Boundary integral equations in space and time: Higher order Galerkin methods and applications

Heiko Gimperlein¹

(joint with A. Aimi², G. Di Credico^{1,2}, C. Özdemir³, E. P. Stephan⁴)

1: Universität Innsbruck

2: University of Parma, 3: TU Graz, 4: Leibniz Universität Hannover

Zürich Colloquium in Applied and Computational Mathematics September 27, 2023

Motivation: Sound radiation of tires

H. Gimperlein (Innsbruck)

Boundary integral equations in space + time

Beyond traffic noise

Deutsche Oper, Berlin picture provided by M. Ochmann

H. Gimperlein (Innsbruck)

Boundary integral equations in space + time

u = u(t, x) sound pressure $\partial_t^2 u - \Delta u = 0$ in $\mathbb{R}_t \times \mathbb{R}_x^3 \setminus \Omega$ u = 0 for $t \le 0$.

Realistic: acoustic boundary conditions $\partial_{\nu}u - \alpha \partial_t u = g$ on $\Gamma = \partial \Omega$.

Simple: Dirichlet boundary conditions u = g on $\Gamma = \partial \Omega$.

 $egin{aligned} & u = u(t,x) & ext{sound pressure} \ \partial_t^2 u - \Delta u &= 0 & ext{ in } \mathbb{R}_t imes \mathbb{R}_x^3 \setminus \Omega \ & u = 0 & ext{ for } t \leq 0 \ . \end{aligned}$

Realistic: acoustic boundary conditions $\partial_{\nu}u - \alpha \partial_t u = g$ on $\Gamma = \partial \Omega$.

Simple: Dirichlet boundary conditions u = g on $\Gamma = \partial \Omega$.

Develop efficient methods to compute:

- time-domain wave propagation over large distances
- for complex geometries and boundary conditions
- with possibly nonsmooth solutions.

H. Gimperlein (Innsbruck)

 $egin{aligned} & u = u(t,x) & ext{sound pressure} \ \partial_t^2 u - \Delta u &= 0 & ext{ in } \mathbb{R}_t imes \mathbb{R}_x^3 \setminus \Omega \ & u = 0 & ext{ for } t \leq 0 \;. \end{aligned}$

Realistic: acoustic boundary conditions $\partial_{\nu}u - \alpha \partial_t u = g$ on $\Gamma = \partial \Omega$.

Simple: Dirichlet boundary conditions u = g on $\Gamma = \partial \Omega$.

Space-time boundary integral formulation of Dirichlet problem (3d):

$$\mathcal{V}\phi(t,x) = \int_{\Gamma} \frac{\phi(x',t-|x-x'|)}{4\pi|x-x'|} \ d\Gamma_{x'} = (\mathcal{K}+\frac{1}{2})g(t,x)$$

What's this talk about?

$$\begin{split} \Omega^c = \mathbb{R}^3 \setminus ([-1,1]^2 \times \{0\}), \ \mathcal{V}\phi = \sin(t)^5 \ \text{on} \ [-1,1]^2 \times \{0\}. \\ \text{solution near corner} \ r^{-0.703\dots}, \ \text{near edge} \ r^{-\frac{1}{2}} \end{split}$$

H. Gimperlein (Innsbruck)

Boundary integral equations in space + time

What's this talk about?

What's this talk about?

Time domain BEM for wave scattering off a knife's blade (screen)

$$\mathcal{V}\phi(t,x) = \int_{\Gamma} \frac{\phi(x',t-|x-x'|)}{4\pi |x-x'|} \ d\Gamma_{x'} = f$$

Convergence rates - theory and numerical experiments (in DOF on a 2d screen, energy norm)

- 0.5: h-version, uniform
- 0.77: h-version, adaptive (ongoing + HG, Özdemir, Stark, Stephan, Numer. Math. 2020)
- 1.0: *hp*-version, uniform (HG, Özdemir, Stark, Stephan, CMAME 2019)
- β/2: h-version, β-graded (HG, Meyer, Özdemir, Stark, Stephan, Numer. Math. 2018)

Extensions: polygonal scatterers, elasticity. Rates \sim angles, material parameters. (Aimi, Di Credico, HG, Stephan, Numer. Math. 2023)

Related work: old and new

 $egin{aligned} & u = u(t,x) & ext{sound pressure} \ \partial_t^2 u - \Delta u &= 0 & ext{ in } \mathbb{R}_t imes \mathbb{R}_x^3 \setminus \Omega \ & u = 0 & ext{ for } t \leq 0 \ . \end{aligned}$

7 / 40

Singular solutions: h, p, hp versions & adaptive methods:

- Edge/corner/geometric singularities.
- Sharp travelling wave crests.
- (Nonlinear) contact problems.

p and hp FEM / BEM: Long history since the 80's with Babuska, Dorr, Suri, Schwab, Melenk, Stephan, Bespalov, Heuer, ...

