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Abstract

In this work, we study the local wellposedness of the solution to a nonlinear elliptic-dispersive
coupled system which serves as a model for a Micro-Electro-Mechanical System (MEMS). A simple
electrostatically actuated MEMS capacitor device consists of two parallel plates separated by a
gas-filled thin gap. The nonlinear elliptic-dispersive coupled system modelling the device combines
a linear elliptic equation for the gas pressure with a semilinear dispersive equation for the gap
width. We show the local-in-time existence of strict solutions for the system, by combining elliptic
regularity results for the elliptic equation, Lipschitz continuous dependence of its solution on that of
the dispersive equation, and then local-in-time existence for a resulting abstract dispersive problem.
Semigroup approaches are key to solve the abstract dispersive problem.

1 Introduction

This paper is concerned with short-time existence, uniqueness and smoothness of the solution to the
following nonlinear coupled system, which is a model for an idealized electrostatically actuated MEMS
device containing an effectively incompressible fluid:

%—T:V-(wBVu), z e, t>0; (1a)

w 2 Br
W:Aw—Aw—ﬁﬁ-ﬁp(u—l), reQ, t>0; (1b)
w(z,0) = wy(z), %l;(a:,O) =uvo(z), =€ Q; (1c)
u(z,t) = 01, w(z,t) =6y, Aw(x,t) =0, x€IQ, t>0. (1d)

Here u(z,t) and w(x,t) are the unknown functions, corresponding to gas pressure and gap width
respectively, 2 C R" is a bounded and open region with smooth boundary 992, n = 1, 2; 8p > 0,
Bp >0, 61 > 0 and 62 > 0 are given constants; vg = vo(z) and wy = wp(x) are given functions. We
shall prove the following wellposedness for short time:

Theorem 1.1. Let Q C R™ with smooth boundary, n =1, 2. For sufficiently smooth, positive initial
values compatible with the boundary conditions, there exists a time Ty > 0 such that the initial-boundary
value problem (1) has a unique strict solution (u,w), and

ue C([0,Tp); H(R)), we C?([0,Ty); L*(Q)) N C ([0, Tp); H*(R2)) N C ([0, Tp); HA()) -
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The explicit assumptions on the initial conditions will be specified in Section 5. Note that global-in-
time solutions are not necessarily expected, as quenching singularities with iréf w(t) — 0 may develop
in finite time [6].

The model (1) describes the behaviour of a simple electrically actuated MEMS (Micro-Electro-Mechanical
Systems) capacitor (see, for example, [14]). Such a device contains two conducting plates which, when
the device is uncharged and at equilibrium, are close and parallel to each other. More generally, we
suppose a fixed potential difference is applied; this potential difference acts across the plates, so that
the MEMS device forms a capacitor. The two plates lie inside a sealed box also containing a rarefied
but effectively incompressible gas, as opposed to a perfect vacuum. This gas then serves to give a
small resistance to the motion of the upper of the plates, this plate being flexible but pinned around
its edges. The other, lower, plate is taken to be rigid and flat.

Eqn. (1a) is the usual version of the standard Reynolds’ equation, for the flow of an incompressible
fluid through a narrow gap (width w) driven by pressure u (see, for example, [12]). Here it is assumed
that the squeeze film action is very slow, so the gas has pressure and density nearly constant, and flow
can thus be regarded as incompressible. The paper [1] studies the incompressible squeeze film equation
(1a) by linearizing further, for cases where deflection of the plate from its equilibrium position is small
(w = const., to leading order), and thinking of it as Poisson’s equation Au = %—?.

The upper part of the capacitor acts as a thin elastic plate so that its motion can be taken to
be given by a dynamic plate equation balancing the inertial term on the left-hand side of (1b) with
the biharmonic term modelling linear elasticity, the second term on the right [8]. Taking there to be
a significant tension acting across the plate gives, additionally, the first term on the right: the more
usual Laplacian, as for a membrane. The third term is the electrostatic force attracting the upper
plate towards the lower. The strength of this force per unit area is given by the local electric field
strength times the surface charge density, the latter itself being proportional to the former, while this,
the field strength, is inversely proportional to the gap width w. The final, fourth, term is simply the
net upward gas pressure acting on the plate: pressure in the gap acting up and constant ambient
pressure acting down. For more details see [4], [13], [14].

Our proof of Theorem 1.1 relies on semigroup techniques developed for semilinear hyperbolic
equations. Using the solution operator for the first, elliptic equation, we reduce the system to an
abstract evolution equation, to which the functional analytic methods are then applied. Semigroup
methods have become a powerful tool for MEMS-related models defined by a single equation or by an
elliptic-parabolic coupled system, see the recent survey [10].

Before proceeding, we review some of the most relevant literature which studies related models
MEMS devices, both numerically and analytically, to obtain qualitative behaviour, and note some
other work on similar systems.

The static deflection of charged elastic plates in electrostatic actuators can be represented by a
nonlinear elliptic equation

—Aw + B APw = - (2)

where [Br is an electrostatic coefficient, depending upon applied voltage and giving the strength of
attraction between the plates, and f,. is fixed by the elastic moduli of the plate material in comparison
with imposed tension. Lin et al. [11] study the existence, construction, approximation, and behaviour
of classical and singular solutions to equation (2). Other such problems can be found in references [3],
[16]. From Chapter 12 in [4], there is a value 5* € (0,00) such that for 0 < S < * there exists at
least one weak solution to (2), while no solution exists for fp > g*.

To model the behaviour of the plate gap width w over time, one has to consider the momentum
of the plate as it deforms and damping forces, as well as the elastic nature of the plate and the



electrostatic force. Then a single equation of motion which has been studied is
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the second term in (3) having been introduced to account for damping.

For a physical model, the equation applies on a bounded domain of R”, 1 < n < 3. In Guo,
[7], quenching is seen to occur, that is, w falls to zero in a finite time, so that a solution of (3) will
cease to exist, if Sp exceeds the critical value 5* for the time-independent problem (2). This creates
what, physically, is called the pull-in instability, when the two plates touch (also referred to as “touch-
down”). Guo [7] shows that there exists a S, € (0, 8*] such that for 0 < Sp < S, the solution of
an initial boundary value problem for (3) globally exists. Under some further technical hypotheses,
in this case the solution exponentially converges to a regular steady state. See the survey article [10]
for a discussion of a wider class of models arising in the description of MEMS.

The plan of the paper is as follows: In Section 2, we introduce the relevant function spaces and some
of their basic properties. In Section 3, we establish auxiliary estimates for the nonlinearity in (1b) and
introduce the notions of both mild and strict solutions of evolution equations. The elliptic problem
(1a) for the unknown w is discussed in Section 4. The results from Sections 3 and 4 are then used in
Section 5 to investigate the local well-posedness of the initial-boundary value problem (1), leading to
Theorem 1.1.

2 Notation

Denote by Br, Bp, 0 given positive constants. Let 2 C R" be an open and bounded subset with
smooth boundary 092, n = 1, 2. Denote by C = C(f2) a positive constant which may vary from line
to line below but only depends on €.

Hy () = {¢ € HY(Q) : ¢log = A lago= 0},  HF(Q) = H*(2) N Hy(9), (4)
Hi () = {¢ € HY(Q) : () = 0, Ap(z) =0, 2 € 90}, (5)
Hj(Q) = {¢ € H*(Q) : ¥ ]oa=0}. (6)

Theorem 2.1. We denote by X a Banach space, with norm || - || x. For k € N and T € (0,00), B(X)
denotes the space of bounded linear operators on X. In the following we shall be particularly interested
in X = L*(Q), L=(Q) and H*(Q). The space B([0,T]; X) consists of all measurable, almost everywhere
bounded functions u : t € [0,T] — u(t) € X, with norm |[ul|p(o,17.x) = esssupsejo,nllu)llx. If X is
a function space as above, we write u(t) : x € Q — [u(t)](x) = u(x,t) € R. The closed subspace of
continuous functions is denoted by C([0,T]; X), and

j
cHorix) = {us 0115 X0 GF e c(0.TIX), 0 <k,
k .
du(t)
lull o o.7:x) = sup | H '
CHIOTEX) tE[O,T]jZ_g dti ||



Our main results will be shown by constructing a Picard iteration in the complete metric space
Z(T), given by

Z(T) := {(17,12;) € C ([0,T]; L*(Q) x H2(Q)) : (9(0),w(0)) = (3o, o) ,

SW)WWﬂ—@mww—ﬂ%WmmyHmnﬁr} )
te[0,7)

3 Preliminaries

In this section, we recall some well-known properties of the Sobolev spaces H k(Q), where k£ > 0,
and formulate some Corollaries which will be useful in the proof of the main results. The proofs of
Corollary 3.1 and Corollary 3.2 can be found in Appendix A. We then state a general existence result
for evolution equations and the regularity in time without proof.

