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P. Simon de Laplace, A Philosophical 
Essay on Probabilities (from a lecture in 
1795)

 “…given for one instant an intelligence 
which could comprehend all the forces by 
which nature is animated and the 
respective situation of the beings who 
compose it, nothing would be 
uncertain…”

D. Ruelle, Chance and Chaos:
Most systems are fundamentally chaotic and the
chaotic nature of the dynamical system is related to 
a statistical interpretation of the associated physical system.



The Problem
Given a model system, typically deterministic, that 
does not do what we want it to, say

ẋ = f(x)
we wish to

• modify to preserve a prescribed invariant 
distribution (normally using stochastics)
• control perturbation of dynamics (or averaged 
dynamics)
• Design accurate numerical methods
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Molecular Dynamics

dynamics of nuclei of a collection of atoms
treated classically

Normally, one solves something near to Newton’s 
equations of motion using a numerical method.

�t �t

Mq̈ = F



Canonical Ensemble
Describes the situation of a small number of atoms
in contact with a much larger reservoir at fixed energy



J. W. Gibbs, Elementary Principles in Statistical 
Mechanics, Scribner, 1902.

Note: rigorous derivations are very difficult!

Energy





Ensemble Averages

H(q, p) =
NX

i=1

p2i
2mi

+ U(q1, q2, . . . , qN )

Hamiltonian (energy function)

Average of an Observable

(or some other weighted average over states)

Gibbs
(canonical) density
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Z
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hf(q, p)i� = Z�1

Z

D

f(q, p)e��H(q,p)dqdp

Dynamics based methods

Generate lots of positions (or positions and momenta)
which are consistent with the target distribution

Average the values of the observable with respect
to this collection.

hf(q, p)i� ⇡ 1

⌫

⌫X

n=1

f(qn, pn)

Ergodicity - convergence as ⌫ ! 1



How to get molecular dynamics to 
sample (ergodically) from the canonical 

(or other) ensemble?

Deterministic Hamiltonian dynamics does preserve 
this ensemble, but it is not ergodic.

Idea of a ‘thermostat’: find a modified system
whose invariant distribution is uniquely 

Normally we need to use stochastic noise to 
achieve this...Stochastic Differential Equations (SDEs)

⇢� / exp(�H/kBT ), � = (kBT )
�1

⇢�



Ex: Brownian dynamics

invariant
measure:

dX = �rU(X)dt+
p
2dW

under certain (mild) conditions on U
unique steady state of the Fokker-Planck equation:

L⇤
BD⇢ = �r · [⇢rU ] +�⇢

@⇢

@t
= L⇤

BD⇢

⇢eq = e�U



J. Perrin, Atoms, van Nostrand, 1916, esp. Chapters 3 
and 4

Brownian dynamics is a 
non-inertial stochastic 
model…the particles don’t
carry momentum.

In practice it is very useful (and more realistic) for the 
atoms to have momentum.  This allows the paths to 
model dynamical paths.  In many cases this enhances 
the rate of exploration of phase space.



Ex: Rare Event Sampling (java by Gilles Vilmart, Geneva)

Brownian Dynamics Langevin (Inertial) Dynamics



“decalanine”

10 amino acid chain

Easily knots to intermediate
states which are
hard to escape

“metastable” landscape



dq = M�1pdt

dp = [�rU(q)� �p]dt+
p
2�kBTM

1/2dW

Fokker-Planck Operator:

mass weighted 
partial Laplacian

L⇤
LD⇢� = 0

Preserves Gibbs distribution:

L⇤
LD⌘ = �(M�1p) ·rq⌘ +rU ·rp⌘ + �rp · (p⌘) + �kBT�⌘

γ = friction parameter

Ex: Langevin Dynamics



G. Pavliotis, Stochastic Processes and Applications, 
Springer, 2014

Reading List

Readable introduction to the modern
treatment of SDEs, especially
Brownian and Langevin dynamics and
Fokker-Planck equations

A mathematical introduction to 
molecular dynamics,
including both deterministic and stochastic
models, and numerical methods

B. Leimkuhler, C. Matthews, Molecular Dynamics, 
Springer, 2015



Ergodic Properties of SDEs
From L.&Matthews, drawing on work of Stuart, Mattingley…



Langevin dynamics  
[Stuart, Mattingley, Higham ’02]

dx = pdt

dp = f(x)dt� pdt+
p
2dW

b0 = (p, f(x)� p); b1 = (0, 1)

[b0, b1] = �


0 1
f

0(x) �1

�
b1 =


�1
1

�
HC:

positive measure
on open sets

invariant
measure:

H = p2/2 + U(x)

f(x) = �U 0(x)

