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Basic facts about Proteus mirabilis

® In liquid medium, P mirabilis cells are predominantly swimmers.

® When inoculated on hard surfaces, swimmers differentiate into swarmers.
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Pattern formation in Proteus on hard surfaces

v
'
Y
4

N
=22

» >

I‘ '
AR
NERRR

R. D. Williams. Ann. Rev. Microbiol. 1978. Rauprich et al. Periodic phenomena in Proteus mirabilis swarm colony de
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The spatial variation of cell-level dynamics

Swarmer Cell

e e e e B T

Lag Period R——

Differentiation .~

,.-"; Migration

Swimmer Cell e Consolidation 47

R. Schneider, et al., Detection and mutation of a luxS-encoded autoinducer in Proteus mirabilis , Microbiology, 2002.
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A close-up of swarmers

B. V. Jones, etal., Ultrastructure of Proteus mirabilis Swarmer Cell Rafts and Role of Swarming in Catheter-Associated
Urinary Tract Infection Infection and Immunity, 72, 3941, (2004).
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Surface tension is important for spreading

6 + Surfactin !L — Surfactin

: : "_&' ; '{%ﬁ .7 i

. =
5 _.ﬂsﬁ‘*‘k

|, . - —=
.,

— 6/44 —



Previous work on the front dynamics

S. Esipov and J. Shapiro. Kinetic model of Proteus Mirabilis swarm colony development. J.
Math. Biol., 36:249—-268, 1998.

G. Medvedev, T. Kaper, and N. Kopell. A reaction-diffusion system with periodic front
dynamics. SIAM J. App. Math., 60(5):1601-1638, 2000.

A. Czirék, M. Matsushita, and T. Vicsek. Theory of periodic swarming of bacteria: applica-
tion to proteus mirabilis. Phys Rev E Stat Nonlin Soft Matter Phys., 63, 2001.

B. Ayati. A structured-population model of P. mirabilis swarm-colony development. J. Math.
Bio., 52, 93, 2006.

B. Ayati. Modeling the role of the cell cycle in regulating P mirabilis swarm-colony develop-
ment. Preprint 2007.

M. A. Bees, et al, The interaction of thin-film flow, bacterial swarming and cell differentiation
in colonies of Serratia liquefaciens, J. Math. Biol., 40, 2000.
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Experimental results on patterning in the core

Photos courtesy of Elena Budrene
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Spatial patterning in Proteus mirabilis

® We focus on the patterns generated by swimmers in the central area.

Top view

Colony Front

Patterning Zone

® Key features of these patterns:
¢ the processes generating radial streams
¢ the handedness of the spiral streams
¢ the breakup of streams into ‘trains’
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® We assume:
¢ cellsin the patterning zone are swimmer cells,

¢ swimmer cells secrete a chemoattractant and respond to it.
Side view
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® We have developed both a hybrid cell-based model and a continuum model to incor-
porate these processes.

—10/44 —



The hybrid cell-based model

® The movement of each cell is modeled by a velocity jump process.

Vv

%
X S

X: position

v: velocity
® The turning rate is determined by a simplified single cell signal transduction model.

signal signal motor

detection transduction  rotation dﬂ _ G(e(x,t)) — (y1 + y2)
dt te
excitation. v
.. phosphorelay
adaptation~  of p dﬂ . G(C(Xa t)) — Y2
S dt ta
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® A cell divides into two daughter cells every 2 hours.
® The attractant and nutrient concentrations are governed by

Oc . :
= = D./Ac+ secretion by cells — degradation
0

8_{ = DyAf — uptake by cells

If we assume constant rates,

N
% — DcAc—ky;cS(x—xi)—,uc in D% x Rt
of al -
o~ — DfAc—knz::l(S(x—xz)) in D? x Rt
+ Neumann BC: GE — of —0 indD? xRt
n on

® The model was originally developed for E. coli, where it predicts very well the network
and ring formation.
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The computational algorithm

