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Recall the basic processes at the individual level

• A signal of some sort

• Transduction of the signal into ‘information’ that can affect movement

Outside

Inside

Signal Transduction

Internal Response 

Signal Propagation

External Signal External Signal 

Signal Detection
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• Movement – which of course involves mechanics
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The components in an integrated description

     Signal Detection 

  and Transduction

Control of Motile  

     Behavior

Population Level Behavior
     and Descriptions
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Some basic questions posed by the modelling
process

• How does one obtain ‘simple’, stereotypical dynamical behavior from complex

networks reliably? Is there a canonical topological structure in the networks or must

one analyze each individually? Is there a heirarchy of feedbacks that produces this?

• How does one determine when stochastic effects are important in signal transduction,

gene control, etc? What are the mechanisms that have evolved to cope with noisy

signals? Is noise ever advantageous?

• Once we understand the normal or standard behavior, can we predict how changes in

inputs, parameters, and the pattern of interactions affect this behavior? Are there

tools we can use to understand the different effects of parametric versus structural

changes?

• Can one develop hierarchical averaging or homogenization techniques that enable us

to embed information about microscopic-level processes into ‘population-level’

descriptions?

• More generally, what new mathematical and computational tools are needed to

analyze complex biological systems ?
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From micro- to macro- in E. Coli
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E. colias a model system

Counterclockwise rotation (CCW): ‘runs’

Clockwise rotation (CW) : ‘tumbles’

Bias: Probability of CCW i.e., probability of run-

ning
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E. coli also adapt to constant stimuli

Clearly adaptation is essential for aggregation! This is probably also the case for P. mirabilis

but is not the case for amoeboid cells; they can aggregate in steady gradients without adap-

tation, but not in periodic waves of attractant.
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Signal transduction in E. coli
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P. Spiro, et al., A model of excitation and adaptation in bacterial chemotaxis, PNAS, 94, 7263-7268, (1997).
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The Tar receptor
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The underlying network

There are 158 variables, but on a relevant time scale this can be reduced

to 16, and with some approximation, to 4.

Xiangrong Xin and Hans G. Othmer A ‘trimer of dimers’- based model for the chemotactic signal transduction network

in bacterial chemotaxis, Bull Math Biol (2012).
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Simple response from a complex network

Even though the network is very complicated, the input-output behavior is very simple! This

may be a common (and highly adaptive) phenomenon in signal transduction networks.

The big question is how to extract this from the full model!
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A cartoon model for internal dynamics

Excitation

Change

Adaptation

Response
Signal 

dy1
dτ

=
g(S(τ))− (y1 + y2)

τE
,

dy2
dτ

=
g(S(τ))− y2

τA
, Response = h(y1)

If τE << τA, then for τ >> τE , y1 relaxes to y1 ∼ τAẏ2. In a steady linear gradient of

attractant

dS

dt
= v · ∇S,

and u ≡ ẏ2 is given by

u(T ) = e−T/τAu(0)± Ωf(T )

Ω ≡ |v|S′ f(T ) = (1− e−T/τA)
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Now we can see why adaptation is essential ..

For steps of fixed length we can write

un ≡ u(nT ) = λ0un−1 ± λ1

un = λn0u0 + λ1
[

±λn−1
0 ± λn−2

0 + · · · ± λ0
]

Consider two realizations, right-left and left-right:

u−(2T ) = e−T/τAu+(T )− Ωf(T )

= e−2T/τAu(0)− Ωf2(T )

u+(2T ) = e−T/τAu−(T ) + Ωf(T )

= e−2T/τAu(0) + Ωf2(T ).
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Spatial pattern formation in bacteria

E. Ben-Jacob and H. Levine, Self-engineering capabilities of bacteria, J. R. Soc. Interface, 3, 197-214, (2006)
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Pattern formation in E. coli

Basic experimental facts

• Cells are chemotactic towards aspartate; asp− cells do not aggregate

• Cells still use the ‘run-and-tumble’ strategy

• Cells can become nonmotile, which leads to stable spots

• Succinate is the primary carbon source

• Cells produce and secrete aspartate via the TCA cycle, but when starved they consume

it

• Cells double every 2 hours

E. O. Budrene and H. C. Berg, Dynamics of formation of symmetrical patterns by chemotactic bacteria, Nature, 376,

49–53 (1995).
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Spatial pattern formation in bacteria

first  generation and progeny 

second generation

Early phase Early stage of formation of 
the next ring

E. O. Budrene and H. C. Berg – Complex patterns formed by motile cells of E. coli Nature 349 630-3 (1991).
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Are cell-based computational models feasible?