space or space-time adaptive BEM: variable Δt : Sauter, Schanz, ... (gCQ), Steinbach, Zank, ... variable Δx : Abboud, space-time (2d, brute force): Gläfke, Maischak. related FEM: Chaumont-Frelet (2023), Steinbach, Zank H. Gimperlein (Innsbruck) Boundary integral equations in space + time Zürich 2023

Outline

- Boundary integral formulation and space-time Galerkin approximation
- Screen problems: singular expansions of the solution near edges / corners
- \bullet approximation properties of graded h and of p versions
- ${\ensuremath{\bullet}}$ experiments for hp version on geometrically graded meshes
- a posteriori error analysis and adaptive mesh refinements

u = u(t, x) sound pressure $\partial_t^2 u - \Delta u = 0$ in $\mathbb{R}_t \times \mathbb{R}_x^3 \setminus \Omega$ u = 0 for $t \le 0$.

Simple: Dirichlet boundary conditions u = g on $\Gamma = \partial \Omega$.

Space-time boundary integral formulation of Dirichlet problem (3d):

$$\mathcal{V}\phi(t,x) = \int_{\Gamma} \frac{\phi(x',t-|x-x'|)}{4\pi |x-x'|} \ d\Gamma_{x'} = (\mathcal{K}+\frac{1}{2})g(t,x)$$

Fundamental solution G – wave of a point source

in 2d:
$$G(x, x'; t, \tau) = \frac{1}{2\pi} \frac{H(t - \tau - |x - x'|)}{\sqrt{(t - \tau)^2 - |x - x'|^2}}$$

in 3d:
$$G(x, x'; t, \tau) = \frac{1}{4\pi} \frac{\delta(t - \tau - |x - x'|)}{|x - x'|}$$

H Heaviside function, δ Dirac point measure.

Fundamental solution G – wave of a point source

Representation formula – reduction to $\boldsymbol{\Gamma}$

$$u(x,t) = \int_0^t \int_{\Gamma} G(x,x';t,\tau) \frac{\partial u}{\partial \nu}(x',\tau) \ d\Gamma_{x'} d\tau$$
$$- \int_0^t \int_{\Gamma} \frac{\partial G}{\partial \nu}(x,x';t,\tau) u(x',\tau) \ d\Gamma_{x'} d\tau$$

 ν outer unit normal to Γ .

From PDE to boundary integral formulation

Fundamental solution G – wave of a point source

Representation formula – reduction to Γ

Dirichlet problem u = g on Γ Boundary integral equation

$$\mathcal{V}\phi(x,t) = \left(\mathcal{K} + \frac{1}{2}\right)g(x,t)$$

Weakly singular operator

$$\mathcal{V}\phi(\mathbf{x},t) = \int_0^t \int_{\Gamma} G(x,x';t,\tau) \Phi(x',\tau) d\Gamma_{x'} d\tau$$

Solution $\phi = \frac{\partial u}{\partial \nu}$

From PDE to boundary integral formulation

Fundamental solution G – wave of a point source

Representation formula – reduction to Γ

Dirichlet problem u = g on Γ

Linear elastodynamics: analogous to wave equation Boundary integral equation

$$\mathcal{V}\boldsymbol{\phi}(x,t) = \left(\mathcal{K} + \frac{1}{2}\right)\mathbf{g}(x,t)$$

Weakly singular operator

$$\mathcal{V}\boldsymbol{\phi}(x,t) = \int_0^t \int_{\Gamma} \mathbf{G}(x,x';t,\tau)\boldsymbol{\phi}(x',\tau)d\Gamma_{x'}d\tau$$

From PDE to boundary integral formulation

Linear elastodynamics: analogous to wave equation Boundary integral equation

 $\mathcal{V}\boldsymbol{\phi}(x,t) = \left(\mathcal{K} + \frac{1}{2}\right)\mathbf{g}(x,t)$

Weakly singular operator

$$\mathcal{V}\boldsymbol{\phi}(x,t) = \int_0^t \int_{\Gamma} \mathbf{G}(x,x';t,\tau)\boldsymbol{\phi}(x',\tau)d\Gamma_{x'}d\tau$$

in $2d \ G_{ij}(\mathbf{x}, \mathbf{x}'; t, \tau) :=$

$$\frac{H[c_{\mathsf{P}}(t-\tau)-r]}{2\pi\varrho c_{\mathsf{P}}} \left\{ \frac{r_{i}r_{j}}{r^{4}} \frac{2c_{\mathsf{P}}^{2}(t-\tau)^{2}-r^{2}}{\sqrt{c_{\mathsf{P}}^{2}(t-\tau)^{2}-r^{2}}} - \frac{\delta_{ij}}{r^{2}} \sqrt{c_{\mathsf{P}}^{2}(t-\tau)^{2}-r^{2}} \right\} - \frac{H[c_{\mathsf{S}}(t-\tau)-r]}{2\pi\varrho c_{\mathsf{S}}} \left\{ \frac{r_{i}r_{j}}{r^{4}} \frac{2c_{\mathsf{S}}^{2}(t-\tau)^{2}-r^{2}}{\sqrt{c_{\mathsf{S}}^{2}(t-\tau)^{2}-r^{2}}} - \frac{\delta_{ij}}{r^{2}} \frac{c_{\mathsf{S}}^{2}(t-\tau)^{2}}{\sqrt{c_{\mathsf{S}}^{2}(t-\tau)^{2}-r^{2}}} \right\}$$