Lyapunov function

✔

✔

✔ Therefore, Langevin 
dynamics is ergodic

⇢⇤ = e�H



Properties of        

• Discrete Spectrum, Spectral Gap

• Hypocoercive (but degenerate in the limit of 
small friction)

ketLk•  Ke���t

LLD

lim
t!1

hf, ⇢(·, t)i = hf, ⇢�i
• Ergodic

• Exponential convergence in an appropriate norm

�� > 0



Invariant measures and discretization

L⇤
LD⌘ = �(M�1p) ·rq⌘ +rU ·rp⌘ + �rp · (p⌘) + �kBT�⌘

Langevin dynamics Fokker-Planck operator:

@⇢

@t
= L⇤⇢Fokker-Planck equation: L⇤⇢eq = 0

L̂⇤
�t 6= L⇤ L̂⇤

�t⇢̂�t = 0

Numerical discretization:

⇢̂�t 6= ⇢eq



highly degenerate diffusions

dX = f(X)dt+ g(X,⌅)dt

d⌅ = g(X,⌅)dt� �⌅dt+
p
2�dW

• design to preserve extended Gibbs distribution

• ‘weak’ coupling to stochastic perturbation

⇢̃ = ⇢⇤(X)e�⌅2/2

OU

L., Phys Rev E, 2010



Nose-Hoover 
a “Virtual Gibbs Governor”

H =
p2

2
+ U(q)

q̇ = p

ṗ = �U 0(q)� ⇥p

µ⇥̇ = p2 � �

Newtonian dynamics

preserves

‘governor’
Gibbs Governor

%̃ = exp(��H � ↵⇠2/2)



Ex: NH for Butane
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Figure 1: Momentum distributions from Nosé-Hoover simulations for three stepsizes.

with rij the distance between atoms i and j, �1,2 are the cosines of the angles \q1q2q3 and
\q2q3q4, respectively, and � is the cosine of the dihedral formed as the angle between the planes
determined by q1, q2, q3 and q4, q5, q6. The potential terms are

ul.b.(r) =
K0

2
(r � r0)

2, ua.b.(�) =
K1

2
(� � �0)

2, ud.b.(�) = K2(1� 4�3 + 3�) + K3(1� �).

The parameters used were:

K1 = 317
kcal

molÅ2
, K2 = 118

kcal

mol
, K3 = 1.6

kcal

mol
, K4 = .6

kcal

mol
,

r0 = 1.53, �0 = �.333.

The interest of course is in more complicated molecules, but a single butane provides an
interesting challenge for thermostatting as the length bonds tend to trap energy. We ran our
simulation at kBT = 0.1, a low temperature case which serves to illustrate the performance of
the di↵erent schemes. We also ran the simulation at kBT = 0.4 with similar results to those
reported here.

We implemented a standard explicit Nosé-Hoover scheme [7].2 The parameter µ in Nosé-
Hoover must be selected to give the best performance of the scheme. We found a broad
range of µ gave similar performance and chose µ = 5 within this range. We used stepsizes
corresponding to a range of 2 � 6fs. All simulations were performed on the time interval
[0, 8000] corresponding to 1.33M to 4M timesteps. In Figure 1 we show computed histograms
of the momenta of all variables, superimposed on a graph of the correct (Gaussian) density for
the indicated temperature,

⇢mom. =
1p

2⇡mikBT
e
� p2

i
2mikBT .

(This is the density for any of three components of pi.) Not unexpectedly, given the well known
lack of ergodicity of this scheme [13], the Nosé dynamics simulation fails to capture the correct
canonical sampling properties in this example.

We next used the recently proposed Hoover-Langevin thermostat (7)-(9). Again the pa-
rameter µ must be selected to obtain a suitable coupling of bath to physical variables, and we
used the same value µ = 5 used for the previous experiments. The additional parameter � in
the Hoover-Langevin method regulates the strength of the noise term which is introduced. We
chose � = 5. (Smaller values gave relatively poorer performance.)

The performance is much better. The Hoover-Langevin has been rigorously analysed in
[14] for a harmonic model, and it is likely that the strong harmonic bond is the dominant

2To verify correctness we checked the performance of the Nosé-Hoover method against the Nosé-Poincaré
method [4] and obtained nearly identical results in this simple example.

7

Error due to discretization
+ lack of ergodicity

lack of ergodicity only

r 1
2

γ1 δ

Legoll, Luskin and Moeckel 2006, 2009:
Nonergodicity of NH in large mu limit  

decreasing stepsize



Nosé-Hoover-Langevin

NH + OU

Clearly preserves 

but... is it ergodic?