• For a single bacterium certainly ! We have one ...

• What about for spatial patterns?

Consider the Budrene-Berg experiments, and suppose we innoculate with 1000 cells

in a spot. Cells divide every two hours, so after 3 days we have

103 · 236 ∼ ×1015 cells

Suppose we also need 10 internal variables for each cell.

Thus .......

A Monte Carlo simulation of the stochastic process may be feasible for the

first few division cycles, but certainly not later !!

• We need a higher-level description .........
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The phenomenological approach to chemotaxis

Let Ω ⊂ Rn be compact with smooth boundary, let n be the ‘particle’ density,

and let v be the ‘attractant’ density.

nt = ∇ · (∇n− n∇Φ(v))

= ∇ · (∇n− nχ∇v)

vt = D∆v + f(n, v)

nn = vn = 0

Chemotactic Sensitivity: χ ≡ Φv(n, v, x, . . . )

Chemotactic Velocity: uc = ∇Φ = χ∇v

Fundamental question: Given a microscopic model of individual cells, how does one obtain the chemotactic

sensitivity ?
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A brief history of work on chemotaxis ..

(1) Patlak BMB (1952) - ‘First’ derivation of equations

(2) Keller/Segel JTB (1970) - Applications to bacterial chemotaxis

(3) Childress/Percus MBS (1981) - First analysis of blowup

(4) Alt (1982) Diffusion limits of a stochastic process

(5) Rivero, et al. (1989) Incorporation of adaptation

(6) Jager/Luckhaus, (1992) - Blowup

(7) Rascle/Ziti (1995) - Blowup

(7) Herrero/Velazquez (1996) - Blowup

(7) Othmer/Stevens (1997) - Aggregation/blowup w/o diffusion of attractant

(9) Hillen/Othmer (2000,02) - Diffusion limits of the velocity-jump process

(10) Stevens (2000) - Derivation from interacting particle systems

(11) Dirk Horstmann (2003) Jahresber. Deutsch. Math.-Verein.,— review articles

12) Erban /Othmer (2004,2005) - Embedding microscopic behavior into macroscopic equations

(13) Erban, Othmer, Kevrekidis (2006)- A new computational approach to particle systems

(14) Dolak/Schmeiser (2004), Erban /Othmer (2007) The ’back-of-the-wave’ problem

(15) Xue/Othmer (2009) A new moment method

Most of these do not address the question of how one embeds microscopic (e.g, cell-level) behavior into macroscopic

equations, or they do so phenomenologically!
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A 1D example of a velocity-jump process

∂p+

∂t
+
∂(s+p+)

∂x
= −λ+p+ + λ−p−

x ∈ (0, L)
∂p−

∂t
− ∂(s−p−)

∂x
= λ+p+ − λ−p−.

Case I: λ and s± = s = const p ≡ p+ + p− j ≡ (s+p+ − s−p−) λ+ = λ−

∂p

∂t
+
∂j

∂x
= 0

∂j

∂t
+ 2λj = −s+ ∂

∂x
(s+p+)− s−

∂

∂x
(s−p−) + λ(s+p− − s−p+)

∂2p

∂t2
+ 2λ

∂p

∂t
= s2

∂2p

∂x2

The diffusion equation results by formally taking the limit λ → ∞, s → ∞ with s2/λ ≡ 2D
constant, but this can be made more precise.
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Reduction to a diffusion process

The solution when the spatial domain is the entire line is

p(x, t) =







e−λt

2

(

δ(x− st) + δ(x+ st) +
λ

s

[

I0(Λ) +
λt

Λ
I1(Λ)

])

|x| < st

0 |x| > st

Here I0 and I1 are modified Bessel functions of the first kind. If we make use of the asymp-

totic expansions

I0(z) =
ez√
2πz

+O
(

1

z

)

I1(z) =
ez√
2πz

+O
(

1

z

)

as z → ∞

we see that

p(x, t) =
1√
4πDt

e
−
x2

4Dt + e−λtO(ξ2) ξ2 ≡ (x/st)2
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Reduction to a diffusion process

Thus the telegraph process reduces to a diffusion process on short space scales and long

time scales. This fact was known to Einstein and this process has since been studied by

many.