Two wave speeds: $c_P = \sqrt{(\lambda + 2\mu)/\rho}$, $c_S = \sqrt{\mu/\rho} > 0$. H. Gimperlein (Innsbruck) Boundary integral equations in space + time

Zürich 2023

10 / 40

Set-up a la Becache-Ha Duong

$$\mathcal{V}\phi(x,t) = \left(\mathcal{K} + \frac{1}{2}\right)g(x,t) =: f$$

space-time anisotropic Sobolev spaces $H^r_{\sigma}(\mathbb{R}^+, H^s(\Gamma))$, $\sigma > 0$: $H^r_{\sigma}(\mathbb{R}^+, H^s(\mathbb{R}^2))$ defined using Fourier-Laplace transform

$$\left\{\psi: \text{supp }\psi \subset \overline{\mathbb{R}_+} \times \mathbb{R}^2, \ \int_{\mathbb{R}+i\sigma} d\omega \int_{\mathbb{R}^2} d\xi |\omega|^{2r} (|\omega|^2 + |\xi|^2)^s |\mathcal{F}\psi(\omega,\xi)|^2 < \infty\right\}$$

Set-up a la Becache-Ha Duong

$$\mathcal{V}\phi(x,t) = \left(\mathcal{K} + \frac{1}{2}\right)g(x,t) =: f$$

space-time anisotropic Sobolev spaces $H^r_{\sigma}(\mathbb{R}^+, H^s(\Gamma))$, $\sigma > 0$:

 $H^r_\sigma(\mathbb{R}^+, H^s(\mathbb{R}^2))$ defined using Fourier–Laplace transform

$$\left\{\psi: \text{supp }\psi \subset \overline{\mathbb{R}_+} \times \mathbb{R}^2, \ \int_{\mathbb{R}+i\sigma} d\omega \int_{\mathbb{R}^2} d\xi |\omega|^{2r} (|\omega|^2 + |\xi|^2)^s |\mathcal{F}\psi(\omega,\xi)|^2 < \infty\right\}$$

Space-time variational formulation of Dirichlet problem: Find $\phi \in H^1(\mathbb{R}^+, H^{-\frac{1}{2}}(\Gamma))$ such that $\forall \psi \in H^1(\mathbb{R}^+, H^{-\frac{1}{2}}(\Gamma))$:

 $\langle \mathcal{V}\partial_t \phi, \psi \rangle = \langle \partial_t f, \Psi \rangle$

The solution ϕ exists for $f \in H^2(\mathbb{R}^+, H^{\frac{1}{2}}(\Gamma))$.

Key: $\mathcal{V}\partial_t$ coercive with loss (for wave eq.: Bamberger – Ha Duong '86)

$$\|\phi\|_{1,-\frac{1}{2},\Gamma}^2 \gtrsim \langle \mathcal{V}\partial_t \phi, \phi \rangle \gtrsim \|\phi\|_{0,-\frac{1}{2},\Gamma}^2$$

Set-up a la Becache-Ha Duong

$$\mathcal{V}\phi(x,t) = \left(\mathcal{K} + \frac{1}{2}\right)g(x,t) =: f$$

space-time anisotropic Sobolev spaces $H^r_{\sigma}(\mathbb{R}^+, H^s(\Gamma))$, $\sigma > 0$:

 $H^r_\sigma(\mathbb{R}^+, H^s(\mathbb{R}^2))$ defined using Fourier–Laplace transform

$$\left\{\psi: \text{supp }\psi \subset \overline{\mathbb{R}_+} \times \mathbb{R}^2, \ \int_{\mathbb{R}+i\sigma} d\omega \int_{\mathbb{R}^2} d\xi |\omega|^{2r} (|\omega|^2 + |\xi|^2)^s |\mathcal{F}\psi(\omega,\xi)|^2 < \infty\right\}$$

Space-time variational formulation of Dirichlet problem: Find $\phi \in H^1(\mathbb{R}^+, H^{-\frac{1}{2}}(\Gamma))$ such that $\forall \psi \in H^1(\mathbb{R}^+, H^{-\frac{1}{2}}(\Gamma))$: $\langle \mathcal{V}\partial_t \phi, \psi \rangle = \langle \partial_t f, \psi \rangle$

Key: $\mathcal{V}\partial_t$ coercive with loss (for wave eq.: Bamberger – Ha Duong '86) $\|\phi\|_{1,-\frac{1}{2},\Gamma}^2 \gtrsim \langle \mathcal{V}\partial_t \phi, \phi \rangle \gtrsim \|\phi\|_{0,-\frac{1}{2},\Gamma}^2$