L., Noorizadeh and Theil, J Stat Phys 2009



Prop: Let the given system preserve 

Suppose the system is defined on
where       is a smooth compact submanifold
Further suppose that the Lie algebra spanned by
         spans          at every point of      

Then the given system is ergodic on



NHL on a harmonic system

S{F ,G} = Lie algebra generated by F ,G

Prop:



Butane Momentum Distributions
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Applications in Fluid Dynamics

Vortex discretization 
of QG PV formulation 
of fluid dynamics on rotating sphere

Design controls to match prescribed (possibly evolving) 
distributional constraints

Dubinkina, Frank and L. SIAM MMS 2011
Frank, L. & Myerscough 2014



• Singular point vorticity field
• Heterogeneous: +/- orientation, strong/weak 
• Reduce to only strong vortices, preserve their statistics 
• Weak vortices → reservoir (canonical ensemble)

Reduced Model for Point Vortices
Restricted to Disk



A point vortex model for N vortices in a cylinder

R

+ boundary terms

u(x, t) = r?
 (x, t)

H unbounded under 
collisions� (x, t) = q(x, t)

H = � 1

4⇡

X

i<j

�i�j ln(|ri � rj |2)

�iṙi = JrriH

q(x, t) =
X

i

�i�(x� ri(t))

Reduced Model for Point Vortices



Choosing a Density

S[⇢] = �
Z

⇢ ln ⇢/⇡

C1,C2, . . .

Maximize relative entropy

subject to constraints: 

E.g. prescribed bath energy variance, 
defined averages of certain functions. 

The coefficients may or may not be fixed/known…

⇢ = ⇡ ⇥ �0e
�1C1+�2C2+...+�mCm



Simulations by Bühler (2002): 4 strong, 96 weak vortices, sign 
indefinite.  We established correspondence between Buhler’s 
simulation and a model with 4 vortices+ a finite bath reservoir

⇢(X) / exp(��H(X)� �H(X)

2
)

Reduced Model for Point Vortices

Coupling method:

Conservative 
vortex 
model

OU SDE (    )aux

Casimir-preserving  
dynamics perturbation

⇠

ṙi = �⇠ri ⇥ (ri ⇥rriH)

⇠̇ = . . .



Numerical Study
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Numerical comparisons with Bühler’s simulation



Burgers-KdV Equation
[Bajars, Frank and L., Nonlinearity, 2013]

Rationale
Discretized PDE models, e.g. Euler fluid equations,
have a multiscale structure

Energy flows from low to high modes 
“turbulent cascade”

Under discretization, the cascade is destabilized 
leading either to an artificial increase in energy at fine 
scales, or, if dissipation is added, an artificial decrease 



Hamiltonian system

energy

Burgers/KdV model



log frequency k

lo
g 

en
er

gy

slope -2

undissipated finite model
with artificial dissipation

Energy Cascade in a Forced Burgers Eqn. 



Ergodicity

E. & Mattingley 2002
for truncated, incompressible Navier-Stokes, 
stochastic forcing of two low wave number modes 
& viscous damping in the high modes ⇒ ergodicity
We have the OPPOSITE situation.  We allow the system
to be naturally driven at low modes and apply a
thermostat only in the high wave numbers.

Moreover, all our calculations have to happen on the
hypersphere which makes calculation of commutators 
extremely difficult.



Truncated, discrete model

Two other first integrals 
total momentum M, total kinetic energy E



Proposed ‘mixed’ distribution:

The incorporation of constraints complicates the use of
Langevin dynamics, and, in particular, its numerical 
discretization.

However, we can easily design degenerate thermostats
to cope with the constraint manifold.

Mixed Probability Distribution



pdfs (in H)

Burgers KdV

Burgers equation:  N = 15, E0 =1, β = -30



Burgers KdV

kinetic energy spectrum



One example of the coupling functions (projecting u^2 to a
truncated Fourier representation)



energy dist KE spectrum



H Dist       Spectrum

weak
perturbation
GBK(n*=15)

GBK(n*=m):  results using a thermostat applied only 
to modes m...N



Convergence of expected value of Hamiltonian

convergence of averages is observed in all cases, 
but is very slow for GBK (n*=15)

exponential decay of the 
rate with n*



c1 c1

ck :  autocorrelation function for kth mode

c3 c5



Observations

1. It is possible to design heat-bath models that
contact arbitrary components in the Fourier spectral 
discretization

2. the methods appear to be ergodic

3. gentle thermostats are effective in the mixed density
model, even if they only contact a single mode 
(although convergence is then quite slow)

4. all-mode thermostats (like Langevin dynamics) can 
distort the averaged dynamics of the system



To appear in JFM