If we define τ = ǫ2t and ξ = ǫx, where ǫ is a small parameter, then we obtain

ǫ2
∂2n

∂τ2
+ 2λ

∂n

∂τ
= s2

∂2n

∂ξ2
. (1)

The diffusion regime defined by the exact solution now becomes

x

st
= ǫ

ξ

sτ

and this requires only that ξ/(sτ) ≤ O(1). This shows that the approximation of the tele-

graph process by a diffusion process hinges on the appropriate relation between the space

and time scales, not necessarily on the limit of speed and turning rate tending to infinity

Theorem For Neumann data on the boundary there are no nonconstant time-invariant solu-

tions when the speed and turning rate are constant.
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Other cases

Case II: λ constant, speed dependent on direction

Here one finds that the time-independent solutions are given by

p+(x) =

[

s+(0)p+(0)

s+(x)

]

e
λ

∫ x

0

s+ − s−

s+s−
dξ

≡ p+(0)F+(x),

p−(x) =

[

s+(0)p+(0)

s−(x)

]

e
λ

∫ x

0

s+ − s−

s+s−
dξ

≡ p+(0)F−(x).

where the constant p+(0) is determined by the conservation of walkers. Clearly the flux

vanishes pointwise, as it must at steady state. It is also clear that these distributions differ if

s+(x) 6= s−(x).

However there is no evidence that the bacterial speed changes with direction.
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Other cases

Case III: constant speed, λ+ 6= λ−

λ± =
λ+ + λ−

2
± λ+ − λ−

2
≡ λ0 ± λ1

∂p

∂t
+
∂j

∂x
= 0

∂j

∂t
+ 2λ0j = −s2 ∂p

∂x
− 2sλ1p

As t→ ∞
p(x, t) → N0e

− 2

s

∫
x

0
λ1(ξ)dξ

∫ 1

0
e−

2

s

∫
x

0
λ1(ξ)dξdx

Chemotactic velocity:

uc = −sλ1
λ0
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The transport equation for a velocity-jump pro-
cess
The transport equation in the absence of internal dynamics and signals

∂

∂t
p(x, v, t) + v · ∇p(x, v, t) = −λ0p(x, v, t) + λ0

∫

V

T (v, v′)p(x, v′, t)dv′ (2)

= −λ0p(x, v, t) + T p(x, v, t) ≡ Lp(x, v, t) (3)

G. C Papanicolaou – Asymptotic analysis of transport processes, Bull. AMS, 81, 330-392

(1975).

• Identify the correct time and space scalings for the parabolic limit so that there are

new time and space scales for which τ = ǫ2t ξ = ǫx

• Analyze the spectral properties of the turning operator L
• Construct the outer solution:

p(ξ, τ, v) =

∞
∑

k=0

ǫkpk(ξ, τ, v)
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The time and space scales for bacteria

We estimate a diffusion time scale as

τDIFF ∼ L2

D
=
L2λ

s2
.

We can also define a characteristic drift time as

τDRIFT =
L

s
,

and we assume that the space scale L is such that the time scales are related as follows:

τRUN ≡ λ−1 ≪ τDRIFT ≪ τDIFF . (4)

For example, a characteristic speed for bacteria such as E. coli is 10−20µ/sec, and λ−1 ∼
O(1) second. On a length scale of 1 mm, τDRIFT ∼ 50 − 100 seconds and τDIFF ∼
2500− 104 seconds. Therefore we have τRUN ∼ O(1) on the dimensional scale, and

τDRIFT ∼ O(1/ǫ),

τDIFF ∼ O(1/ǫ2),
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Some technical hypotheses on T

(T1) T (v, v′) ≥ 0,
∫

V
T (v, v′)dv = 1, and

∫

V

∫

V
T 2(v, v′)dv′dv <∞.