3.1 Algebra Property of Sobolev Spaces

The algebra property of Sobolev spaces will be crucial in this work, see [15] for a proof.

Lemma 3.1. H*(Q) is an algebra when k > 2. In particular, H' () is an algebra if @ C R and
H2(Q) is an algebra if Q CR™, n =1, 2.

We deduce some immediate consequences.

Corollary 3.1. There exists a constant C = C(Q) > 0, such that for allr € (0, 5%), w € By (wo, T)
satisfies the lower bound

w(t) > g vV te0,T]. (8)

Moreover, for all wi, wy € By(wo,T), there exist positive constants Cy, k =1, 2, 3, depending on €2,
K and ||wol| g2 (q), such that

A o d WL g
sup. [ 2 \ < sup fur(t) — woll gy k=23 (10)
teo,r) |l fwi(@®)]F [wa(t)]* H2(Q) t€[0,T) @
Corollary 3.2. The operator G, defined by
G : W € B, (0, T) — G(w) € C([0,T]; H*(Q)), (11a)
[G(w)](t) = G(w(t) = —[w(t)ﬂieﬂQ + Bp(61 — 1), (11b)

has the following properties:

sup [[[G(@)](t +h) = [G@)](D)l| g2(q) < La sup lw(t+h) —w(t)| gz,  (12)

0<t<t+h<T 0<t<t+h<T
sup |[|[[G(w1)](t) — [G(w)](D)] g2y < La sup_[lwn(t) — w2 (t)] 2(q) » (13)
t€[0,717] t€[0,T
sup |[|[G(w1)](t) — G(wo)]| 2(0) < Lar- (14)
te[0,7)



Here Lg = Lg (2, &, |lwollg2q), Br) is a constant.
Furthermore, the Fréchet derivative G'(w) of G(w) depending on w € B, (o, T),

G (@) : q € C (0, T); HAQ)) — & (@) q € C ([0, T): HA(Q)). (153)
[G" (@) q] (t) = [G" (w(t))] q(t) = (w(jﬁf%)?’q(t)’ (15b)
satisfies
sup [[[6" (@) a] () sy < L sup_a(0) 20y (16)
te[0,7) t€[0,7)

and G'(w(t)) : HX(Q) — H2(Q) satisfies

lim  sup ||G'(@(t) + 7 [@(t+ h) — @(t)]) - G (@
h—0 o<t<t+h<T
0<7r<1

)|z ) = ©- (17)

3.2 Mild and Strict Solutions of Evolution Equations

Theorem 3.1. Let X be a Banach space, A : D(A) C X — X a linear, unbounded operator which
generates a strongly continuous semigroup (Co-semigroup) {T'(t) : t > 0}. Further, let T € (0,00),
G € C([0,T];X) and ®y € X. A function ® is called a mild solution of the inhomogeneous evolution
equation

O'(t) = AD(t) +G(t), te[0,T], @(0)= D, (18)

if ® € C([0,T]; X) is satisfies the integral formulation of (18),
t
B(t) = T(t)B + / T(t = 5)G(s)ds, te[0,T). (19)
0
A function ® is said to be a strict solution of (18), if ® € C([0,T); D(A)) N C*([0,T);X) is a mild
solution and satisfies (18).

Lemma 3.2. Let the linear operator A defined on a Banach space X generate the Cy-semigroup
{T(t) :t >0}, T € (0,0), and &9 € D(A). If G € C([0,T];X) and ® is a solution of the
inhomogeneous evolution equation (18), then ® satisfies the integral formula (19).

Assume either that G € C([0,T]; D(A)) or that G € C1([0,T]; X). Then the mild solution ® defined
by (19) uniquely solves the inhomogeneous evolution equation (18) on [0,T], and

® € C(0,T]; D(A)) N C*([0, T]; X).
We refer to Theorem 6.9 in [9] for the proof of Lemma 3.2.

Lemma 3.3. Let X be a Banach space and ® € C([0,T]; X) be differentiable from the right with right
derivative ¥ € C ([0,T); X). Then ® € C*([0,T];X) and &' = .

We refer to Lemma 8.9 in [9] for the proof of Lemma 3.3.



4 Wellposedness of the Linear Elliptic Equation

Lemma 4.1. Let Q C R™ be a bounded domain with smooth boundary, n = 1, 2. Let v € H1()
and wy € H?(Q) with k = imgf2 wo > 0. Then there exists a constant C = C(Q) > 0 such that for all
re

w € By(wp) = {1/1 € H?(Q): ||y — wol| g2 () < 7“}, r € (0,455), the elliptic boundary value problem
V- (wSVﬂ) =vinQ, u=0 ondf, (20)
admits a unique weak solution i € H} (), and U satisfies
] g1y < Collvllg-1(q) - (21)
Here C, > 0 is a constant depending only on k and ).

Proof. Since wg € H%(Q) and w € B,(wg) = {w € HYQ): ||v— woll 20y < 7'}, according to the
triangle inequality and the Sobolev embedding theorem, there exists a constant C' = C(€2) > 0, such
that for all r € (0, %), it follows that

w=wy+w—wo =k — ||w—wol e =K —Cllw—wolgzq =2£—-Cr= g, (22a)
K
”wHH?(Q) < ||w0||H2(Q) + 20 (22D)

For all functions that vanish on 02, from the Poincaré inequality, we obtain
[l 2 () < ClIVEl 20 - (23)

It is easy to see that for all @1, @2 € H(S)

/§2w3Vﬂ1Vﬂ2d$ S Hw3HLOO(Q) HVﬂl”B(Q) ||V112"L2(Q)

K\3, . -
< (lwoll ey + 55 ) Il oy Nzl oy (24)
N K3 k3O
| w19 de = G Vil = S il (25)

where C' = min {1, C~?}. From the Lax-Milgram Theorem (Theorem 1, Section 6.2, [5]), the problem
(20) has a unique weak solution @ € Hg(£2), and from (24), (25) this weak solution satisfies (21). [

Theorem 4.1. Define the solution operator S, by
S,: H YQ) x B.(wg) — HY(Q), (v,w)—a, @=S,(v,w), (26)
where @ denotes the solution of (20). Then S, is linear with respect to v,
So(v1 — vo,w) = Sy(vi,w) — Sp(va, w), w1, vy € H_l(Q), w € By(wo),

and it satisfies
1So(v1,w) = So(v2, )| 10y < Co llvr = vall -1 (0 - (27)



In fact, 11 = Sy(v1,w) and Gy = Sy(va, w) denote the solutions of the equations
V- (wSVﬂl) =vyin8, u=00n02, V- (w?’Vﬂg) =wvy in, 1uy =0 on 09,
respectively for each w € B,(wg) and v1, vo € H-1(). Then 1y — 1g is the solution of
V-(wSV[ﬁl—fcg]) =v1 —vy in ), U — Uy =0 on 09,

for every w € B,(wp) and vi — vy € L*(Q), and @iy — iy = So(v1 — vo,w). By using the estimate (21)
from Lemma 4.1, we conclude the assertion (27).

