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P. Simon de Laplace, A Philosophical
Essay on Probabilities (from a lecture Iin
1795)

“...given for one instant an intelligence
which could comprehend all the forces by
which nature is animated and the
respective situation of the beings who
compose it, nothing would be
uncertain...”

D. Ruelle, Chance and Chaos:

Most systems are fundamentally chaotic and the

chaotic nature of the dynamical system is related to

a statistical interpretation of the associated physical system.



The Problem

Given a model system, typically deterministic, that
does not do what we want it to, say

i = f(z)

we wish to

* modify to preserve a prescribed invariant
distribution (normally using stochastics)
 control perturbation of dynamics (or averaged
dynamics)

* Design accurate numerical methods



Continuity Equation

dynamics Qf — f(:lf)
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Molecular Dynamics

dynamics of nuclei of a collection of atoms
treated classically

Normally, one solves something near to Newton’s
equations of motion using a numerical method.
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Canonical Ensemble

Describes the situation of a small number of atoms
in contact with a much larger reservoir at fixed energy




J. W. Gibbs, Elementary Principles in Statistical
Mechanics, Scribner, 1902.

The distribution represented by
A~ Energy
n=lg P=Y2C" (90)
or
y—€
P=0o®, (91)

where ® and 4 are constants, and ® positive, seems to repre-
sent the most simple case conceivable, since it has the property
that when the system consists of parts with separate energies,
the laws of the distribution in phase of the separate parts are
of the same nature,— a property which enormously simplifies

Note: rigorous derivations are very difficult!
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Ensemble Averages

Hamiltonian (energy function)

N 9
p.
H(qg,p) = — +U(q1,q2, ...,
(¢, p) ; o Ul @z a)
Gibbs
Average of an Observable | (canonical) densicy 03

/

(flg,p)p=2"" /Df(q,p)e_ﬁmq’p)dqdp

(or some other weighted average over states)



(flg,p))p=2Z"" /Df(q,p)e_w(q’p)dqdp

Dynamics based methods

Generate lots of positions (or positions and momenta)
which are consistent with the target distribution

Average the values of the observable with respect
to this collection.

(f(g,p))p = % > flq",p™)

Ergodicity - convergence as v — o



How to get molecular dynamics to
sample (ergodically) from the canonical
(or other) ensemble?

pg < exp(—H/kpT), B = (kgT)™"

Deterministic Hamiltonian dynamics does preserve
this ensemble, but it is not ergodic.

|ldea of a ‘thermostat’: find a modified system
whose invariant distribution is uniquely pg

Normally we need to use stochastic noise to
achieve this...Stochastic Differential Equations (SDEs)



Ex: Brownian dynamics

dX = —VU(X)dt + V2dW

Invariant p —
measure: €q

under certain (mild) conditions on U
unique steady state of the Fokker-Planck equation:

dp
8t L:BDIO

Lipp ==V - [pVU|+ Ap



J. Perrin, Atoms, van Nostrand, 1916, esp. Chapters 3
and 4

5,};?7 Brownian dynamics is a
non-inertial stochastic

.
&V 5% model...the particles don’t
xLy %\ > | carry momentum.

In practice it is very useful (and more realistic) for the
atoms to have momentum. This allows the paths to
model dynamical paths. In many cases this enhances

the rate of exploration of phase space.



Ex: Rare Event Sampling (java by Gilles Vilmart, Geneva)
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Brownian Dynamics Langevin (Inertial) Dynamics



“decalanine”

10 amino acid chain

Easily knots to intermediate
states which are

hard to escape

“metastable” landscape
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Ex: Langevin Dynamics

dg = M~ 1pdt
dp = [-VU(q) — vpldt + \/2vkgT M*/2dW

T~/

Fokker-Planck Operator: y = friction parameter

/

[Jik,DTl — _(M_lp) Vgn+ VU - Vpn+4Vy, - (pn) + vkT An

/

Preserves Gibbs distribution: mass weighted

partial Laplacian
* —
Lipps =0




Reading List

G. Pavliotis, Stochastic Processes and Applications,

Springer, 2014

Texts In Applied Mathematics 60

Readable introduction to the modern

ocesic — treatment of SDEs, especially

Applications - Brownian and Langevin dynamics and
Fokker-Planck equations

and Langevin Equations

B. Leimkuhler, C. Matthews, Molecular Dynamics,
Springer, 2015

A mathematical introduction to »
molecular dynamics, Molecular
including both deterministic and stochastic i
models, and numerical methods




Ergodic Properties of SDEs

From L.&Matthews, drawing on work of Stuart, Mattingley...