[ ]
° e ® ®
P Sn—1,m Sn,m

g L ° [
° ° I

3 . Ay : A,

° «® | L ______ @ - -

Xo . (X X
I
q Y |

. > . R ° A1 : A2
I
[ J |
[ ] |

Sn—1,m—1 Sn,m—1
X1

® We use the grid-to-cell interpolation 7. defined by the bilinear function:

T gt gy — A As Ay Ay
gc(x17x2) — 7 Cn—1,m—-1 + — Cn,m—1 + —Cn—1,m + —Cn.m

A A A A

where A = hi1hy and A;,7 = 1,2, 3, 4 are the area fractions.

® (Cell-to-grid transfer is done by area fractions
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S1 Initialization.
(a) Initialize the chemical fields and the cell properties.
S2 Fortimestepl=1,2..., update the data for each cell.
(a) Determine the direction of movement 6, by (2).
i) Generate a random number r € U |0, 1];

i) If » < \' * k, update 0; with a new random direction.

(o) (z},x?) «— (2 + skcosO;, x4 + sksin®;). If (z;,z?) is outside the domain,
reflect across the boundary.

(c) T} +— T} + k. If T} > 2 hours, the cell divides into two daughter cells.
(d) Update (3¢, y5%) according to (1).

i) Determine the attractant level at the beginning of the step ¢, and after the cell

moves ¢’ . .

" . . . t—1k

i) Estimate the attractant level during the movement by c(t) = cgldT +
. lk+ k-t , | .

Cry o k and integrate the y» equation to get 5.
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S3 Compute the source term of the attractant due to the secretion by the cells

N
fl= 7k25(x —x").
i=1

S4 For the PDEs use the ADI scheme
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l l l +1/2
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h2 v 2
5%

with Neumann data on the boundary
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Step 1: radial streams

® Cell growth is neglected ( radial streams appear in minutes compared with a doubling
time of 2 hours).

® As a result, the nutrient equation is uncoupled from the system.
® First consider a 1-D circular section of the region; then streams reduce to aggregates

Wy
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Numerical results for 500 cells on the interval
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One can understand this using a macroscopic model with chemotaxis —see Xue and Othmer
(2007).

Parameters used are: s = 20um/s, \g = 1/s, D, = 107 °cm?/s,v = 1 x 1072, p = 1 x 1073, 79 = 0.1,
L=1cm,G(c) =c,tqg =5s. R



Numerical results in 2D

Cell distribution at t = 6min Cell distribution at t = 12min
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Cell tracks: the effect of the boundary
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A track far from the surface A track near the surface

Frymier et. al., Three-dimensional tracking of motile bacteria near a solid planar surface, PNAS, 92, 1995
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The physical picture
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E. Lauga et. al., Swimming in circles: Motion of bacteria near solid boundaries, Biophy. J., 2006
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The mechanics with boundary effects

® Incompressible Newtonian fluid with constant density:

V-u=0
ou

1
— 4+u-Vu=f—--Vp+rVu
ot 0

® Cell body length 1 — 2um ~ 10~ %m
Cell “run” speed 10 ~ 30um/s ~ 10~°m/s
If we use viscosity of water v ~ 1075m? /s at 20° C

® For a typical bacterium the Reynolds number Re = UL /v ~ 10~°, so one can use
the Stokes approximation

® Theoretically, after solving the Stokes equations for (u, p), we can calculate the
torque and force acting on each cell, but not for many cells.

® We simplify all this by assuming cells are well separated, and incorporate a constant
bias to the right in the cell velocity:
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The bias and cell tracks
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Spiral streaming

Cell distribution at t = 4min Cell distribution at t = 6min Cell distribution at t = 8min
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Spiral streaming - 2

Cell distribution at t = 4min Cell distribution at t = 6min Cell distribution at t = 8min
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Comparison with experimental results

Cell distribution at time =5hours(10%/cm?)
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Swimming near a surface leads to ..