Lemma 4.2. S, satisfies the following Lipschitz continuity estimates:
[S0(0,w1) — Solvsw) 1100y < Co [0l 1100y oot — wall ey (28)
Here, C? is a constant depending on C, from Lemma 4.1, on Q, k and ||w0||H2 @)

Proof. Let 4 = S,(v,w1), @5 = So(v, w2) denote the solutions of the equations
V- (wiva)) =vin Q, @} =0 on 09, (29)

V- (wiVias) =vin Q, @ =0 on 0%, (30)

respectively, for given wi, we € B,(wp) and v € H~(Q). Then @} — @} satisfies
V- [wiV (@ —a3)] = V- [(ws —wi) V). (31)
Multiply (31) by @} — a3, and integrate over €, integrating by parts:
/Qwif\V(aj—uz | d:c_/V P —ap) - [(wh — w?) Vas] da. (32)
Because @3 is a solution of equation (30), Lemma 4.1 implies
19 20 < Colloll 10y - (33)

From the algebraic property of H?(2) and triangle inequality we obtain

w3 — HH?(Q [le”H2 + ||w2||§{2(9) + llwill g2 (o) lwzll g2y | lwr — wall g2 (o)
K\ 2
<3 (Ilwoll sy + 565) s = walgaqey (34)

Using the Sobolev embedding Theorem, the Schwarz inequality, (33) and (34) on the right hand side
of (32), we get

T—as) - [(w 35— w:{’) Vi) dx

< g — 0 /|v {—a5) - V| da
<C w3 — 1HH2(Q) IV (a1 — a2)l 20 IVE2]l L2 ()

K\ 2
<30C, (Hwollmm) + @) [0l 10
. ||w1 — UJQHHQ(Q) ||v (ﬂT - a;)HLQ(Q) : (35)



Because wi € B, (wp), from estimate (22a) in the proof of Lemma 4.1, we have

3
3 K
> —.
wy =2 3
Hence, the left hand side of (32) satisfies
3v~*7~* 2d >i3v~*7~*2 36
Qw1| (a1 —up)|" do > 3 IV (a1 U2)||L2(Q)~ (36)

Therefore, (35) and (36) imply (28) holds by setting

. 24CC, K\ 2
Co=—3 (HwOHH%Q)—’_%) VC? + 1.

O]

Theorem 4.2. Because of the continuity of the solution operator, we obtain corresponding results in
spaces of continuous functions C ([0,T]; X), for appropriate X. For example, Lemma 4.1 becomes:
For each v € C([0,T;; H1(Q)) and w € C([0,T]; Br(wo)), there ewists a unique solution @ €
C ([0,T); H} () of the linear elliptic equation (20) such that

sup [|a(t)|| gy < Co sup [[o(t)|l g-1(q)- (37)
te[0,7T] te[0,7)

The solution operator S, given by (26) becomes

So: C([0,T]; H(Q) x Br(wg)) — C ([0,T]; Hy(Q)), (v,w) — @i, @ = So(v,w), (38a)
u(t) = [So(v, w)](t) = So(v(t), w(t)), (38b)
and S, has the similar Lipschitz continuity properties such as
sup_[[[So(vr, w))(t) — [So(vz, W)l 10y < Co sup_[[o1(t) — v2(t)| 1y (39)
te[0,T] te[0,7]

sup |[[So(v, w1)](t) = [So(v, w2)] (D) 1.

t€[0,T]
<C3 sup [[v(®)]l 1) sup_ [lwi(t) = wat)ll 2 - (40)
t€[0,T tel0,T)
Hence
sup |[|[So(v1, w1)](t) = [So(va, w2)]() | 10
te[0,T)
<Cj sup [[v2(O)llyg-1(q) sup [lwi(t) — w2t y2q) + Co sup [[vi(t) — v2(t)|| g-1(q) - (41)
te[0,7 te[0,7) te[0,7)

Choose h € (0,T) sufficiently small such that t +h € [0,T] and w(t), w(t + h) € By(wy), similarly,
we obtain

sup HSO(U(t + h)? w(t + h)) - SO(”@)? w(t))HHl(Q)

te[0,T]
<C; sup [o()llg-1) sup [[w(t+h) —wt)|g2q)+ Co sup |v(t+h) —v@)|g-10)-  (42)
t€[0,T] te[0,T) te[0,T]



Estimates (39) and (40) imply the Fréchet derivative D,S,(v(t), w(t)) of So(v(t), w(t)) on v(t) and the
Fréchet derivative Dy,S,(v(t), w(t)) of So(v(t), w(t)) on w(t) exist and

DuSo(0(t), w®) s H(R) — HHQ), > [DuSo(o(t), w(®)le, (432)
(DS o(0(8), w(t)lp = lim + [So(0(t) + A, w() = So(u(t), w(t))] (43b)
DuSo0(t),w() s HA(Q) — HY(Q), ¥ — [DuSo(ult) w®)], (14a)
[DuSo(w(t), wB)] = lim 1 [8,(0(t),w(®) + A) ~ So(u(0), w(t))]. (44)

According to inequalities (39), (40), it is easy to obtain that functions D,S,(v(t), w(t))¢ and Dy,S,(v(t), w(t))y
are uniformly continuous with respect to ¢ and ¢ respectively.

Lemma 4.3. Letv € C([0,T); H (), w € C([0,T); Br(wo)). Then

20 11DS0 (00Ol = [DoSo(e(®) wlealmiay < Coller = sl (49)

holds for all 1, @2 € H-1(S).

e IDwSo (v(t), w(t)]t1 — [DuwSo(v(t), w ()2l g1 (q)

<Gy sup [[o(t)]| g-1(q) 11 = Y2l 2o (46)
te[0,7

holds for all 11, 9 € H*(Q).

Proof. From the definitions (43), (44) of D,S, (v(t),w(t)) and DS, (v(t), w(t)) and estimates (39),
(40), it is easy to see that

sup || DyS, (v(t), w(t)) o1 — DuSo(v(t), w(t)) @2l g1(q)
te[0,7)

1
=Jim 3 sup [ISu(u(6) + A1, wlt)) = So(v(®) + Mg )i

o1
< lim 2o [A (01 = p2)ll 1)

=Colle1 — <P2HHfl(Q) ’

sup || DwSo (v(t), w(t)) 1 — DuwSo(v(t), w(t)) 2l g1 (o
te[0,7

1
= lim — o ; — Do )
X S [So(v(t), w(t) + A1) = So(v(t), w(t) + Ah2)| g1

1
< lim —-C* _ — _
< i 1G5 3up 002y 1A (1 = 2)ls o

=Cy sup |[v(t)]l -1y Y1 — Yl g-1(q) -
te€[0,T



Theorem 4.3. Lemma 4.3 implies

su D,S, (v(t), w(t _ < Cy, 47a

te[O,PT} | (), w)ls(r-1(), 52(2) (47a)
sup._ Do (0(1), w(t)lls(aeqey, mycen) < Co smp_ [[o(0)lr1a)- (47b)
te[0,T] t€[0,T]

Now we are going to show that D,S,(v(t), w(t)) and D,S,(v(t),w(t)) are uniformly continuous on the
compact sets
{v@t) + 7wt +h) —v@) e HHQ): 7€0,1), t,t+he[0,T]},

{w( + 7 [w(t +h) —w(t)] € By(wp): 7€][0,1], t,t+he[0,T]}
respectively, which is Lemma 4.4.

Lemma 4.4. Let v € C([0,T); H 1(Q)), w € C([0,T]; B,(wo)) and choose h € (0,T) sufficiently
small such that w(t + h) € By(wp) for all t € [0,T]. Denote vp(t) = v(t + h) — v(t) and wi(t) =
w(t+ h) —w(t). Then

sup || D8, (0(t) + Ton(t), w(t) + Twa(t)) = DuSo(v(t), w(t)) 51110y, my(e)
t,t+h€[0,T]
T€[0,1]

:=a1(h) =0, as h — 0, (48)

sup || DwSo (v(t) + Top(t), w(t) + Twp(t)) — DwSo(v(t), w(t))HB(HQ(Q), HY(9)
t,t+hel0,T]
7€[0,1]

=az(h) =0, as h — 0. (49)

Proof. We denote
U1 = So (v(t) + TUp(t) + Ap, w(t) + Twp(t)), G2 = S, (v(t) + ToR(t), w(t) + Twe(t)) ,
a1 =S, (v(t) + A, w(t)), Uy =S, (v(t), w(t)),

and then w1 — @p and u] — uj satisfy
Ao =V - {(w(t) + Twh(t))3V (g —@2)}, @ — @iz =0, on 09, (50)
Ap=V- { P’V (af —a3)}, @i — a5 =0, on 0L, (51)
respectively. So w(t) + Twp(t) € Br(wo) and Lemma 4.1 imply @} — a3 satisfies
IV (@1 = a3)ll 20) < Co Al -1 »
Now, estimates (50) and (51) imply @; — a2 — (4] — ub) satisfies

V- A{(w +Twh( )3V @ — a2 — (af — @3)]}
=V, {( ) + 1w (1) = [w(t)]’) V (af —a3)} (52)

Multiply (52) by @1 — 2 — (4] — u3), and integrate over €2, integrating by parts:
[ o)+ ran®)* 1V - 32 - (@ - ) do
Q

=- /Q ((w(t) + 7w (t)? — [w®)]?) V(@ — @3) - V [ig — G2 — (4} — @3)] dx (53)

