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CONVEXITY AND FIXED POINT THEOREMS

2.1. Kakutani-Markov fixed point theorem

In the next two sections we describe fixed point theorems
which in particular will yield results about the existence of in-
variant finite measures for certain group actions.

DEFINITION 2.1.1. If a group G acts on a space X a pointz € X
is called a fixed point if gz = z for all g.

We recall that an action of the group Z on X is specified by
giving a single invertible map ¢: X — X. In this case, there are
some fixed point theorems known by topological methods. For
example, the Brouwer fixed point theorem asserts that any contin-
uous map ¢: X — X has a fixed point if X is homeomorphic to
the closed ball in R™. It is clear, however, that one may have home-
omorphisms of other spaces with no fixed points. For example, a
non-trivial rotation of the circle clearly has no fixed points. Any
fixed point of course defines an invariant measure by taking the
point mass at the fixed point. On the other hand, rotation on the
circle, while having no fixed points, clearly leaves the arc length
measure invariant. The Kakutani-Markov theorem, which is the
main goal of this section, implies that every homeomorphism of a
compact space has an invariant measure. There are two main ingre-
dients. First is the compactness of M(X) in the weak-*-topology
(Corollary 1.1.29). The other is convexity.

DEFINITION 2.1.2. If E is a vector space, a set A C E is called
convex ifz,y € A, t € [0,1) implies tz + (1 — t)y € A.

EXAMPLE 2.1.3: (a) If E is a vector space and || || is a seminorm on
E, then open or closed || ||-balls around any point z¢ (i.e. {z}|lz—
zol] < r} or {z ] ]|z — zo]| < r}) are convex.

(b) If X is a compact space, M(X) C C(X)"* is convex.
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(c) If X € E* (and k = R), then for any r € R, {z € E| Mz) < r}
and {z | A(z) < r} are convex.

(d) If {A,]} are convex sets, so is (] Aq-

(e) If E is a TVS and A C E is convex, so is A.

DEFINITION 2.1.4. (a) If A C E, we define the convex hull of A,
denoted by co(A), to be the unique smallest convex set containing
A. This exists by 2.1.3 (d) and isequal to(\{B C E|AC B and B
is convex}.

(b) IfE is a TVS, and A C E, we define the closed convex hull,
denoted by co(A), to be the unique smallest closed convex set con-
taining A. By 2.1.3 (d), (e), ©6(A) = co(A) = N{BC E|AC
B and B is closed and convex}.

TuneoreM 2.1.5. (Kakutani-Markov) Let E be a TVS whose topol-
ogy is defined by a sufficient family of seminorms. Suppose G is an
abelian group and x: G — Aul(FE) is a representation. Let AC E
be a compact convex set that is G-invariant, i.e. x(9)A C A for all
g € G. Then there is a G-fixed point in A.

PRrooF: For each ¢ € G and n > 0, define M, , € B(F) by
My = L5720 7(g%). Since A is convex and G-invariant, we have
M, 4(A) C A for all n,g. Let G* be the semigroup of operators
generated {M,, [n > 0,9 € G}, (i.e. all finite compositions of
such operators). Since G is abelian, G* is commutative and we
clearly have T(A) C A for all T € G*. We claim (peg. T(A) # &,
and that every element is a G-fixed point. To see the intersection is
non-empty, since each T'(A) is compact (since A is compact and T
is continuous), it suffices to see that for any finite set Ty, ...,T,, €
G*,Ni-1 Ti(A) # ¢. However, if welet S =Tyo---0T, € G*, then
S(A) C T\ (Ta0---0Ty(A)) C T1(A). Since G* is commutative, we
also have S = T0T\0:--0T,, and hence S(A) C T>(A). Similarly,
S(A) C T;(A) for each i, showing that ¢ # S(A) C NTi(4).
Now suppose y € (\reg. T(A). Then for each n > 0 and g € G,
there is some z € A such that y = Y(z + ...+ x(¢"~1)z). Then
#(9)y — y = (x(g")z — z)/n. Let || || be one of the seminorms
defining the topology. Then for each n we have ||x(9)y—y|| < 2B/n
where B = sup{||e|| | a € A}. (This exists since 4 is compact and
| I: E — R is continuous by definition.) Since this is true for all
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n, ||#(9)y — vl| = 0, and since this is true for all seminorms in a
sufficient family, x(g)y = y for any ¢ € G.

COROLLARY 2.1.6. Let G be an abelian group acting continuously
on a compact metric space X. Then there is a G- invariant prob-
ability measure on X.

ProoOF: M(X) C C(X)* is compact, convex with the weak-*-
topology. By 1.3.13, 1.3.14 we have a representation of G on C(X)*
leaving M(X) invariant. Thus, Theorem 2.1.5 implies the result.

EXAMPLE 2.1.7: 1t is not true that any group acting on a compact
metric space has an invariant measure. For example, if we let
¢1: [0,1] — [0,1] be p1(z) = z2, the only invariant probability
measures are supported on {0,1}. (See exercise 2.9.) Thus, if
we identify ¢, with a homeomorphism of S! by identifying 0 and
1, we obtain a homeomorphism whose only invariant measure is
supported at a given point zo. Let ¢2 be any homeomorphisin
of S! moving zo, e.g. a rotation. Then the (non-abelian) group
generated by ), ¢2 has no invariant measure on S!.