If the torque on a cell is given by F' = wgv X v, then

O 1= Don— V- [G'(S)n (xo¥S + o(VS)")].
where g2
Dn — D ’
2200(1 = %a) + X529
s (1= 9ol — %) Ao(1 — ¥a) + &) — wd]
T A )+ P+ R a Fef)
Y woa1s(1 — 1a)(2A0(1 — ¥a) + &)
T 2((ho(L—%a) + £ +wd) N — va)? +wd)’
and

oS
1 1
VS:<8 ),(valzlo
oS —1 0

8582
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The continuum model applied to bacterial pat-
terns

® The cell density is described by the chemotaxis equation

0
(9_7; =V - (D,Vn —xnVS)+g(n,f) inDxRT
where the chemotactic sensitivity is computed according to the preceding analysis.

® The chemical fields are described by a system of reaction-diffusion equations

%_f = V-(DsVS)+yn —uS inD xR*
of . n
o = V- (D{Vf)—u(n) inDxR

® Neumann boundary conditions are imposed on both cells and chemicals.
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Pattern formation ...
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C. Xue and H. G. Othmer SIAM JAM, 70, (2009).
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Problems with large gradients

Macroscopic speed
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C. Xue, E. Budrene and H. G. Othmer, Radial and spiral stream formation in Proteus mirabilis colonies, PLoS Comp
Biol, 7, 1-11, (2011).
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Some insight into why it doesn’t work ..

Recall the internal dynamics

a2
dt te

dZQ . 29 / 83
il A CICIORY) (vs v+ (,%)

and the chemotactic velocity

ais

N)\O(l + (1 - wd)ta)\())(l + (1 - wd)te)\O)

] staG'(S)V S

Thus if the Lagrangian derivative of the signal is too large the internal state cannot adapt
rapidly enough. In principal one simply has to retain higher moments, as the following show.

But there is a phenomenological ‘solution’ to this ..
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A phenomenological fix ..

k+
S+R — SR

=
The evolution equation for the bound receptor density is
d

%ﬁ: kTS -Ro— (kTS +k)SR (3)

The input G can be taken as proportional to the fraction of receptors occupied

>
Kp+ S

G(S) = Gol

where Kp = k= /k™. We have to compare the time scales

S 1

Tsigzm Trec = k_l_S_l_k_

and if 75, < T-¢c then the equilibration assumption is not valid since the receptors cannot
process the signal. -



A phenomenological fix ..

Define the rates of change

48 __ s|VS|
ot (sigg S
and
0S S

E(T@C) = kTS -+ k—

A more ‘correct ' Lagrangian derivative of the signal, which appears in the analysis using
the cartoon model, is
min{sVS, (kTS +k7)S} (5)

Of course the min function is difficult to handle analytically, so an alternate form that captures
the essential properties is

1 _ sQVS
1 1 Q+s|VS|

Q7 svs

wherein
() = (k*S + lc_)S.
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The amoeboid problem —

— crawling is harder than swimming!



The life cycle of Dictyostelium discoideum

Food (bactera)

Free-living
amoebae —

- -_ By
reproduce <1 q.:;_g:
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Aggregation patterns




How do we model and analyze these behaviors,
and what do we learn from that process?

What cellular-level processes are involved in producing the population-level aggregation
patterns, or in other words, what must a cell do to have a chance of passing on its genes?

® Some cells (or small groups of cells) must become pacemakers

® A cell must detect the external signal cyclic adenosine 3’,5’-monophospahte (CAMP)
® It must choose a direction in which to move

® (Cells must amplify and relay the signal, and adapt to the ambient signal

® They must move for an appropriate length of time

® Eventually a cell interacts with its neighbors and moves collectively, first in pairs, then
in streams, ..

® Slightly later it has to ‘decide’ what type of cell to become in the final fruiting body.
This is a collective decision reached by the community (absent cheaters!).