(T2) There are functions u0, φ, and ψ ∈ K with the properties that u0 6≡ 0 and φ and ψ vanish at

most on a set of Lebesgue measure zero, and such that for all (v, v′) ∈ V × V

u0(v)φ(v
′) ≤ T (v′, v) ≤ u0(v)ψ(v

′).

(T3) ‖T ‖〈1〉⊥ < 1, where 〈1〉⊥ is the orthogonal complement in L2(V ) of the span of 1.

(T4)
∫

V
T (v, v′)dv′ = 1

The effect of all these conditions is to make L0 a Perron-Froebenius operator, so that we

can prove the following.
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Theorem

Define µ2 ≡ λ0
(

1− ‖T ‖〈1〉⊥
)

Assume (T1)­(T4); then

1. 0 is a simple eigenvalue of L0 and the corresponding eigenfunction is φ(v) ≡ 1.

2. All nonzero eigenvalues satisfy −2λ0 < Re µ ≤ −µ2 < 0, and to within scalar

multiples there is no other positive eigenfunction.

3. There is a decomposition L2(V ) = 〈1〉 ⊕ 〈1〉⊥.

4. ‖L0‖L(L2(V ),L2(V )) ≤ 2λ0.

5. L0 restricted to 〈1〉⊥ ⊂ L2(V ) has an inverse F0 with norm

‖F0‖L(〈1〉⊥,〈1〉⊥) ≤
1

µ2
.
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The rest is easy!

∂p(x, v, t)

∂t
+ v · ∇p(x, v, t) = −λ0p(x, v, t) + λ0

∫

V

T (v, v′)p(t, x, v′)dv′

τ = ǫ2t ξ = ǫx, p = p0 + ǫp1 + ǫ2p2 + ǫn · · ·

ǫ0 : L0p0 ≡ −λ0p0 + λ0

∫

V

T (v,v′)p0dv
′ = 0

ǫ1 : L0p1 = v · ∇p0

ǫ2 : L0p2 =
∂p0
∂τ

+ v · ∇p1

L0p1 = v · ∇p0 :

∫

V

(v · ∇p0)dv = 0,

p1 = F0 (v · ∇p0)
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L0p2 =
∂p0
∂τ

+ v · ∇p1 :

∫

V

[

∂p0
∂τ

+ v · ∇ (F0 (v · ∇p0))
]

dv = 0

∂n0
∂τ

= ∇ ·
(

D∇n0
)

Diffusion tensor:

D ≡ 1

ω

∫

V

vF0vdv

If T (v,v′) = 1/ω, ω = |V | i.e. the redistribution is uniform, then

D =
1

ω

∫

V

vv

λ0
dv =

s2

λ0n
I
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General results

One can

• prove in general that the diffusion tensor is positive definite

• derive necessary and sufficient conditions for D = δI

• derive error estimates for the diffusion approximation

• add bias in the turning kernel to obtain the classical chemotaxis equation

1. Thomas Hillen and H. G. Othmer, SIAM JAM, 61, 751-775, (2000).

2. H. G. Othmer and T. Hillen, SIAM JAM, 62, 1222-1250, (2002).

– 31/39 –



The parabolic limit

Assume (T1)­(T4), and for k ≥ 2 define p0, p1, ....., pk via :

(a1)
∂p0
∂τ

= ∇ ·
(

D∇p0
)

p0(ξ, 0) =

∫

V

p(ξ, v, 0)dv

(a2)

∫

V

pj(ξ, v, τ)dv = 0, for all 1 ≤ j ≤ k,

(a3)

∫

V

v pj(ξ, v, τ)dv = 0, for all 2 ≤ j ≤ k,

(a4) pj(ξ, v, τ) ≡ F(pj−2,τ + v · ∇pj−1), for all 2 ≤ j ≤ k,

Then for each ϑ/ǫ2 < t <∞ and each x ∈ Ω, qk ≡
∑k

j=0 ǫ
jpj satisfies

‖p(x, ., t)− qk(x, ., t)‖2L2(V ) ≤ C ǫk+1

where C depends on µ2, ω, powers of s of highest order 2k and on C0.
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The jump process with internal states and forces

Suppose that the internal variables y ⊂ Rm involved in signal transduction evolve according

the equations

dy

dt
= f(y, S)

where S is the external signal. Inclusion of internal state variables y and external forces F
in the jump process leads to the following transport equation.