Definition 6.1 (Hérmander’s Condition). Let U C R™ be open. The C*° vector fields
bo,b1,bs,...,b,. : U — R™ are said to satisfy Hormander’s condition at z € U if the vector
space spanned by the collection of iterated Lie brackets

bO) bl © o ab’r‘a [b07b1]) [bO:v b2]a ey [b'r'—17 b’r]a [bOa [b07 bl]] .o

(evaluated at z) is R™.

Theorem 6.2 (Smoothness of invariant measures). Let an SDE be defined on R™:

dX = bo(X)dt + »  b;dW;,

=1

where by 1s C° and by, by,...,b, satisfy Hormander’s condition for all X € R™. Suppose
there is a smooth invariant measure . with associated density p. such that p.(O) > 0 for
any open set O C R™. Suppose further that there is a smooth function ¢ : such that (a) ¢ > 0,
(b) ¢(z) = +o00 as ||z|| = o0, and (c) the estimate

Lo<d—ap

holds for some constants a,d > 0, where L is the generator associated to the SDE. (¢ is
referred to as a Lyapunov function.) Then p,. is the unique distributional solution of

LTp=0.



Langevin dynamics
[Stuart, Mattingley, Higham °02] 7 — p2 /2 4 Ulx)

dx = pdt f(z) = =U'(x)

dp = f(z)dt — pdt + vV2dW

v bo = (p, f(z) —p); b1 =(0,1)
HC: i 0 1 - - 1 -
e
invariant _ —H positive measure
measure: Px — € on open sets
v Therefore, Langevin

Lyapunov function dynamics is ergodic



Properties of L1D

Discrete Spectrum, Spectral Gap

Hypocoercive (but degenerate in the limit of
small friction)

Ergodic

Exponential convergence in an appropriate norm

et~ |le < Ke™™t A, >0



Invariant measures and discretization

Langevin dynamics Fokker-Planck operator:
Lipn=—(M""p) Ven+ VU -Vpn+7Vy- (pn) +vksT A

0
Fokker-Planck equation: _/0 — E*p [«*Peq — ()

ot

Numerical discretization:
\ /\* A~
L5 7# L Lsipst =0
Pt # Peq



highly degenerate diffusions

L., Phys Rev E, 2010

dX = f(X)dt
= =g(X,Z)dt

g(X,=)dt
— v=dt 4+ v/ 2vdW
OU

* design to preserve extended Gibbs distribution
— 2

~ — = /2

p=pu(X)e ="/

* ‘weak’ coupling to stochastic perturbation




Nose-Hoover
a “Virtual Gibbs Governor”
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preserves ¢ = exp(—SBH — a&”/2)



Ex: NH for Butane A |

o—>®
Error due to discretization ‘/
+ lack of ergodicity

\ lack of ergodicity only

>
decreasing stepsize

Legoll, Luskin and Moeckel 2006, 2009:
Nonergodicity of NH in large mu limit



Nosé-Hoover-Langevin
L., Noorizadeh and Theil, ] Stat Phys 2009

NH + OU
dg = pdt
dp = —U'(q)dt — &pdt

d¢ = (p? — 0)dt — v€dt + /2ydW

_ g2
Clearly preserves 0 = € H/6 X € §

but... is it ergodic?



dz = F(z)dt + £G(=z)dt,
d¢ = g(z)dt — v&dt + odW,
Prop: Let the given system preserve

e PH % 6_52/2

Suppose the system is defined on M x R
where M is a smooth compact submanifold
Further suppose that the Lie algebra spanned by

F', G spans T M at every point of M

Then the given system is ergodic on M



NHL on a harmonic system

p— — p— —

P 0
F= g e
—Aq_ ¥

S{F, G} — Lie algebra generated by F', (&

Prop:
ARl
Cp= c S{F,G
k — Akq _ { }
. am  w
1)y = _i;?p = S{F, G}




Nose Hoover

Hoover-Langevin

Butane Momentum Distributions
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Applications in Fluid Dynamics