Loss avoided for bilinear form involving Hilbert transform in recent work by Urzua-Torres, Steinbach (+ Zank). H. Gimperlein (Innsbruck) Boundary integral equations in space + time Zürich 2023 11/40

Discretization

- $\Gamma = \cup_{i=1}^{M} \Gamma_i$ triangulation
- V_h^p piecewise polynomial functions of degree p on $\Gamma = \bigcup_{i=1}^M \Gamma_i$ (continuous if $p \ge 1$)
- $[0,T) = \bigcup_{n=1}^{L} [t_{n-1},t_n), t_n = n(\Delta t)$
- $V_{\Delta t}^q$ piecewise polynomial functions of degree q in time (continuous and vanishing at t = 0 if $q \ge 1$)
- \bullet simplest case: tensor products in space-time $V^{p,q}_{h,\Delta t}=V^p_h\otimes V^q_{\Delta t}$

- V_h^p piecewise polynomial functions of degree p on $\Gamma = \bigcup_{i=1}^M \Gamma_i$ (continuous if $p \ge 1$)
- $V_{\Delta t}^q$ piecewise polynomial functions of degree q in time (continuous and vanishing at t = 0 if $q \ge 1$)
- simplest case: tensor products in space-time $V^{p,q}_{h,\Delta t}=V^p_h\otimes V^q_{\Delta t}$

Time domain BEM: Find $\phi_{h,\Delta t} \in V_{h,\Delta t}^{p,q}$ such that $\forall \psi_{h,\Delta t} \in V_{h,\Delta t}^{p,q}$:

 $\langle \mathcal{V}\partial_t \phi_{h,\Delta t}, \psi_{h,\Delta t} \rangle = \langle \partial_t f, \psi_{h,\Delta t} \rangle$

Time stepping for tensor product meshes

- exact wave propagation
- discretized *reflection* at Γ
- unconditionally stable
- sparse or easily compressible Galerkin matrix

causality \rightsquigarrow block triangular Galerkin matrix \rightsquigarrow backsubstitution: compute 1 matrix per time step (for tensor product discretizations)

$$\forall n : \sum_{m=1}^{n} V^{n-m} \Phi^m = F^n$$

$$\iff V^0 \Phi^n = F^n - \sum_{m=1}^{n-1} V^{n-m} \Phi^m$$

$$V^0 \text{ for } \Gamma = \mathbb{S}^2 \subset \mathbb{R}^3$$

Long-time stability

numerical solution for a mixed boundary problem in elastodynamics (Aimi, Di Credico, HG, Guardasoni, Speroni, to appear in APNUM)

H. Gimperlein (Innsbruck)

Boundary integral equations in space + time

Numerical quadrature: Light cones & decompositions

$$\begin{split} \int_{\Gamma} \int_{\Gamma} w_{\tilde{m}}^{\mathbf{p}}(\mathbf{x}) w_{m}^{\mathbf{p}}(\xi) \nu_{ij}^{\mathcal{V}}(\mathbf{r}, \Delta) d\xi d\mathbf{x} & i, j = 1, 2 \\ \nu_{ij}^{\mathcal{V}}(\mathbf{r}, \Delta) &= \left(\frac{r_{i}r_{j}}{r^{4}} - \frac{\delta_{ij}}{2r^{2}}\right) \left[\frac{H[c_{\mathbf{p}}\Delta - r]}{c_{\mathbf{p}}} \Delta \varphi_{\mathbf{p}}(r, \Delta) - \frac{H[c_{\mathbf{s}}\Delta - r]}{c_{\mathbf{s}}} \Delta \varphi_{\mathbf{s}}(r, \Delta)\right] \\ &+ \left. \frac{\delta_{ij}}{2} \left[\frac{H[c_{\mathbf{p}}\Delta - r]}{c_{\mathbf{p}}^{2}} \hat{\varphi}_{\mathbf{p}}(r, \Delta) + \frac{H[c_{\mathbf{s}}\Delta - r]}{c_{\mathbf{s}}^{2}} \hat{\varphi}_{\mathbf{s}}(r, \Delta)\right] \\ \varphi_{\gamma} &= \sqrt{c_{\gamma}^{2}\Delta^{2} - r^{2}} \\ \hat{\varphi}_{\gamma} &= \log\left(\sqrt{c_{\gamma}^{2}\Delta^{2} - r^{2}} + c_{\gamma}\Delta\right) - \log(r) \end{split}$$

Numerical quadrature: Light cones & decompositions

Screen problems

$$\begin{split} \Omega^c = \mathbb{R}^3 \setminus ([-1,1]^2 \times \{0\}), \ \mathcal{V}\phi = \sin(t)^5 \ \text{on} \ [-1,1]^2 \times \{0\}. \\ \text{solution near corner} \ r^{-0.703\dots}, \ \text{near edge} \ r^{-\frac{1}{2}} \end{split}$$

