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All functions are assumed to be measurable throughout. Furthermore, unless otherwise
explicitly stated, all function spaces are spaces of functions f : R → C, i.e. L1 = L1(R),
C∞ = C∞(R) etc..

1 Uncertainty principles

The following discussion is based on material by Tao [2009].

De�nition 1.0.1 (Fourier transform). We de�ne the Fourier transform of f ∈ L1 by

∀p ∈ R : f̂(p) :=

∫
R
f(x)e−2πixpdx,

and extend the Fourier transform so de�ned in the standard way to L2.

Recall that we have the following relations between growth conditions on f and smooth-
ness conditions on f̂ :

1. f ∈ L2 ⇒ f̂ ∈ L2,

2. f ∈ L1 ⇒ f̂ ∈ C0,

3. (∀n ∈ N : supx∈R |xnf(x)| <∞)⇒ f̂ ∈ C∞,

4. f has exponential decay ⇒ f̂ extends to a holomorphic function in a strip,

5. f has super exponential decay ⇒ f̂ extends to an entire function.

Here L2 is the space of square integrable functions, L1 is the space of integrable functions,
C0 is the space of continuous functions converging to zero at in�nity, and C∞ is the space
of smooth functions. We conclude that the quicker f decays, the smoother f̂ is.

4. and 5. above motivates another principle: If f 6= 0 decays very rapidly, f̂ cannot
decay very rapidly. Note that by 4., if f has exponential decay, f̂ cannot have compact
support. If f decays super exponentially, 5. implies that the set of zeroes of f has no limit
points at all. The principle that it is impossible for both f and f̂ to decay very rapidly
(unless f = 0) is commonly known as the uncertainty principle. In the following, we review
some manifestations of this principle.
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2 Heisenberg's uncertainty principle [Heisenberg 1927]

Let S denote the space of Schwartz functions.

De�nition 2.0.1. De�ne M : S → S by

∀f ∈ S , x ∈ R : (Mf)(x) = xf(x).

2.1 The case of a Gaussian

If we consider the Gaussian function

ψ(x) =
1√
σ

exp

(
−πx

2

2σ2

)
,

it is well known that
ψ̂(p) =

√
2σe−π2σ2p2 .

A computation shows that

‖Mψ‖L2 =
σ√
2π
,

‖Mψ̂‖L2 =
1√

2π2σ
.

We therefore arrive at the identity

‖Mψ‖L2‖Mψ̂‖L2 = 1/4π.

In vague terms, the decay of ψ is inversely related to the decay of ψ̂.

2.2 The case of ψ ∈ S

For ψ ∈ S (the space of Schwartz functions) we have a similar relation called Heisenberg's
uncertainty principle. It states that if ‖ψ‖2 = 1, then ‖Mψ‖L2‖Mψ̂‖L2 ≥ 1/4π. This
follows quite easily by noting that

[∂1,M ]ψ := ∂1Mψ −M∂1ψ = ψ,

so that a partial integration gives

1 = 〈ψ, [∂1, x]ψ〉 = −〈∂1ψ, xψ〉 − 〈xψ, ∂1ψ〉 = −2Re 〈xψ, ∂1ψ〉.

An application of the Cauchy-Schwarz inequality gives us

1 = 2|Re 〈xψ, ∂1ψ〉| ≤ 2|〈xψ, ∂1ψ〉| ≤ 2‖xψ‖2‖∂1ψ‖2.

Now we can use Plancherel's Formula to obtain

‖xψ‖2‖pψ̂‖2 = ‖xψ‖2‖∂1ψ‖2/2π ≥ 1/4π.

