9. Übungsblatt zur Funktionalanalysis

Aufgabe 41 schwach-* Folgenkompaktheit

Sei X ein Banachraum. Man zeige, dass die abgeschlossene Einheitskugel $B_{X'}:=\{x'\in X':\|x'\|\leq 1\}$ schwach-* folgenkompakt ist, d.h. jede Folge $\{x'_n\}_{n\in\mathbb{N}}\subset B_{X'}$ eine in $B_{X'}$ bezüglich der $\sigma(X',X)$ -Topologie konvergente Teilfolge besitzt.

Aufgabe 42

Sei X ein reflexiver Banachraum und $A \in \mathcal{L}(X)$. Man zeige: Das Bild der Einheitskugel in X unter A ist abgeschlossen.

Aufgabe 43 Satz von Atkinson

Für $A \in \mathcal{L}(X,Y)$ sind folgende Bedingungen äquivalent:

- a) Es existiert $B \in \mathcal{L}(Y, X)$, so dass $BA \mathrm{Id}$ und $AB \mathrm{Id}$ kompakt sind.
- b) Bild A ist abgeschlossen, und ker A und Y/Bild A sind endlichdimensional.

 $Hinweis\ zu\ b) \Rightarrow a)$: Nach Übungsblatt 4 ist $X = \ker A \oplus \tilde{X}$. Der Satz von der offenen Abbildung gibt Ihnen eine stetige Inverse von $A|_{\tilde{X}}$ auf das Bild von A. Setzen Sie diese durch 0 fort. Bemerkung: Die Bedingung aus b), dass Bild A abgeschlossen sei, ist automatisch erfüllt.

Aufgabe 44 Index eines Fredholmoperators

Ein Operator, der die Bedingungen in Aufgabe 43 erfüllt, wird als Fredholmoperator bezeichnet. Man definiert index $A = \dim \ker A - \dim Y / \text{Bild } A$. Beweisen Sie:

- a) Sind $A \in \mathcal{L}(X,Y)$, $B \in \mathcal{L}(Y,Z)$ Fredholm, so auch BA, und es ist index BA = indexA + indexB.
- b) Ist $A \in \mathcal{K}(X)$, so ist $\mathrm{Id} + A$ Fredholm und index $(\mathrm{Id} + A) = 0$.
- c) Ist A Fredholm und BA Id und AB Id kompakt, so ist auch B Fredholm mit Index –index A.
- d) Ist A Fredholm und $B \in \mathcal{K}(X,Y)$, so ist A+B Fredholm und index (A+B)= index A.
- e) Die Operatoren $L, R \in \mathcal{L}(\ell^2(\mathbb{N})), L(x_1, x_2, x_3, \dots) = (x_2, x_3, \dots), R(x_1, x_2, x_3, \dots) = (0, x_1, x_2, \dots),$ sind Fredholm. Was sind Ihre Indizes?
- f) Die Ableitung $\partial_x: C^1_{2\pi} \to C^0_{2\pi}$ auf den 2π -periodischen Funktionen auf $\mathbb R$ ist ein Fredholmoperator. Was ist ihr Index?
- g) Die Ableitung $\partial_x: C^1_{2\pi,-} \to C^0_{2\pi,-}$ auf den getwistet-periodischen Funktionen auf \mathbb{R} mit $f(x+2\pi) = -f(x)$ ($x \in \mathbb{R}$) ist ein Fredholmoperator. Was ist ihr Index?

Aufgabe 45 $approximative \ Orthonormal basen$

Sei H ein Hilbertraum mit Orthonormalbasis $\{e_j\}_{j\in J}$. Gegeben sei eine Menge $\{f_j\}_{j\in J}\subset H$ mit $f_k\not\in\overline{\operatorname{span}\{f_j:j\neq k\}}$ für alle $k\in J$ und $\sum_{j\in J}\|e_j-f_j\|^2<\infty$. Zeigen Sie, dass jedes $x\in H$ eine eindeutige Darstellung $x=\sum_{j\in J}a_jf_j$ mit $\sum_{j\in J}|a_j|^2<\infty$ besitzt.

 $Hinweis: Die \ Abbildung \ B: H \to H, \ \sum_{j \in J} a_j e_j \mapsto \sum_{j \in J} a_j f_j, \ erf \ddot{u}llt \ B - \mathrm{Id} \in \mathcal{K}(H), \ \ker B = \{0\} \ und f_j \in \mathcal{K}(H), \ \ker B = \{0\} \ u$ somit Bild B = H.