Screen problems: Corner exponents for waves

 $\Omega^{c} = \mathbb{R}^{3} \setminus ([-1, 1]^{2} \times \{0\}), \ \mathcal{V}\phi = \sin(t)^{5} \text{ on } [-1, 1]^{2} \times \{0\}, \ 0 < t < 1.$

corner exponent: $-0.78 \sim \gamma - 1 = -0.703$ as in elliptic case Plot: $\phi(t, r)$ as function of r along x = y

H. Gimperlein (Innsbruck)

Boundary integral equations in space + time

Screen problems: Edge exponents for waves

 $\Omega^{c} = \mathbb{R}^{3} \setminus ([-1, 1]^{2} \times \{0\}), \ \mathcal{V}\phi = \sin(t)^{5} \text{ on } [-1, 1]^{2} \times \{0\}, \ 0 < t < 1.$

edge exponent: $-0.49 \sim -\frac{1}{2}$ as in elliptic case Plot: $\phi(t, x, y)$ as function of y, at x = 0.8754

H. Gimperlein (Innsbruck)

Boundary integral equations in space + time

Frequency domain: (Kondratiev, Dauge, Maz'ya, Nicaise, ...) Solution behaves like

- $r^{\nu-1}$ near edge.
- $r^{\gamma-1}$ near 3d corner

Near boundary $\nu = \frac{1}{2}$, for wave equation on square screen $\gamma = 0.29$.

Singularities at edges and corners

von Petersdorff '89, +Stephan '90 for Helmholtz: precise tensor product decomposition, BEM on graded meshes \implies optimal approximation on graded meshes.

Theorem $(r^{\gamma-1} \text{ in corner}, r^{-\frac{1}{2}} \text{ at edges, coeffs depend on } \omega)$ Let $\mathcal{V}_{\omega}\psi_{\omega} = f_{\omega} \in H^2(\Gamma)$. Then

$$\psi_{\omega} = \psi_{0,\omega} + \chi_{\omega}(r)r^{\gamma-1}\alpha_{\omega}(\theta) + \tilde{\chi}_{\omega}(\theta)b_{1,\omega}(r)r^{-1}(\sin(\theta))^{-\frac{1}{2}} + \tilde{\chi}_{\omega}(\frac{\pi}{2} - \theta)b_{2,\omega}(r)r^{-1}(\cos(\theta))^{-\frac{1}{2}}$$

where $\psi_{0,\omega} \in H^{1-}(\Gamma)$, $\alpha_{\omega}(\theta) \in H^{1-}[0, \frac{\pi}{2}]$, $b_{i,\omega} = c_{i,\omega}r^{\gamma} + d_{i,\omega}(r)$, $r^{-\frac{1}{2}}d_{i,\omega}(r) \in H^{1}(\mathbb{R}^{+})$, $r^{-\frac{3}{2}}d_{i,\omega}(r) \in L_{2}(\mathbb{R}^{+})$, $c_{i,\omega} \in \mathbb{R}$. (r,θ) polar coordinates around (0,0), χ_{ω} , $\tilde{\chi}_{\omega} \in C_{c}^{\infty}$, = 1 near 0.

 γ eigenvalue: $\gamma \approx 0.2966$ for rectangle

H. Gimperlein (Innsbruck)

Work on wave equation and elastodynamics:

- frequency domain: Kondratiev, Dauge, Maz'ya, Nicaise, ... Dauge '87: singular expansions near corners and edges von Petersdorff '89, +Stephan '90: precise tensor product decomposition, BEM on graded meshes
- Plamenevskii et al. since '99: analysis of wave equation and elastodynamics in domains with singularities
- Müller Schwab '15 / '16: 2d FEM on graded meshes
- HG, Özdemir, Stark, Stephan, '18 / '19: 3d BEM on graded meshes
- Aimi, Di Credico, HG, Stephan '23: 2d/3d BEM for elastodynamics

Singularities at edges and corners

The next theorem in 2d goes back to Plamenevskii (a), Müller–Schwab (b) for FEM, 2d/3d Aimi, Di Credico, HG, Stephan.

Theorem

- a) In 2d, solution behaves like $r^{-\frac{1}{2}}$ at $\partial\Gamma$. In 3d $r^{\gamma-1}$ near corner, $r^{-\frac{1}{2}}$ at $\partial\Gamma$.
- b) Optimal approximation on β -graded mesh in energy norm ($\Delta t \leq h$): Error of best approximation in $H^0_{\sigma}(\mathbb{R}^+, H^{-\frac{1}{2}}(\Gamma)) \lesssim h^{\min\{\frac{\beta}{2}, \frac{3}{2}\}-\varepsilon}$.

$$x_j = 1 - \left(\frac{j}{N}\right)^{\beta}, \ j = 1, \dots, N$$
.

Zürich 2023

20 / 40

The next theorem in 2d goes back to Plamenevskii (a), Müller–Schwab (b) for FEM, 2d/3d Aimi, Di Credico, HG, Stephan.