10



As w(t) + Twp(t) € Br(wp), similar to (25), (34), (35) and (36), we obtain

I€3
/Q(w(t) +rwp(D)* |V [@1 — s — (@] - @3)]° de > < IV Ia1 — a2 — (a1 - )]0

1— /Q () + rwn(®)® = w(t)?) V (@ — @) - V i — @2 — (@ - @) do

oy 19 € = )20 1V [ — = (& = )]l 2

<C [[(w(®) + run(®)® - (o)’
IV [a1 — @2 — (4] — 3)][| f2(q) -

<3CC, (|lwoll 20y + HAsaHH 0y [lwn ()l g2
20

Recall wy,(t) = w(t + h) — w(t). Thus

[an — g — (7 = @3)l| 10y < C5 Al 10y lw(t + ) = w(t)| 2o -

According to the definitions (43) of Fréchet derivative D,S,(v(t),w(t)),
Hlim)\—>0 % [@1 — U — (ﬂf - ﬂ;)] HHl(Q)
ai(h) = sup
t,t-+h€[0,T] el -1
T€[0,1], peH™1(Q)
< sup Crllw(t+h)—
0<t<t+h<T

because w € C ([0, T]; Br(wo)) and w(t) is uniformly continuous with respect to ¢ € [0, T].

Hence we conclude the assertion (48). We next show that the assertion (49) holds
Recall vy (t) = v(t + h) — v(t), wy(t) = w(t + h) — w(t). Choose 1) € H*(2) and small A such that

w(t) + Twp(t), w(t) + Twi(t) + M € By(wg). Write

ﬁ3 = So (U(t) + TUh(t)> w(t) + Twh(t) + )‘w) 5
ﬂ; =S, (U(t)vw(t) + M/J) ) ﬂz =S, (v(t)’ w(t)) :

w(t)| g2(q) — 0, as h — 0,

ﬂ4 = So (U(t) + th(t)v ’LU(t) + Twh(t)) ’

Then us — @y and uj — u) satisfy
v {(w(t) +rwn(t) + Mp)PV (g — a4)}
- V. {([w(t) +rwp(t) + MR — (w(t) + Twh(t))3> va4} :

713 - ﬁ4 = 0, on 8(2, (55)
Vo A{Tw(®) + 2PV (a5 - ag) } = =V - {([w(t) + WP~ [wt)]’) Vi),
Uz — uy =0, on 09, (56)
respectively. Hence, U3 — 4 — (U3 — 1) satisfies
V- {@(t) + Twn(t) + W)V [ — @ — (a5 — @3)] |
==V {{{wt) + Twp(t) + M — [w(t) + Twp(t)]® — ([w(t) + M)* = w(t)]) } Vs
=V A ([w®) + 7w (t) + M)* = [w(t) + 7w (t)]?) V (s — a@5) }
-V {( [w(t) + Twi(t) + )ﬂ/}] [w(t) + A\ 3) V (a3 — u4)} (57)
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Multiply (57) by a3 —4— (5 — @}), and integrate over €. Integrating by parts, as w(t)+7wp(t)+ ) €

B, (wp), the left hand side of (57) becomes

/Q(w(t)—i-Twh(t)—l—/\w) IV [iis — 4 — (i — )] der
3
>* IV [ — s — (@3 — @]l 72 -

Let
Q1 = [w(t) + Twp(t) + M) = [w(t) + Twp ()] — ([w(t) + M) = [w(t)]?)
Q2 = [w(t) + Twi(t) + M — [w(t) + 1wy (t)]3.
Qs = [w(t) + Twn(t) + MJ* — [w(t) + M),
Then the first, second, respectively third terms of right hand side of (57) become

RHS) — / QLY -V [iis — s — (@ — @3)) da.
Q
RHS, — _/ QoY (il — i) - V [fig — 4 — (i — @) da.
Q

RHS; = / QaV (i — i) - V [y — g — (35 — 7)) d.
Q
Since u is a solution of equation
V- ([w®)]*Vag) = v(t) in Q, @} =0 on 0,

Lemma 4.1 implies
IVl o) < Co llo(@)ll g-1(q) -
Because w(t), w(t) + My, w(t) + 7wp(t), w(t) + Twi(t) + My € Br(wy), then

[6w(t) + 3Twh(t) + 3| g2y < Ca < 0
for small A and 7 € [0, 1], where C, is a constant depending on wg and 2. Hence
1@l Lo () SC Q1120
<CT [[wn ()|l gr2(q) 6w (t) + 37wh(t) + 33X g2y A9l a2
SCCa| Al lwn (O 720 191 20

Here C = C(€Q) > 0 is a constant. Thus, using (62), (63) and setting D; = C,CC,, we obtain
[RH S| <|[Qll oo () VUl 20y IV [3 — s — (a3 — @]l 12(q
<Dy A9 2y Il sy 1008 11 19 (s — s — (5 — @) e
Estimates (41) and (42) imply 44 — @} satisfies
IV (g = @)l 20y < Co o)l -1y lwn @ 2) + Co llva(®) | -1 -

Because w(t) + Twp(t), w(t) + 7wy (t) + My € B, (wo), then

<Cp<oo

”3 t) + Twn(t)? + 3\ (w(t) + Twi(t)) +)‘2¢2‘ H2(Q)

12

(58)

(62)

(64)

(65)



for small A and 7 € [0, 1], where Cj, is a constant depending on wy and 2. Hence

1Q2]| L (o) < CllQ2ll52(0) < COWA Y]l 20y - (66)

Here C = C(€Q) > 0 is a constant. Thus, using (65), (66) and setting
= C:CCy + CC,Cy, we obtain

IRES3] < 1Qall ey IV (s — @) oy IV [ — s — (7 — ) 2gcy
<D A 9] g2y v -1 (02 lwn ()| g2y IV [t — g — (3 — fLZ)]Hm(Q)
+Do| A Y[ 2y 1on O -1y IV [@3 — G — (@5 — @)l 120 (67)
Estimates (41) and (42) imply @} — @ satisfies
IV (@3 — @3)ll 1200y < ColA YN 2y lv@ -1 - (68)
Because w(t) + Twp(t) + A\, w(t) + M\ € Br(wo), then
H3 )+ Xp)? + 3rwp(t) (w(t) + M) + Tzw,%(t)‘ oy S Ce <0

for small A and 7 € [0, 1], where C, is a constant depending on wqy and €. Hence
1@3l o () < CllQ3ll () < CCellwn (@)l 20 - (69)
Here C' = C(2) > 0 is a constant. Thus, using (68), (69) and setting D3 = C;CC,, we obtain
|[RHS3| < ||Qs] oo (0 IV (a3 — 1) || 2y IV [z — g — (@3 — @]l 120
<D3| Al 191 g2 0l -1 IIwh( Wz IV [a3 = ta = (a3 = @]l L2y (70)
Combining (58), (64), (67) with (70) gives
8(D1 + Ds + Ds)
K3

IV [t — g — (a3 — Uy)]ll 2y < (A1 2 1o @) g2y 10 -1

8D
+72,>\| 191l 722 () o (D) -1 - (71)

Because of the Poincaré inequality
[ag — g — (a3 — @)l 2 () < CNV [tz — g — (@3 — @)l L2
Setting Dy = % + %m, we obtain
las — tg = (a3 — W)l g1 ) SPalA Yl 20 lwn Ol 2y 0Ol -1
FDa| A g2 0 Nlon (Ol 1) - (72)

Recall vp,(t) = v(t + h) — v(t) and wy(t) = w(t + h) — w(t). According to the definitions (43) for the
Fréchet derivative D,,S,(v(t), w(t)),

|limp—o 5 [ig — @y — (@5 — ﬂz)HlHl(Q)

as(h) = sup
= 5> ol
T€[0,1], YEH?(Q)

< sup Dy (001 gy G+ B) = w(E) gy + Io(E+B) = o010y
0<t<t+h<T

—0, as h — 0,

because v € C ([0, T]; H1(Q)), w € C ([0, T]; By (wo)), [v(E) ]| gr-1(02) < 00, v(t) and w(t) are uniformly
continuous with respect to ¢ € [0, 7] respectively. O
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5 Wellposedness of the Nonlinear Coupled System

Abstract Formulation of the Nonlinear Coupled System

Recall that Sr, B,, 61 and 6 are given positive constants, {2 C R™ is an open and bounded subspace
with smooth boundary 92, n =1, 2.