® The entire aggregate has to stop migrating and erect the fruiting body

— 36/44 —



Orientation and movement in a wave

In an aggregation wave ...

Peak of wave: very high
cAMP concentration

Phase C: response to high
concentration of cAMP

Signal Cell <
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0 e temporal gradient
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gradient of cAMP
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to positive spatial
gradient of cAMP
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Velocity surge l ¢
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concentration retraction of dommaqt
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Suppression of
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Maintained apolarity,
extension of small
pseudopodia, no
persistent translocation
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Some basic questions concerning direction
sensing and polarization

® What is the source of the sensitivity and amplification (cells can respond to
differences as small as 2% front-to-back and produce a much larger —estimated to be
six-fold— intracellular gradient)?

® What is the role of actin polymerization in the amplification and the ‘imprinting’ of
directionality?

® What are the long-term morphological changes that characterize polarization?

® How do we model these processes at a microscopic level? Are stochastic effects
negligible, important, dominant ..? Note that forces and the motile machinery that
generates them are crucial here.

® Can we embed the microscopic processes/models in useful macroscopic equations?
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A spatially-distributed cartoon model

Signal (CAMP) Yy, Y, live onthe
o~ 172

A~ boundary
/ U lives in the
interior

They ‘talk’ by

/ binding of u to
Y1

\_/

dyr - _ S) =W +92) K yiu + k~yiu
dr Te
@ _ S(T) — Y2
dT Ty
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—D— =kTyiu—k yiu on 0f)
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How does one define a transport equation when the internal state lives in a Banach space?
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Signal transduction for orientation ..

891 5(97 t) — U1 (97 t) o 92(97 t)

ot Ot = te
% _ S(H7t) B y2(97t)
at (97 t) o ta

Let x = (x1, x2) be the centroid position and write

S(0,t) = S(azl + Rgcosf, xs + Rysin b, t)
0S 0S

S(0,t) ~ S(z) + Rg cos 98—:1:1(33) + Ry sin 98—:1:2(:6)
( po(il?,t) \ Y1 \
qo(z,t) | _ /27r ( Y2 do
qi(z,t) 0 Y2050
\ qa(x,t) ) K Yo 51Nl
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Moving cells ..

dgo
dt

g
dt

dgs
dt

dpo
dt

Newton’s Law

dvi _ yq1 — v
dt

27S(x) — qo
la
0S
Roﬂa—xl(ﬂf) —q1
ta
0S
Roﬂa—m(ﬂf) — q2
la
0S 0S oS Do
ol I I () — 22
27 - (x)vy + Waflfz (x)vg + 27 oy () P
dzy _ dzy _
a Y a0

dvy _ Y92 — V2
tq dt ty

This suffices for a steady gradient, but doesn’t solve the back-of-the-wave problem.
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For that we introduce resting states...

This solves the back of the wave problem.
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Comparison of predictions

average speed [um/min]

‘ ‘ ‘ € 120
35|~ transport equations =
© stochastic simulation © 100
. ©
30 % slope=6 pm/min
25| s 99
O
207 01_ 60,
kS
151 c
O 407
10} D
(@)
5 S 20|
©
‘ ‘ ‘ ‘ ‘ ) 0 ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1 S 0 5 10 15 20
signal size ||0S|| [mm™] time [min]

Radek Erban and Hans G. Othmer Taxis equations for amoeboid cells, J. Math. Biol., 54,
847-885, (2007).

—43/44 —



Conclusions ..

® For simple systems such as bacteria one can derive PKS equations from the
transport equation with internal state variables, and thereby derive the chemotactic
sensitivity in terms of characteristics of the microscopic motion.

® For amoeboid cells such as Dd, its harder to obtain reduced equations, but the
moment equations reflect the population-level behavior well.

® Whether PKS can be obtained from the transport equations is still open ...
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