Theorem

a) In 2d, solution behaves like $r^{-\frac{1}{2}}$ at $\partial\Gamma$. In 3d $r^{\gamma-1}$ near corner, $r^{-\frac{1}{2}}$ at $\partial\Gamma$.

b) Optimal approximation on β -graded mesh in energy norm ($\Delta t \leq h$): Error of best approximation in $H^0_{\sigma}(\mathbb{R}^+, H^{-\frac{1}{2}}(\Gamma)) \lesssim h^{\min\{\frac{\beta}{2}, \frac{3}{2}\}-\varepsilon}$.

Theorem extends to elastodynamics, polygonal domains and hypersingular boundary integral equation (Aimi, Di Credico, HG, Stephan '23).

Screen problems: convergence rates for 3d wave equation $\Omega^c = \mathbb{R}^3 \setminus ([-1,1]^2 \times \{0\}), \ \mathcal{V}\phi = \sin(t)^5 \text{ on } [-1,1]^2 \times \{0\}, \ 0 < t < 1.$

Energy norm² = $\langle \mathcal{V}\partial_t(\phi_h - \phi), \phi_h - \phi \rangle \sim h^2 \simeq DOF(\Gamma)^{-1}$ (2-graded) $\sim h \simeq DOF(\Gamma)^{-1/2}$ (uniform)

similar results for W and for Dirichlet-to-Neumann operator

Screen problems: elastodynamics on graded meshes

$$\begin{split} \Omega^c &= \mathbb{R}^2 \setminus ([-\tfrac{1}{2}, \tfrac{1}{2}] \times \{0\}), \ \mathcal{V}\phi(t, x) = g(x, t)(1, 1)^T \text{ on } [-\tfrac{1}{2}, \tfrac{1}{2}] \times \{0\}. \end{split}$$
 Material parameters $\lambda = 2, \ \mu = 1, \ \varrho = 1$

$$g(x,t) = f(t)x^4$$
, $f(t) = \sin^2(4\pi t)$.

solution near vertex $\sim r^{-\frac{1}{2}}$

Screen problems: Convergence rates on β -graded meshes $\Omega^{c} = \mathbb{R}^{2} \setminus \left(\left[-\frac{1}{2}, \frac{1}{2} \right] \times \{0\} \right), \ \mathcal{V}\Phi(t, x) = g(x, t)(1, 1)^{T} \text{ on } \left[-\frac{1}{2}, \frac{1}{2} \right] \times \{0\}.$ $g(x, t) = f(t)x^{4}, \quad f(t) = \sin^{2}(4\pi t).$ Energy norm² = $\langle \mathcal{V}\partial_{t}(\phi_{h} - \phi), \phi_{h} - \phi \rangle \sim h^{\beta} \simeq DOF(\Gamma)^{-\beta} (\beta$ -graded) $\sim h \simeq DOF(\Gamma)^{-1} (uniform)$

H. Gimperlein (Innsbruck)

Boundary integral equations in space + time

Traffic noise: Sound amplification in horn geometry

Support: "LeiStra3" programme of BASt, EPSRC IAA.

Traffic noise: Sound amplification in horn geometry

HG, Meyer, Özdemir, Stark, Stephan, Numer. Math. 2018.

Grading with various Δt compared to uniform tire mesh.

Theorem (HG, Özdemir, Stark, Stephan, CMAME '19, Aimi, Di Credico, HG, Stephan, Numer. Math. '23) Approximation error in energy norm on a quasi-uniform mesh ($\Delta t \leq h$): Error of best approximation in $H^0_{\sigma}(\mathbb{R}^+, H^{-\frac{1}{2}}(\Gamma)) \lesssim \left(\frac{h}{p^2}\right)^{\frac{1}{2}-\varepsilon} + \left(\frac{h}{p}\right)^{\frac{1}{2}+\eta}$

Here η depends on the regularity of rhs.

Screen problems: Convergence rates of p and hp-versions

as above: $\mathcal{V}\phi(t,x) = g(x,t)(1,1)^T$ on $[-\frac{1}{2},\frac{1}{2}] \times \{0\}.$

Fix mesh with h = 0.1, increase p.

hp-version on geometrically graded mesh: $\sigma \in (0, 1/2]$, N intervalls in $[-\frac{1}{2}]$: $x_0 = -\frac{1}{2}$, $x_k = \frac{1}{2} (\sigma^{N+1-k} - 1)$.