2.2. Haar measure for compact groups

Let G be a topological group. Then G acts on itself by left
(or right) translation. l.e. for g € G, we define the action of
gon G to be g - h = gh, where gh is simply multiplication. Under
the assumption that G is locally compact, the following theorem
asserts that there is always an essentially unique invariant measure.
This result is fundamental for many aspects of the study of such
groups.

THEOREM 2.2.1. (Haar) Let G be a locally compact (second count-
able) group. Then:
(i) There is a measure p which is invariant under left transla-
tions and is finite on compact subsets.
(ii) p is unique up to positive scalar multiple.
(iii) The measure class of p is the unique invariant measure
class. More precisely if v is a measure such that g,v ~ v (i.e.
they have the same null sets), then v ~ p.
(iv) #(G) < oo if and only if G is compact.
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ABSTRACT. A simple proof of the existence of Haar measure on locally com-
pact abelian groups is given. The proof uses the Markov-Kakutani fixed-point
theorem.

It is very well known that every locally compact group has a Haar measure
and that the Haar measure is unique up to a positive multiplicative constant.
Several different proofs have been given, all of them somewhat difficult. (See
[N] for two proofs as well as references to others). In most of these proofs,
the existence and uniqueness of Haar measure are established separately. For
compact groups, a simple proof of the existence and uniqueness of Haar measure
was given by von Neumann [vN], and his proof can be made even simpler by
using the Kakutani fixed-point theorem (see [R2]). For locally compact abelian
groups, uniqueness of Haar measure is easily established (see [R1, p. 2]). The
purpose of this short note is to present a simple proof of the existence of Haar
measure for these groups. The proof will make use of the Markov-Kakutani
fixed-point theorem, which we recall below. It is known that this fixed-point
theorem can be used to prove that every locally compact abelian group has an
invariant mean (see [P, p. 113]). For compact groups an invariant mean and a
Haar measure are the same thing, but for noncompact groups this is obviously
not the case.

Theorem (Markov-Kakutani). Let K be a nonempty compact convex subset
of a ( Hausdorf') topological vector space. Let & be a commuting family of
continuous affine mappings of K into itself. Then there exists a point p € K
such that Tp=p forall T €¢ & .

A proof can be found in [C, pp. 155-156]. (There the theorem is stated only
for locally convex spaces, but local convexity is not needed in the proof.)
We will also need two lemmas.
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Lemma 1. Suppose G is a topological group and N is a neighborhood of the
identity in G that is symmetric (i.e, N~! = N). Then there exists a subset S
of G such that for each g in G the set gN +- N contains at least one element
of S and the set gN contains at most one element of S .

Proof. Let & Dbe the collection of all subsets 7" of G such that
plq¢ N-N forallp,qgeT.

By applying Zorn’s lemma, we see that & has a maximal element S. Now if
g € G, then there is some s in S such that g~!s € N- N, for otherwise the set
S U{g} would be a member of & strictly containing .S. Moreover, if there
were two distinct points s;, s, in S such that both g~ !s; and g—'s, were in
N , then we would have s;'s, =s7!gg~1s, € N~!-N = N-N, a contradiction.
Thus, there is at most one s in S such that g-lse N. O

Lemma 2. Let X be a vector space, and let X* denote the space of all linear
Sfunctionals on X with the weak *-topology (i.e., the weak topology induced by
X). If K is a closed subset of X* such that for each x € X theset {Ax : A € K}
is bounded, then K is compact.

The proof of this lemma is very similar to the proof of the Banach-Alaoglu
theorem and is essentially contained in [DS, pp. 423-424]. A more succinct
statement of the conclusion is that every closed bounded set in X* is compact.

Proof of the existence of Haar measure on locally compact abelian groups. Let G
be a locally compact abelian group. Let C.(G) denote the space of compactly
supported continuous functions on G, and let C.(G)* denote the space of a//
linear functionals on C.(G) with the weak *-topology (i.e., the weak topology
induced by C.(G)). If f e C.(G) and a € G, then f, (the translate of f by
a)isdefined by f;(x)=f(a+x). Foreach a in G, define T, : C.(G)* — C.(G)*
by the equation

(TA) () =Alfa) (A€ C(G), [feCl(G)).

Then each T, is a continuous linear operator. To establish the existence of
Haar measure on G we must simply show that there is a nonzero positive
linear functional on C.(G) that is fixed by every T,.

Fix a symmetric neighborhood N of the identity in G with compact closure.
Let K be the set of positive linear functionals A on C.(G) that satisfy the
following two conditions:

(i) A(f) < 1 whenever f is a nonnegative function in C.(G) that is
bounded above by 1 and whose support is contained in a+ N for some
aeG,and

(i) A(f)>1 whenever f is a nonnegative function in C,(G) that is equal
tolon a+ N+ N forsome ac G.

Then K is clearly closed and convex in C.(G)*. Moreover, by a partition of
unity argument every nonnegative function in C.(G) can be written as a finite
sum of nonnegative continuous functions each of which has supportin a + N
for some a € G. It follows that condition (i) in the definition of K implies that
for each function f in C.(G), the set {A(f): A € K} is bounded. Therefore
by Lemma 2, K is compact.
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Let S be as in Lemma 1, and note that the functional that consists of a point
mass at each point of S (i.e., the functional f — 3 ¢ f(s)) isin K. Thus
K is nonempty.

It is clear from the definition of K that each of the operators 7, maps K
into itself. Hence, since the operators T, (a € G) form a commuting family,
the Markov-Kakutani fixed-point theorem shows that they have a common fixed-
point in K . Since all the elements of K are nonzero positive linear functionals
on C.(G), the proof is complete. 0O
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