Again we see that, in a vague sense, if ψ (or ψ̂) decays quickly, ψ̂ (or ψ) cannot decay
quickly.
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3 Hardy's uncertainty principle

It is a result by Hardy [1933; see Theorem 2] that if f : R→ C satis�es |f(x)| ≤ Ce−πax
2

and |f̂(y)| ≤ Ce−πby
2
for some positive constants a, b, C, then f = 0 if ab > 1 and f =

C ′e−πax
2
if ab = 1. We will give a proof of this, following material by Tao [2009]. We �rst

establish some notation and a lemma which we shall need.

De�nition 3.0.1. For 0 < α < π we denote the region in the complex plane bounded by
the two rays {t ∈ C t ≥ 0} and {teiα ∈ C t ≥ 0} by

Γα =
{
teiθ ∈ C 0 < t, 0 < θ < α

}
. (1)

We put
S = {θ + it ∈ C 0 < θ < 1, t ∈ R} .

We denote the space of entire functions by O, and for an open region Ω ∈ C we denote
the space of holomorphic functions in Ω by O(Ω).

Lemma 3.0.2 (Phragmén-Lindelöf). Suppose 0 < α < π/2 and A, a > 0. Suppose further
that f ∈ O satis�es the conditions

• ∀r > 0 : |f(r)| ≤ 1,

• ∀r > 0 : |f(reiα)| ≤ 1,

• ∀z ∈ Γα : |f(z)| ≤ A exp(a|z|2).

Then ∀z ∈ Γα : |f(z)| ≤ 1.

In words, we suppose that f is bounded on the two de�ning rays of Γα, and that f
satis�es a growth condition in Γα. The conclusion is then that f is bounded on Γα. By a
rescaling argument, it su�ces to prove the lemma for a = 1.

Proof. The lemma may be proven directly, see for instance Lemma 4.2 on page 108 in the
book by Stein and Weiss [1971]. Alternatively, the result can be realised as a consequence
of Lindelöf's Theorem (sometimes called the Hadamard three lines theorem) as found in
the lecture notes [Gimperlein] in the following way:

Consider φ ∈ O de�ned by φ(z) = exp(−iα(z − 1)). We note that

• φ(iR) = {t t > 0},

• φ(1 + iR) = {teiα t > 0},

• φ maps a neighborhood U of S bi-holomorphically to a neighborhood of Γα.
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The last statement is a consequence of the assumption α < π/2 < π. From these properties,
we may de�ne a holomorphic function g : U → C (in particular g ∈ O(S) ∩ C(S)) by
g(z) = f(φ(z)). g then satis�es |g(it)| ≤ 1, |g(1 + it)| ≤ 1 and

|g(θ + it)| ≤ A exp(exp(2αt)).

Since 2α < π, we can apply Lindelöf's Theorem, and the proof is done.

We now come to the main theorem of this section.

Theorem 3.0.3 (Hardy's uncertainty principle). Suppose C, a, b > 0 and suppose f : R→
C satis�es

• ∀x ∈ R : |f(x)| ≤ Ce−πax
2
,

• ∀y ∈ R : |f̂(y)| ≤ Ce−πby
2
.

If ab > 1, then f = 0. If ab = 1, then there is a constant C ′ ∈ C such that f(x) = C ′e−πax
2
.

By considering g(x) = f(x/
√
a)/max{C,C

√
a}, it su�ces to prove the theorem with

C = a = 1.

Proof. We �rst note that we can extend f̂ to an entire function: de�ne f : C→ C by

f̂(z) =

∫
f(x)e−2πixz dx.

The integral is well-de�ned since the integrand is bounded by an L1 function, for each
z ∈ C:

|f(x)e−2πixz| = |f(x)|e2πxz2 ≤ e−πx
2+2πxz2 ≤ e−πx

2+2π|x||z2|,

where z2 = Im z. Suppose zn → z, then r = sup |Im zn| < ∞, so that the above bound,
with r in place of z2, allows us to apply Lebesgue's Dominated Convergence Theorem to
yield f̂(zn)→ f̂(z). f̂ is therefore continuous. We want to use Morera's Theorem in order
to show that f is entire: Let ∆ be a compact triangle in C, then yet another application
of the above bound lets us use Fubini's Theorem∫