H. Gimperlein (Innsbruck)

Boundary integral equations in space + time

Polygonal screens: Singular exponents

Polygonal meshes and expected exponent with dependence on ω_{int}

Polygonal screens: Singular exponents

H. Gimperlein (Innsbruck)

0.5

Polygonal screens: Convergence on β -graded meshes

$$\begin{split} \mathcal{V}\Phi(t,x) &= 100 f(t) |x|^n (0,1)^T \text{ on equilateral triangle. } \lambda = 2, \ \mu = \varrho = 1. \\ \text{Energy norm}^2 &= \langle \mathcal{V}\partial_t(\phi_h - \phi), \phi_h - \phi \rangle \sim h^{2\nu^*\beta} \simeq DOF(\Gamma)^{-2\nu^*\beta} \end{split}$$

Theorem (Aimi, Di Credico, HG, Stephan, Numer. Math. '23) Approximation error in energy norm on screen ($\Delta t \leq h$): a) graded meshes: Error of best approximation in $H^0_{\sigma}(\mathbb{R}^+, H^{-\frac{1}{2}}(\Gamma)) \lesssim h^{\min\{\frac{\beta}{2}, \frac{3}{2}\}-\varepsilon}$. b) *p*-version: Error of best approximation in $H^0_{\sigma}(\mathbb{R}^+, H^{-\frac{1}{2}}(\Gamma)) \lesssim \left(\frac{h}{p^2}\right)^{\frac{1}{2}-\varepsilon} + \left(\frac{h}{p}\right)^{\frac{1}{2}+\eta}$ Here η depends on the regularity of rhs.

Extension to hypersingular integral equation

 $\mathcal{W}\Psi(t,x) = (1,1)^T$ constant on $[-\frac{1}{2},\frac{1}{2}] \times \{0\}$. $c_p = 2,3$, $c_s = \varrho = 1$.

Convergence of β -graded h-version, p- and hp-versions

H. Gimperlein (Innsbruck)

A posteriori error estimate for $\mathcal{V}\phi = f$

Theorem (HG, Özdemir, Stark, Stephan, Numer. Math. '20) Let $\phi_{h,\Delta t} \in H^0_{\sigma}(\mathbb{R}^+, H^{-\frac{1}{2}}(\Gamma))$ such that $\mathcal{R} = \partial_t \ g - \mathcal{V}\partial_t \phi_{h,\Delta t} \in H^0_{\sigma}(\mathbb{R}^+, H^1(\Gamma)) \Longrightarrow$ $\|\phi - \phi_{h,\Delta t}\|^2_{0,-\frac{1}{2}} \lesssim \sum_{i,\Delta} \max\{\Delta t, h_\Delta\} \|\mathcal{R}\|^2_{0,1,[t_i,t_{i+1})\times\Delta}$ $\max\{\Delta t, h\}\|\mathcal{R}\|^2_{0,1-\epsilon} \lesssim \|\phi - \phi_{h,\Delta t}\|^2_{2,-\frac{1}{2}}$

The upper bound follows from a function-space argument (Carstensen '96), for large classes of meshes.

The lower bound holds on quasi-uniform meshes.

Extension to \mathcal{W} with Aimi, Di Credico, Guardasoni (in preparation).

A posteriori error estimate for $\mathcal{V}\phi = f$

Theorem (HG, Özdemir, Stark, Stephan, Numer. Math. '20) Let $\phi_{h,\Delta t} \in H^0_{\sigma}(\mathbb{R}^+, H^{-\frac{1}{2}}(\Gamma))$ such that $\mathcal{R} = \partial_t \ g - \mathcal{V}\partial_t \phi_{h,\Delta t} \in H^0_{\sigma}(\mathbb{R}^+, H^1(\Gamma)) \Longrightarrow$ $\|\phi - \phi_{h,\Delta t}\|^2_{0,-\frac{1}{2}} \lesssim \sum_{i,\Delta} \max\{\Delta t, h_\Delta\} \|\mathcal{R}\|^2_{0,1,[t_i,t_{i+1})\times\Delta}$ $\max\{\Delta t, h\}\|\mathcal{R}\|^2_{0,1-\epsilon} \lesssim \|\phi - \phi_{h,\Delta t}\|^2_{2,-\frac{1}{2}}$

Residual error indicators:

$$\eta^2(\Delta, i) = \max\{\Delta t, h_\Delta\} \|\mathcal{R}\|_{0,1,[t_i,t_{i+1}) \times \Delta}^2$$

(Simple) Proof of upper bound

$$\begin{split} \|\phi - \phi_{h,\Delta t}\|^{2}_{H^{0,-\frac{1}{2}}([0,T],\Gamma)} \\ \lesssim \int_{0}^{T} dt \int_{0}^{t} ds \int_{\Gamma} d\Gamma \ \mathcal{V}(\dot{\phi} - \dot{\phi}_{h,\Delta t})(\phi - \phi_{h,\Delta t}) \\ = \int_{0}^{T} dt \int_{0}^{t} ds \int_{\Gamma} d\Gamma \ (\dot{f} - \mathcal{V}\dot{\phi}_{h,\Delta t})(\phi - \phi_{h,\Delta t}) \\ \lesssim_{T} \ \|\mathcal{R}\|_{H^{0,\frac{1}{2}}([0,T],\Gamma)} \ \|\phi - \phi_{h,\Delta t}\|_{H^{0,-\frac{1}{2}}([0,T],\Gamma)} \,. \end{split}$$

• interpolation inequality:

$$\|\mathcal{R}\|_{H^{0,\frac{1}{2}}}^2 \lesssim \|\mathcal{R}\|_{H^{0,1}} \|\mathcal{R}\|_{L^2 L^2}$$
.