Dubinkina, Frank and L. SIAM MMS 2011
Frank, L. & Myerscough 2014

Vortex discretization
of QG PV formulation :
of fluid dynamics on rotating sphere

Design controls to match prescribed (possibly evolving)
distributional constraints



Reduced Model for Point Vortices
Restricted to Disk

* Singular point vorticity field
* Heterogeneous: +/- orientation, strong/weak
* Reduce to only strong vortices, preserve their statistics

* Weak vortices — reservoir (canonical ensemble)



Reduced Model for Point Vortices

A point vortex model for N vortices in a cylinder

H=—— 05 In(|r; —7“]\ )

1<]
+ boundary terms

L = JV,. H

— ZFZ5(ZE — ’I“Z'(t))
i H unbounded under
AYp(x,t) = q(x,t) collisions
u(x,t) = VLw(az,t)



Choosing a Density

Maximize relative entropy
Slp] = —/plnp/ﬂ

subject to constraints:
61,69, . ..

E.Q. prescribed bath energy variance,
defined averages of certain functions.

)\101 >\202 Amcm

0 =T X A€

The coefticients may or may not be fixed/known...



Reduced Model for Point Vortices

Simulations by Buhler (2002): 4 strong, 96 weak vortices, sign
indefinite. We established correspondence between Buhler’s
simulation and a model with 4 vortices+ a finite bath reservoir

p(X) o exp(—BH(X) —vH(X)")
Coupling method:

O
Conservative
vortex aux . g
model N
v\_//
/
Casimir-preserving ry = —&r; X (r; X Vy, H)

dynamics perturbation ¢ = ..




Numerical comparisons with Buhler's simulation
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[Bajars, Frank and L., Nonlinearity, 201 3]

Rationale

Discretized PDE models, e.g. Euler fluid equations,
have a multiscale structure

Energy flows from low to high modes
“turbulent cascade”

Under discretization, the cascade is destabilized
leading either to an artificial increase in energy at fine
scales, or, if dissipation is added, an artificial decrease



Burgers/KdV model

Ut + Uy + fUUggey = 0

Hamiltonian system U; = —DchH/CSu

1
energy 11 = f gu?’ = %’Ué



Energy Cascade in a Forced Burgers Eqn.

log energy

log frequency k



Ergodicity

E. & Mattingley 2002

for truncated, incompressible Navier-Stokes,
stochastic forcing of two low wave number modes
& viscous damping in the high modes = ergodicity

We have the OPPOSITE situation. We allow the system
to be naturally driven at low modes and apply a
thermostat only in the high wave numbers.

Moreover, all our calculations have to happen on the

hypersphere which makes calculation of commutators
extremely difficult.



Truncated, discrete model

dit,, n A X B
T - 2| 2 fnomim | +iniui,
In—m|<N

7T A A A A A
H = 3 E UgUyn, Uy, — T E €2ugu2‘
£+m+n=0 lelgN
1£],|m|,|n|<N

Two other first integrals
total momentum M, total kinetic energy E



Proposed ‘mixed’ distribution:

p = exp(—0H)o(E — Eo)o(M)

The incorporation of constraints complicates the use of
Langevin dynamics, and, in particular, its numerical
discretization.

However, we can easily desigh degenerate thermostats
to cope with the constraint manifold.



p(H|E)
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Kinetic energy spectrum
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dX = f(X)dt + kagk

dkahk(X)dt—’yfkdt—l—O‘dwk, k=1,...,dr

One example of the coupling functions (projecting u”2 to a
truncated Fourier representation)

27
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energy dist KE spectrum
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GBK(n*=m): results using a thermostat applied only

to modes m...N

H Dist

Spectrum
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Convergence of expected value of Hamiltonian
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convergence of averages is observed in all cases.

but is very slow for GBK (n*=1)5)

exponential decay of the

rate with n*
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Observations

|. It is possible to design heat-bath models that
contact arbitrary components in the Fourier spectral
discretization

2. the methods appear to be ergodic
3. gentle thermostats are effective in the mixed density
model, even if they only contact a single mode

(although convergence is then quite slow)

4. all-mode thermostats (like Langevin dynamics) can
distort the averaged dynamics of the system