Let vg € H2(Q) and wo € HE,LQ(Q) be given functions such that the elliptic equation for wy,
V- (wiVig) = vo, has a unique solution @y € H{}(£2). Based on the definition (26) of solution operator
So, o = So(vo, wp).

Restrict 7 € (0, 5%). Here, C' = C(Q) > 0 is a constant, x = irelgwo(:n) > 0. Set ug = up+ 61 €

HY(Q), vo = T € H2(Q) and 1w = wo — 2 € HA(Q). Take T € (0,00) to be specified below. We
introduce a state a = (a1, ag), a state space X defined by

X =L%0) x H2(Q) (73)

endowed with the norm [| - ||x = [||| 2() x r2(2) @nd the scalar product
(a,b)x = /Qal -b1 + Vag - Vby + Aag - Abydr, a = (a1,a2) € X, b= (b,b) € X.
We then define a operator A by
D(A) ::{¢ € HX(Q):3 f € L*(Q), V¢ € H2(Q), such that

/Qngﬁ-Vw+A¢-A1/)da::/Qf-¢dx}, (74)
A = —f, where f is given by D(A), [9llpa) == 9/l 12(0) + 1Al 20 - (75)

It is easy to see that A¢|gq = 0 for all ¢ € D(A), and from elliptic regularity theory, it follows that
D(A) = {x € H'(Q): xlon = Axloa = 0} = Hy(Q),  [Ixllpeay = IXlla10)- (76)

We also define the linear operator A with its domain D(.A) and the graph norm of A by

,4:<(1) f§>, D(A) = H2(Q) x HA(9), (77)
Il = iz + IAdlx = i) + Idall ey, d = (di,da) € D(A),  (77h)

and have the following generation result for A. The proof can be found in Appendix B.

Lemma 5.1. The linear operator A generates a strongly continuous semigroup (Co-semigroup)
{T(t)e B(X):te[0,00)}.

We are going to study the unique existence of the strict solution for the initial-boundary problems
of nonlinear coupled system (1).

We set w(z,t) = w(x,t) — by and w(t) : © € @ — w(x,t) € R, the pinned boundary conditions
w(x,t) =0, Aw(x,t) =0, x € 9, t € [0, T] and the differential operator A — A? of the equation (1b)
are incorporated in the operator A in the generalized definition forms (74) and (75), and A defines
the pinned realization of the differential operator A — AZ.
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Using the definition of A, we rewrite the coupled system (1) as the equation (78) with the abstract
inhomogeneous term @ = S, (0,w + 63), v = W':

1"

@' (1) = A(t) + [G(@))(t) + Bpi(t), te[0,T), w(0) =0, w'(0)=rdo. (78)

Note that the constant boundary datum 65 lifts to a constant function in Q. Further, @' and @
respectively denote the first and second derivative of the unknown function w with respect to ¢ € [0, T,
u(t) =S, (0(t),w(t) + b2), 0(t) = w'(t),

GO0 = o o

Theorem 5.1. Let k = ing’2 {Wo(x) + 02} and C = C(Q) > 0 be constants, vo € H2(SY), wo € HA(Q).
s

Then there exists Ty > 0, such that for all T € (0,Tp), the semilinear evolution equation for unknown
function (0,w) with « = S, (v, w + 02),

()42 (701 50) e (3)-(3). o

admits a unique mild solution (0,w) € C ([0,T]; L*(Q) x H2(Q)), i.e. (0,w) satisfies

(Z0) =70 (20) & [ {rie o) (10PN 2 220 L g, -

Proof. We let T € (0, 00), which will be speci
ed below, and define a complete metric space Z(T') for the metric induced by the norm sup,c(o 7y [|(9(2), W(2))|| L2 (q).
as follows:

+ Bp(01 — 1), @g = (0o, W0) € D(A). (79)

Z(T) = {(6,711) € C ([0,T); L*(Q) x H2(Q)) : (5(0),1w(0)) = (%9, o) ,

KR
o < . 2
o [[(9(2) — Do, @(t) — wo) || L2()x H2(0) < 7“}> Ve (0’ 20) (82)

Recall that A generates a strongly continuous semigroup (Cp-semigroup)
{T(t) € B(L*(Q) x H}(Q)) : t€[0,00)},
and [G (0)](t) = —Br[w(t) + 02) 72 + B, (61 — 1), we introduce a operator ® on Z(T') by

(5, )] () = T(2) (5()) + /O t {T(t ) <[G(“7)](S)O+ 517&(8)) } ds, ¥tel0T).

wo
We notice that
According to Lemma 1.3 of Chapter II in [2],
T(t) <1f°> € D(A), ¥t e0,T).
wo

Since (0, w) € Z(T), u € C ([0,T]; H}()) such that G(w) + Bpu € C([0,T]; L*(2)), hence

<[G(ﬁ;)](t)0 + 5pa(t)>’ /Ot {T( ‘s <[G(w)](s)0 + /Spa(s)>} ds € L2() x H2(9).
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Therefore, ® is a nonlinear operator which maps Z(T') into C ([0, T7; L*(2) x H3()):

®: Z(T) — C([0,T]; L*(Q) x H2(Q)).

We next show that there exists a unique mild solution (0,w) € Z(T) of the semilinear evolution

equation (80) which is a fixed point of ® on Z(7T).

We denote by Mo = sup,co,o0) |7 (1)l 5(22(0)x 12 (2)) an operator norm of {T'(¢)}o<, ., on the space
L3(Q) x H2(Q). If (¥y1,w1), (D9,w2) € Z(T), then 91(t) € L3(Q), w1(t) € H2(Q), thus [G(1)](t) €

H*(Q), [G(an)](t) — [G(w2)](t) € H*(Q), Y t € [0, 7).

We set @ (t) = S, (01(t), w1(t) 4 02) and G (t) = S, (V2(t), wa(t) 4+ O2). The estimates (13), (14) of

Corollary 3.1 and estimates (37), (41) imply

sup [[[G(w1)](t) = [G(w2)](t)l| 20y < La sup [[wr(t) — w2(t)] g2(qy »
te[0,T] te[0,T]

sup |[a1(t) — ao ()] 2(q) < Co sup |[|01(t) = D2(t) | 120

t€[0,717] t€[0,T
+Co sup ([02(t)p2() sup [lwi(t) = D2(t)] 2oy -
te[0,T] te[0,T]

sup |[[[G(w1)](t) — G(wo)ll 2y < sup [|[G(w1)](t) — G(wo)|l g2 () < L,
te[0,T] t€[0,1]

K
sup ||a(t < sup ||lu(t < C, |||v + —1.
b 5020 < sup 150 < Co [lioll 2@y + 5]

Setting

* * ~ R
Ly = Lo + ByCo+ B,C5 (ol 2oy + 555 ) -

(83)

(84)

(85)

estimates (83), (84), (85), (86) and the bounded property of the strongly continuous semigroup {7'(¢) €

B (L*(Q) x HZ()) : t >0} imply
sup [ (01, w1)](t) = [® (02, D2)](D)l| 12(0) x 112 ()

te[0,7)
_ I o ([G@1)](s) = [G(2)](s) + Bp [t (s) — a2(s)] 4,
_te[O,IgF} /o Tt =2) < 0 )d

<TMy sup |[|[G(w1)](t) = [G(@2)]()] 12(q) + TMofp sup [u1(t) — w2(t)l|2q)
te[0,T] t€[0,T]

(ot )

<TMyL¢, sup
te[0,7)

)

L2(Q)x H2(R)
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o CRIOR
te[0,T wo / || 2 (Q)x H2(Q)
- - t ~ ~
= sup ||T'(t) <1f0) - (Qi()) +/ {T(t —s) <[G(w1)](s) —i—ﬁpu(s)) } ds
te[0,T] wo wo 0 0 L2(Q)x H2(Q)
0o Vo _
< sw o () - () £ TMy sup [[a(t)]
t€[0,T wo Wo / || 12 (Q)x H2(Q) te[0,T] L2()
+TMo sup [|[[G(w1)](t) — G(@o)l| 210y + T Mo [|G(wo)ll £2(0)
t€[0,T7]
00 Vo _ K
< sup Tt<~>—(~> +TMy |C, (||v +— )+ Lgr
te[0,T] ( ) Wo Wo L2(Q)x H2(Q) 0 |: (H O”LQ(Q) 20) }
+T'Mo [|G(@0) [ g2 (0 - (89)

