Then

Iu,ϕ(λ) =
∫
V
eiλϕ(x)(χu)(x)dx+

∫
Rn
eiλϕ(x)[(1− χ)u](x)dx

=
∫
U
eiλϕ◦H

−1(x)(χu) ◦ H−1(x)
∣∣det(JH−1(x))

∣∣ dx+ I(1−χ)u,ϕ(λ)

=
∫
U
eiλϕ(x0)+〈x,Ex〉fu(x)dx+ I(1−χ)u,ϕ(λ)

= eiλϕ(x0)Ifu,〈x,Ex〉(λ) + I(1−χ)u,ϕ(λ)

where fu ∈ C∞c (Rn). Then by setting

Tju =
(

det
(
E
πi

))− 1
2 〈D, E−1D〉jfu

(4i)jj!
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and letting s be the smallest integer > n
2 we get∣∣∣∣∣∣Iu,ϕ(λ)− eiλϕ(x0)

k−1∑
j=0

Tju(x0)λ−
n
2
−j

∣∣∣∣∣∣
≤

∣∣∣∣∣∣Ifu,〈x,Ex〉(λ)−
(

det
(
E
πi

))− 1
2
k−1∑
j=0

〈D, E−1D〉jfu
(4i)jj!

∣∣∣∣∣∣+
∣∣I(1−χ)u,ϕ(λ)

∣∣
≤ Ck

∥∥E−1
∥∥n2 +k ∑

|α|≤2k+s

‖Dαfu‖L2 λ
−n

2
−k + C ′k,n,u,ϕλ

−n
2
−k

≤ Ck,n,u,ϕλ−
n
2
−k

as we wanted.

Remark. Observe that by definition of Tj and fu we have

T0u(0) =
(

det
(
E
πi

))− 1
2

fu(0) =
(

det
(
E
πi

))− 1
2 ∣∣det JH−1(0)

∣∣u(x0) = C∂i∂jϕ(x0))iju(x0)

so ∣∣∣Iu,ϕ(λ)− C(∂i∂jϕ(x0))ije
iλϕ(x0)u(x0)λ−

n
2

∣∣∣ ≤ Ck,n,u,ϕλ−n2−1.

For further studies of methods of stationary phase, one could consider Iu,ϕ(λ) with
complex λ and/or ϕ, or one could remove the smoothness assumption on u and ϕ, or
one could allow degenerate stationary points of ϕ on supp u.
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