∂

∂t
p(x, v, y, t) + v · ∇xp(x, v, y, t) + ∇v · (Fp(x, v, y, t))

+∇y · (fi(y, S)p(x, v, y, t)) = −λ(y)p(x, v, y, t) + λ(y)

∫

V

T0(v, v
′, y)p(x, v′, y2, t)dv′

– 33/39 –



The micro to macro step via moments

Assumptions

• Use the cartoon two-variable model described previously.

• Assume that excitation is fast, and define z2 = y2 − S(x).

• Scale time and space as before, and assume that the turning rate depends on z2.

Then we have to solve

ǫ2
∂p

∂t
+ ǫ∇x · (vp) + ∂

∂z2

(

−z2
ta

−G′(S)

(

ǫ∇S · v + ǫ2
∂S

∂t

)

p

)

= (λ0 + a1z2 + a2z
2
2 + · · · )

(

−p+
∫

V

T (v, v′)p(v′) dv′
)

– 34/39 –



Moments

Define internal state moments as follows.

Mj =

∫

zj2 p dz2 ∀ j = 0, 1, 2, 3, . . . , M = (M0,M1,M2, . . .)
t.

ǫ2
∂

∂t
ΛM+ ǫv · ∇xΛM = ǫ2BM+ ǫCM+DM.

Here

B = −G′(S)
∂S

∂t
J
t, C = −G′(S)(∇S · v)Jt,

and

D = − 1

ta
diag {0, 1, 1, . . .}+ LΛ(λ0I+ a1J+ a2J

2 + · · · ),

where L is the turning operator, Λ : l∞(L2(V )) → l∞(L2(V )) is a diagonal scaling oper-

ator Λ = diag
{

1, 1, 12 ,
1
3 , · · ·

}

, and J : l∞(L2(V )) → l∞(L2(V )) is the shift operator.
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The asymptotic analysis

Write M as an expansion in powers of ǫ as

M = M
0 + ǫM1 + ǫ2M2 + · · ·

Define:

Dn = − 1

|V |λ0

∫

V

v ⊗ Bv dv

and

χ(S) = − a1ta
|V |λ0

G′(S)

∫

V

v ⊗ (taλ0L − 1)−1vdv,

For unbiased re-orientation

T (v, v′) =
1

|V | .

and

Dn =
s2

Nλ0
I, χ(S) = G′(S)

a1s
2ta

Nλ0(1 + taλ0)
.
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The classical chemotaxis equation

∂n

∂t
= ∇x ·

(

s2

Nλ0
∇xn−G′(S)

a1s
2ta

Nλ0(1 + taλ0)
n∇xS

)

.

If we include finite excitation time and directional persistence we obtain

χ(S) =
a1ta
|V |λ0

G′(S)

∫

V

v ⊗ (teλ0A− 1)−1(taλ0A− 1)−1vdv,

and this reduces to

χ(S) =
a1s

2taG
′(S)

Nλ0(1 + (1− ψd)taλ0)(1 + (1− ψd)teλ0)
.

Thus

∂

∂t
n = ∇ ·

(

s2

N(1− ψd)λ0
∇n− a1s

2taG
′(S)

Nλ0(1 + (1− ψd)taλ0)(1 + (1− ψd)teλ0)
n∇S

)

C. Xue and H. G. Othmer Multiscale models of taxis-driven patterning in bacterial populations, SIAM JAM, 70, 1,

133-167, (2009).
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Numerical results
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black: stochastic simulation of the velocity jump process

red: macroscopic moment equations (and hyperbolic chemotaxis equation)

blue: classical chemotaxis equation

R. Erban and H. G. Othmer, SIAM JAM, 65, 361-391 , (2004).

R. Erban and H. G. Othmer, Multiscale Modeling and Simulation, 3, 362-394, (2005).
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Conclusions ..

• For simple systems such as bacteria one can derive PKS equations from the

transport equation with internal state variables, and thereby derive the chemotactic

sensitivity in terms of characteristics of the microscopic motion.

• For amoeboid cells such as Dd, its harder to obtain reduced equations, but the

moment equations reflect the population-level behavior well.

• Whether PKS can be obtained from the transport equations is still open ...

– 39/39 –


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