Because {T'(t) € B(L*(Q) x H2(Q)) : t > 0} is a strongly continuous semigroup, according to
the definition of strong continuity, for (99, wp) € D(A) and given constant r € (0, 20) there exists
do = 0o(r) > 0, such that if 0 < t < §,, then

o< |ro (&) - (&)

Since r € (0, 555) and C' = C(R) is a constant, §, depends on x and €, i.e. §, = d,(k, 2).
For fixed small r € (O, 2C) then there exists a number Ty > 0,

<
L2(Q)x H2(R)

(90)

l\J\ﬁ

1 K

Ty = min { &
0 mm{ ' 2MoLE’ 2My

(L6 + Co) s+ 2€ (G (@0 |2y + Co 0l 20y )}1}, (91)

such that for every T' € (0,7)), it follows that

(ool ()~ ()

su
p o

te[0,T]

L2(Q)x H2(R)

( 01(t) — 02(t) )
Wi (t) — wa(t)
Hereby ®(v1,w1) € Z(T) for (01,w1) € Z(T'), ®(0,w) is Lipschitz continuous on the bounded set
Z(T) with Lipschitz constant smaller than or equal to %, and ®(0,w) is a contractive mapping of
Z(T) into itself.

According to the Banach fixed point theorem, for each T' € (0,7}), there exists a unique fixed
point (@T,IT)T) € Z(T), such that (27T, IDT) = @(@T,wT).

Hence, (07, wr) € Z(T) is the unique mild solution of the semilinear evolution equation (80) on
[0,T7], and (0, wr) satisfies the integral formulation (81). Due to the uniqueness of the fixed point,
we set (0, W) = (U, wr) and note that (or,wr) is the restriction (9o 7y, @[j,7)) € Z(T) of (9,W). As
a result, the assertion is proved. O

ST S 1
sup [|[@ (i1, ))(t) — [@ (T2, D)) 2(0) () < 5 sup
tel0.7] te[0,T)

L2(Q) x H2(Q) .

Corollary 5.1. Under the assumptions of Theorem 5.1, the mild solution of the semilinear evolution

equation (80), (0,w) : [0,T] — L*(Q) x H2(QQ), defined by the integral form (81), is locally Lipschitz
continuous with respect to t € [0,T], i.e. ¥V h € (0,77,

(t+h)—o(t) )

- < Lyh. 92

(ot o oy Y 42)

81 (3

sup
0<t<t+h<T




Here Ly is a Lipschitz constant depending on Br, Bp, To, &, 2, |[Wollg2(q), ||(1~10,?I}0)HD(A), My =
SuPse(0,00) | T (O) | 322 (02 x H2(02)) -

o

Proof. Take 0 <t <t+ h <T. Equation (81) leads to

<£Eiizg - Z(Q)) =T(t) [T(h) (g)%) - (ng})] + /Oh T(t+h—s) ([G(w)}(s)oJr Bpﬂ(S)) ds
N /Ot T(t— s) ([G(w)](s +h) = [G(@)](s) + Bylu(s + ) — ﬂ(S)J) ds

0
_ [ T " _ o ([G@)(s) + Ba(s)
—/0 T(t—i—s)A(wO) ds + ; T(t+h s)< 0 >ds
' [G(w)](s + h) = [G(@)](s) + Bpla(s + h) — a(s)]
+/0 T(t—s) ( 0 P > ds. (93)

Notice that

< (@0, wo)l p(ay - (94)
L2(Q)xH2(Q)

My = Tt oA 120)
0 tes[ggo)H Olls(z29)x 12 (0) H (wo

Because the semilinear evolution equation (80) has a unique mild solution (0, w) € Z(T'), by using the
estimate (14) in Corollary 3.2, we have
G(w)|(t) + Bpu(t - -
(et An) < sup IG@NO + B0l o
L2(Q)xH2(Q)  t€[0,T)

< sup [[[G(w)](t) — G(wo)| 5720

sup

t€[0,T] 0

+ |G (@o) | 20y + Bp sup_[4(t) | 2
te[0,T7]
< Lar 4 [|G(@o) | g2y + BpCo sup [[0()]] 12(qy
t€[0,T]

< Cp. (95)

Here Cy = ”LG + [1G(@0) || g2y + BpCo |:H'U0HL2 + 20} and L¢ is given by Corollary 3.2.
Asa= So(v,w+92) € C([0,T); H}(2)) and ( 2), then, VO<s<s+h<t<T,

t
sup / (s + ) — @(s) | 2y ds < sup / (s + B) — @(5)l] 1 s
0

t€[0,7) t€[0,T] ) )
(et im o)

t
<C, sup / ds. (96)

t€[0,77 J0
0<s<s+h<t<T,[GW)](s+h)—[G(wW)](s) € H*(Q), according

L2(Q)x H2(R)

Here, C,, = C} <H?~10||L2 %)
As @(s+h), ©(s )6H2( ), ¥
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to inequality (12) of Corollary 3.2, setting Cg = 8,Co + MoL¢, we obtain

/ T(t — ) ([G( @)](s + h) — [G(w)}(os) + By[a(s + h) — a(s)]> .

L2(Q)x H2()

My / NGE@))(s + h) = [G@)](5) + Byplils + h) = a(3)] | 2 s
<My / By (s + 1) — (sl oy + NIG(@)](s + ) — [G@)](3)]] g2y s

SCB/: (1}(3+h) 17(5))

(s +h)—w(s)
Combining (93), (94), (95

)
‘< (t+h)— ’D())

W(t+ h) — w(t)

ds. (97)
L2(Q)x H2()

and (97) gives

< hMo || (%o, @o)[ pay + hMoCo

R t (s + h) — 0(s)
+0a | <w<s+h> <s>>

ds. (98)
Q)x H2(Q)

Gronwall’s inequality then implies that

(ate e m—ah)

L2(Q)x H2(Q)

Thus, (92) holds for all & € (0,T] by setting Ly = Mo [H(ﬁo, @0) | pay + Cg} [eMoLoTo] O

Theorem 5.2. Let 5y € H2(Q) and wo € H3(Q). Then the mild solution (9,%) of the semilinear
evolution equation (80), defined by the integral form (81), is the strict solution of equation (80) and

(9,w) € C* ([0, Tp); L*(2) x HZ()) N C ([0, Tp); H2(Q) x H}(R)).

Proof. Let T € (0,1p) and (9, w) be the mild solution of the semilinear evolution equation (80) defined
by (81). Set a(t) =S, (0(t), w(t) + 02). We first prove the linear non-autonomous problem

(30) -7 ()42 o= (005500 o

wo) + Bptio, G(wo) = [G(w)](0),

can be solved for all ¢ € [0,T]. Here Gy = G(
Uy = ’ZL(O) =D (5(0), U~}(O) —+ 92) = So(’Uo,wo),
i [G'(@(5))]q(s) = [G"(D)q)(s), s € [0,], (100)

[H2(P, 9)](s) = [DuSo (v(s), w(s))]p(s) + [DwSo (v(s), w(s))lq(s), s € [0,1]. (101)

We define a nonlinear operator ¥ by

U C([0,T); L*(Q) x H2(Q)) — C ([0, T]; L*(Q) x HZ()) ,

¥ 6.3 &) = T <<cgo) ) A(J)) ) /Otm_s) <[H1<q~>1<s> * [l cm(s)) i
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For any (p1,q1), (P2,q2) € C ([0,T); L*(Q2) x H2(Q)), w € C ([0,T]; H2(S2)), then

Hi(qr) — Hi(g2) = NmF G — @] = G'(W0)(q1 — q2) € C ([0, T); HA()) .
[0 + 62]
Ha (1, G1) — Ha(P2, G2) =Bp ([DuSo (0,0 + 602)]p1 — [DuS, (0,0 + 62)]p2)
+ 62)]G1 — [DwSo (0, W + 62)]G2)

Hence, the estimate (16) of Fréchet derivative G’ (w) ¢ from Corollary 3.2 implies

sup [|[H1(q0)](t) — [H1(@)) ()]l 2() = sup_[|[G"(@)(@1 — @)](1)]] 2

te[0,7) t€[0,T]
<Lg sup <]?1(t)_]?2(t)> (102)
t€[0,T7 Q1(t) — G2 (t) L2(Q)x H2(Q)
Estimates (45), (46) from Lemma 4.3 give
sup ||[H2(p1, ¢1)I(t) — [H2(P2, @2)](¢)[| 12(q)
te[0,T)
gﬁp< o s 1710~ BaOls) + O sup 1701 up ||ql<t>—cb<t>||m(m>
t€[0,T7 te(0,T t€[0,7)]
v (1 K pl(t)—ﬁ2(t))
<Bp |Co+C5 ||V +— | su <~ - . 103
ol (it 56)] 28 10 - 50 |y "