- residual orthogonal: $\mathcal{R} \perp \psi_{h,\Delta t}$.
- interpolation \rightsquigarrow $h, \Delta t$.

31 / 40

dumb estimate:

$$\begin{split} \|\mathcal{R}\|_{H^{r-1,s+\frac{1}{2}}} &= \|\mathcal{V}(\dot{\phi} - \dot{\phi}_{h,\Delta t})\|_{H^{r-1,s+\frac{1}{2}}} \lesssim \|\phi - \phi_{h,\Delta t}\|_{H^{r+1,s-\frac{1}{2}}} \\ & \|\mathcal{R}\|_{H^{0,1-\varepsilon}} \lesssim \|\phi - \phi_{h,\Delta t}\|_{H^{2,-\varepsilon}} \ . \end{split}$$

Using the singular expansion for $\partial \Gamma \neq \emptyset$, we estimate $\|\phi - \phi_{h,\Delta t}\|_{H^{2,-\epsilon}}$ on quasi-uniform meshes to obtain the efficiency of the estimator.

Error indicator \sim energy error on uniform mesh

 $f(t, \mathbf{x}) = \sin^5(t)z^2$ on $\Gamma = \left\{ x, y, z \mid x^2 + y^2 + z^2 = 1 \right\}$, 0 < t < 2.5.

We consider residual and ZZ indicators on a uniform series of meshes. Compare to error in energy norm and sound pressure (with respect to benchmark).

• Efficient: Indicators scale like error in energy norm.

A first adaptive method: space-adaptivity

- **1** Start with coarse space-time grid: $(\Delta t)_i \simeq (\Delta x)_i \simeq h_0 \ \forall \Delta_i$
- 2 Solve discretisation of $\mathcal{V}\dot{\phi} = \dot{g}$.
- **③** Compute time-integrated error indicator $\eta(\Delta_i)$

•
$$\sum_{i} \eta(\Delta_i) < \varepsilon \implies \text{STOP}$$

$$\begin{array}{ll} \textcircled{0} & \eta(\Delta_i) > \delta \eta_{max} & \Longrightarrow & \Delta_i \to \Delta/4, \ (\Delta t)_i \to \frac{(\Delta t)_i}{2} \\ \hline \end{array} \\ \begin{array}{ll} \textcircled{0} & \texttt{GO TO 2.} \end{array}$$

Space-adaptive refinements on screen

 $\mathcal{V}\phi = \sin^5(t)x^2$ on $\Gamma = [-0.5, 0.5]^2 imes \{z=0\}$, 0 < t < 2.5, $\Delta t = 0.1$.

Compare residual indicators, energy, and sound pressure for uniform / adaptive mesh refinements.

• Uniform method: Density ϕ at t = 1.0, 1.4

Space-adaptive refinements on screen: meshes

H. Gimperlein (Innsbruck)

Boundary integral equations in space + time

Space-adaptive refinements on screen: convergence

 $\mathcal{V}\phi = \sin^5(t)x^2$ on $\Gamma = [-0.5, 0.5]^2 \times \{z = 0\}$, 0 < t < 2.5, $\Delta t = 0.1$.

Compare residual indicators, energy, and sound pressure for uniform / adaptive mesh refinements.

• Convergence rate 0.5 (uniform), 0.77 adaptive reproduces rates for time-independent BEM.

Space-adaptive refinements on triangular screen

 $V\phi = \sin^5(t)$ on $\Gamma = 30 - 60 - 90$ triangle, 0 < t < 2.5.

Compare residual indicators, energy, and sound pressure for uniform / adaptive mesh refinements.

• Convergence rate 0.45 (uniform), 0.65 adaptive.

Adaptive time stepping

$$\mathcal{V}\phi = f, \ f(x,t) = \begin{cases} \sin^2(4\pi t) & \text{for } 0 \le t \le \frac{1}{8} \\ 0 & \text{for } t \ge \frac{1}{8} \end{cases}$$

on $\Gamma = (0,1) \times \{0\}$ slit, $0 < t < 1, \ h = \frac{1}{40}.$

Conclusions: Time domain BEM + mesh refinements

- Geometric singularities of wave equation and elastodynamics at edges/corners, resolved by time-independent meshes
- A posteriori analysis for elliptic BEM partly generalizes to space-time, (well-known) "loss" of time derivatives compared to elliptic case
- Static meshes optimal for geometric singularities \rightsquigarrow space-only adaptive refinements sufficient
- Temporal singularities \rightsquigarrow adaptive time stepping for convex scatterers

Outlook: Space-time adaptive mesh refinements.

Scattering off a knife's blade (screen problems), in h (Convergence rates in energy norm)

- 0.5: h-version, uniform mesh
- 0.77: *h*-version, adaptive
- 1.0: *p*-version, uniform mesh
- $\beta/2$: h-version, β -graded mesh