Recall Mo = supye(o,o0) [IT(8) | g(12() x 112 (02))- The definition (91) of Tp, the definition (87) of L;, (102)
and (103) imply ¥ is a contractive mapping on C ([0, T]; L*(2) x H3(2)) by

[ (B1, @1)] (t) = [¥ (P2, 32)] (D)l L2 (0) x 112 ()

/OtT(t _s) ([’Hl((ﬁ)](s) — [H1(q2)1(s) + 7(')12(151761)](8) - 7—@(@,@5)](3)) s

L2(Q)x H2(Q)

<T My o {H[”H1(d1)](t) = [Ha (@)Dl L2 () + I[H2(P1, G1)I(8) = [7'[2(152762)]@)”9(9)}
p1(t) — pa(t) p1(t) — pa(t)
<~ (t) — 672(t)> ( 1(t) - (72(@)

According to the Banach fixed point theorem, there exists a unique fixed point (p, ¢) in C ([0, T]; L*(Q2) x HZ(%)),
such that (p,q) = U(p,q). Hereby, the R-linear non-autonomous problem (99) can be solved for
tel0,7T].

We next prove that (p,q) is the time derivative of the mild solution (v,w). Recall u(t) =
So (0(t), w(t) +62), ¥V t € [0,T], Go = G(wo) + Bpto = [G(w)](0) + Bpu(0), and let 0 <t <t +h <T

1
< — sup

<T'MyL¢, sup <
L2Q)xH2(Q) 2 te[0,T]

t€[0,T]

L2(Q)x H2(Q) ‘
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for some h € (0,71, equations (81) and (99) imply that

0= (3o 1y - a0) ~ ()

_ T(t)% (T(h) - T) (Z%) _T(1)A <7~10)

wo

/Oh {T(t +h—s) ([G(UD)](S)OJr ﬁpa(5)>

' H w)](s — G(w)|(s
T(t - s) (h{m Mo+ 1) = GO

T s) (ﬂp [} s+ 1) — )} = (el (m(s)}) d

_l’_

J
/

— e —
IS
V2)
|
S~
—~
~
S~—

RN
o &
N————

+

Let B0 (h 1) i T@)% (T(h) — I) (g;) —T(t)A (§%> :

E@(h,t) = % /Oh {T(t +h—s) <[G(w)](s)0+ Wl(s)) } ds — T(t) (%0> ,

EO (1) = /Otm 4 <i (G + ) = (G} = [%@](s)) .

L o (B [# (s + h) — a(s)} — [Ha(p, §)](s)]
+/0 T(t s)< h 0 >ds.

We initially notice that

lim HE(l)(h,t)H < lim My || = (m(r) — 1) (0) — 4 (%
h—0 L2(Q)xH2(Q) ~ h—0 h wo Wo/ || 12(0)x H2(Q)
:= lim A;(h) = 0.
h—0

i [ {700 (7)) = ()

Because G(w) € C([0,T]; H*(Q)), @ € C ([0, T]; Hj(£)), then

lim {Oiugh G (@)](s) = [G(@)](0)] g2y + By S, la(s) — a(O)HHl(Q)} =0,
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hence

lim || E® (h, t)
h—0

L2(Q)x H2(9)

= tim [ £ /0 " {T(t hes) ([Gm)](s)O + 5pa<s>> } ds - T(t) (Goo)

h—0

h L2(Q)x H2(9)
m Lot _ g ([G@)](s) = G(wo) + By(als) —do)\ | ;.
< lim My /0 {T(h ) ( 0 )}d I,
< lim Mg S I[G(@)](s) — G(wo) + Bp(a(s) — to)| 12

< lim Mg { sup [|[G(@)](s) = [G(@)](0)]l r2(q) + Bp e, lu(s) — ﬂ(O)HHl(Q)}

0<s<h

:= lim Ay (h) = 0.
h—0

Define
Gp(h,t) == [G(w)] (t + h) — [G(

£
S—
=
—~~
~
S—
|
—
Q
<
—
£
S—
=
—~
~
N—
£,
—~
~
+
>
S—
|
£
—~
~
S—
=

We then write
E®(h,t) = B¥(h,t) + B (h,t) + B (b, 1).

Denote oy, (t) = 0(t + h) — 0(t), wp(t) = W(t + h) — w(t). Inequalities (45), (46) from Lemma 4.3 and
(47) imply

+ [[DwSo(0(2), w(t) + 02)] (wn(t) — (t) HHl )} < Lo 1E(h, D)l 20w a0 - (104)

Here Lp = C, + C (||1~10HL2(Q) + %) Estimates (48) and (49) from Lemma 4.4 and estimate (92)
from Corollary 5.1 give

(1), w(t) + 02)] On ()] 2 ()
+ [DwSo (0(t) + 70 (t), w(t) + T0p(t) + 02) — DuwSo(0(t), 0 (t) + 02)] Wn(t) || g1y }
< [a1(h) + az(h)] Ly (105)
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Thus (104) and (105) imply

B 0]

HY(Q)

1 1
:Hh /0 [DySo (0(t) + 0k (2), W(t) + Twp(t) + 02)] Ox(t)

+ [DuwSo (0(t) + 70,(t), @(t) + Twr(t) + 02)] Dn(t)dT — [Ha(P, )))(2)

L2(Q)
—h{ I[DvSo (0(t) + 701 (¢), W(t) + TWA(E) + 02) — DySo(0(t), W(t) + 02)] On(t) | g1 ()

+ [I[DwSo (0(t) + T0,(t), @ (t) + Twn(t) + 02) — DuSo(0(t), @ (t) + b2)] @n(t) | g1 ()

+ [I[DuSo(8(t), w ()+92)]( On(t) = D(E) || o1 ()

+ [[DwSo(0(2), w(t) + 02)] (wWa(t) — @)l 1 ()
<[ai(h) + a2(h)] Lv + Lp [[E(h, V)| 12(0)x 12 (0) - (106)

Consequently, (106) and the bounded property of the strongly continuous semigroup {T'(t) € B (L*(2) x HZ()) :
t >0} imply

<M, [ [N i, g)s)

L2(Q)xH2(Q) —

ds
HY(Q)

|57 )

<MoB, (To [a1(h) + az(h)] Lv + Lp /Ot 1E(h, $)|| L2y x 12 (02) d5>
=)+ M [ 1,52y 0
—0+ MoSyLp /Ot 1E(h, $)|| L2 x H2(0) A5, as b — 0.

Using the estimate (16) of Fréchet derivative G’ (w) from Corollary 3.2 again gives

t
3
|0 < MoLa [ IEG) 2y do

L2(Q)x H2(Q)

Since Gp(h,t) € H?(f), the estimate (92) of Corollary 5.1 implies the function @ is Lipschitz contin-
uous with respect to t € [0, 7]. Employing this fact and the limit (17) of Corollary 3.2 gives
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| & )

@< 0)
<ToMy  sup ﬁ G (h, D)l 120

0<t<t+h<T
<TyMy sup - ||GD(ha t)HH?(Q)

0<t<t+h<T

=DM sup | (G (@) + Tl + ) — D)) - G @) [t + b) —a(b)]dr||

te[0,T] HA@)

t+he(0,T)
Bt gy | G0 + rli(e+ h) — (0] - G’(ﬁ)(t))dTH

0<t<t+h<T
=ToMoLy OgtgstlJlrEhgT |G (@(t) + T[w(t + h) — o(t)]) — G'(w(t HB (H2())
0<r<1

:=A4(h) — 0, as h — 0.

Summing up, by setting m, = My3,Lp + MoLg, we have shown

t
IEh )l 200y x m2(0) < A1(h) + Aa(h) 4+ As(h) 4+ Ag(h) + 7Tv/o IE(h, $)|| L2 (@) x 2 (02) D5

Gronwall’s inequality thus implies the inequality
IE(h, O)ll12(0)x 20y < (A1(h) + Az(h) + Ag(h) + Ag(h)) €™

holds for ¢ € [0,T]. Letting h — 07, we then deduce that the (9, w) is differentiable from the right
and the right derivative of (0, w) coincides with (p, ). Because (p, §) is continuous on [0, 7], by using
Lemma 3.3, we conclude (3, ) € C* ([0,T]; L*(Q) x H2()).

Lemma 4.3, estimates (47) and Lemma 4.4 imply @ = S,(0,w + 62) € C* ([0,T]; L*(2)), whereby
(G (@) + Bpu, 0) € C* ([0,T]; L*(Q) x H2(Q)).

By Lemma 3.2, the mild solution (9, @), defined by (81), uniquely solves the semilinear evolution
equation (80) on [0,77], (9,w) is a unique strict solution of semilinear evolution equation (80), and
(o,w) € C ([0,T7; HZ(Q) x H}(Q))NC* ([0, T]; L*(Q2) x H2(S2)). Thus, @ uniquely solves the equation
(78) and v(z,t) = 8t L (x,t), (x,t) € Q2 x [0,T], for all T € (0,Tp). O

A Proofs in Section 3

A.1 Proof of Corollary 3.1

Proof. We first prove assertion (8) of Corollary 3.1.

Since w € By (wo, T), then [[w(t) — wo| g2(q) < r holds for all ¢ € [0, 7.

According to the triangle inequality and the Sobolev embedding theorem, there exists a constant
C = C(), such that for all 7 € (0, 55), it follows that

w(t) = wo + w(t) — wo > & — w(t) = woll gy = & — Cllew(t) = woll oy = 5 — Cr >

lw(®)ll 20y < C, (107b)
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hold for all ¢ € [0,T]. Here, C' =
According to (107) and r € (0, 55), we have

3¢ T llwoll gr2(qy)- This proves assertion (8).

2 2 2
sup ! dx §g, sup V[] de| = Mdm
tefo,7] | Jo |w(t) K tejor) | /o w(t) t€[0,7) lw(t)]
Sl—g sup {/ |Vw(t)|2dac]
K™ tefo, 1) L/
16 )
< — sup ||lw(t
o te[O,T]H () 5r2(02)
16 -,
< EO
2 I 2 2
1 A 2
sup / A [} dx p < sup H w(tl + (Vw(tg)
tefo,1] | /o w(t) teo,1) | I [w®]* 1 120 [w(t)] 12(Q)
4 16 2
< — [|A
< o |5 1800l + 3 (007 |
[ 4 16 ) r
< su — ||w(t + — ||[Vw(t
te[O,%] 2 w2 + 5 IVo)llzsq)
[ 4 16C ) 2
< sup |— ||w(t Vw(t }
B e lw(®) | g2 + —5 Vw0
(4 16C 2 5
< sup |—5 + —5 ||lw(t ] w(t
B e lw@ g2y | w20
4 16C 1% -,
[4 e
2 2 2
1 1 1
sup ||—— = sup + ’V [] + ‘A {} dx
t€[0,T] ( te[O T { (t) w(t) w(t)
1
<—+ [ +600] C?

12 -
We set C7 = 46 4 1802 4 [4 15—50} Cc?,

[lwol| gr2(qr)- Because HQ(Q) is an algebra, i.e. Lemma 3.1, the assertion (9) of Corollary 3.1 holds for
t € [0,7]. With these facts, we continue on to show the assertions (10) of Corollary 3.1. For all w; and
wo € By.(wg,T), the algebraic property of H2() from Lemma 3.1 and the triangle inequality imply

[wi(t) + wa(t)]
2

3
fwn (6)Pwa(®) =201,

H2(Q)

sup
te[0,7)

sup

te[0,7

C1 is a positive constant depending on €2, k, and

[wi(D)]* + [wa(1)]? + wa (t)w(t) ’
(w1 (£)]* w2 ()]

H2(Q)

Setting Cy = 2C5 and C5 = 3C{, hence we deduce (10) of Corollary 3.1.

This concludes the proof of Corollary 3.1.
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A.2 Proof of Corollary 3.2

()+92, W € By(wy,T).

Proof. Recall that r € (0, %), = W + 02, K = mingwy > 0, w(t) =
r, (9) and (10) of Corollary 3.1

For small h € (0,7) such that ¢ + h € (0,7, [[w(t 4+ h) — wol| g2(q) <
imply (12) and (13) of Corollary 3.2 are valid with Lg = SrCs.

In particular, for @y € B, (o, T), set wa(t) = wo, V t € [0,T], then [G(w2)](t) = G(wo). Hence
(14) of Corollary 3.2 is valid from the assertion (13) of Corollary 3.2.

Set wy = w € B, (wo,T), for ¢ € C ([O,T]; HOZ(Q)), choose small A € R, such that

W1 =W+ Aq € By (0o,T).

Then the Fréchet derivative G’ (1) g of G with respect to w € B, (o, T) exists as a linear operator
G'(w): C([0,T); H2(Q)) — C ([0,T]; H2(Q)) given by
8 .1 . . 26F
G (0)q = lim ~ [G (0 + \q) — G (0)] = ———q,
()0 = Jim 16+ M) — G (0] = 20

6 (@) q] (1) = [G" ((1))] a(t) = Wjﬁjez)gq(t).

According to the assertion (13), the inequality (16) holds by the following computation:

| o e 6@ 20~ (6 @)
ts[%%]H[G ](t)HHZ(Q)_tE[U%] = A ’HZ(Q)
= lim § a6 @010 6 @Ol

<l L — wa(t
/\1_>H10 Gt:EéPT} |01 () — wa )HH2(Q)

=Lg sup ||Q(t)||H2(Q)'
(0,7

For all ¢t € [0, 7], choose small h € (0,7) and 7 € [0, 1] such that ¢t + h € (0,77,
[@(t) + 7[w(t + h) — ()] — Woll g2y <7,

then for ¢ € HZ(Q) with |9 g2y < 1, G'(w(t )) Y € H2(Q) — [G'(w(t)]v € HX(Q). By the
0

algebraic properties of H?(f2), i.e. (9) and (10) from Corollary 3.1, we have
|G (@(t) + [ (t+ h) — B (t)]) — G (i(t HB Hm))
=[[[¢"(@(t) + Tt + k) — ()] ¢ — [G"(@(1)] Y| o
1 1
<28p I (W) + T+ ) —w@])  wOP ) 11| 20
0<r<1
<2BpCs  sup  |[w(t+h) —0(t)|| g2
0<t<t+h<T

Since w € C ([0,T]; H2(2)), w are uniformly continuous with respect to ¢ € [0, T, hence the assertion
(17) is proved by

lim su w(t + 1h) —w(t 2¢0y = 0.
Jim sup () =00 )

This concludes the proof of Corollary 3.2.
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B Proofs in Section 5

B.1 Proof of Lemma 5.1

Proof. We aim to show that A, defined by (77), is skew adjoint on the Hilbert space X defined by (73),
and thus generates a strongly continuous semigroup (Cp-semigroup) on X by using Stone’s Lemma
(see 3.24 Theorem, Section 3, Chapter II, [2]).

From the definition (77) of A, A is densely defined in X, i.e. D(A) = X, then A is skew symmetric
(i.e. iA is symmetric) for any two (¢1, ¢2) € D(A) and (¢1,12) € D(A) by the following computations:

() () =) ()
$2)  \¥2/) /¢ o1 ) \¥2) [y
:/A¢2'%+V¢1-V¢2+A¢)1‘A¢gdaz
/ —Vo - Vi1 — Ay - APy + Ve - Vg + Agy - Apada
Vo - Vb + Agg - Atpy — V¢1'V¢2—A¢1'A¢}2d$]

-1

[ Vo - Vi1 + Ay - Athy + ¢y - Awgdx]
(-0,
—((@)4()),

Furthermore, Re <A <T£> , <$>> =0 for all (¢,¢) € D(A), so A is dissipative. By using the Lax-
X

Milgram Theorem (Theorem 1, Section 6.2, [5]), we have the inverse A~! of A exists, thus we define

an operator
0 1

RX C D(A), AR = I, RA (Z) _ (Zﬁ) LV (1, 6) € D(A).

Therefore, iA is invertible and the resolvent set p(iA) of iA satisfies p(iA) NR # (), so the spectrum
o(iA) C R, consequently, iA4 is selfadjoint, as a result, A is skew adjoint. According to Stone’s Lemma,
we have the linear operator A generates a Cy-semigroup

{T(t)e B(X): te€0,00)}.

Then
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