∆

f̂(z) dz =

∫
∆

∫
R
f(x)e−2πixz dx dz =

∫
R
f(x)

[∫
∆

e−2πixzdz

]
dx = 0

so that f̂ is an entire function. Noting that

|f̂(z)| ≤
∫
R
|f(x)e−2πixz| dx ≤

∫
R
e−πx

2+2πxz2 dx = eπz
2
2

∫
R
e−π(x−z2)2 dx = eπz

2
2 ,

we see that if we de�ne an entire function F by F (z) = eπz
2
f̂(z), then we have, for any

z1, z2 ∈ R, the two relations |F (z1 + iz2)| ≤ eπz
2
1 (by the inequality on f̂ just above) and

|F (z1)| ≤ eπ(1−b)x2 (by the decay assumption on f̂). We claim that this shows that F is
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actually a constant, so that f̂(y) = F (0)e−πy
2
which �nishes the proof if b = 1. If b > 1,

the relation |F (x)| ≤ eπ(1−a)x2 shows that |F (z)| = infx∈R |F (x)| = 0, which �nishes the
proof for b > 1.

It remains only to prove the claim. Suppose F is an entire function which satis�es the
bounds

|F (z1 + iz2)| ≤ eπz
2
1 ,

|F (z1)| ≤ 1,

for all z1, z2 ∈ R. We want to show that this implies that F is constant. Since F is
entire, it su�ces to show that F is bounded. Also, since the two functions z 7→ F (−z)
and z 7→ F (z) are also entire and also satisfy the two above bounds, it su�ces to show
that F is bounded in the upper right quadrant. De�ne, for each δ > 0, an entire function
Fδ by Fδ(z) = eiδz

2
F (z). We have the pointwise relation Fδ(z) → F (z) as δ ↓ 0, and it

therefore su�ces to show that Fδ is bounded by 1 in the upper right quadrant for each
δ > 0. To this end, it obviously su�ces to bound Fδ by 1 on Γα (de�ned as in (1)) for each
0 < α < π/2, since Fδ is already known to be bounded by 1 on the imaginary axis.

Fix 0 < α < π/2. First, for r ≥ 0, |Fδ(r)| = |F (r)| ≤ 1. Our goal is therefore
to bound Fδ by 1 on some ray Rθ =

{
reiθ r > 0

}
with π/2 > θ > α, since then the

lemma above gives us the conclusion. Note that for 0 < φ < π/2, we have |Fδ(reiφ)| ≤
exp(−2δr2 cosφ sinφ+ πr2 cos2 φ), and that we therefore have |Fδ(reiφ)| ≤ 1 whenever φ
satis�es π/2 > φ ≥ tan−1(π/2δ). Taking π/2 > θ > max{α, tan−1(π/2δ)}, the proof is
done.

4 Beurling's uncertainty principle

A theorem due to Beurling (whose proof was published by Hörmander [1991]) states that
if f ∈ L1(R) and ∫

R

∫
R
|f(x)f̂(y)|e2π|xy| dxdy <∞, (2)

then f = 0 (in L1). The theorem has been extended into a characterization of Hermite
functions by Bonami et al. [2003]. Here, however, we will instead follow work by Heden-
malm [2012].

First of all, we note that (2) is a quite strong condition; since 1 ≤ e2πxy, (2) implies
‖f‖1‖f̂‖1 < ∞. But then we also have f̂ ∈ L1 so that f ∈ C0, and therefore f ∈ Lp for
all p ≥ 1. We therefore start our quest by attempting to weaken the condition (2), i.e. we
look for other conditions which are implied by (2).

Suppose f satis�es (2). If we put S = {λ ∈ C Imλ < 1}, we obviously have

|f(x)f̂(y) exp(2πixyλ)| ≤ |f(x)f̂(y)| exp(2π|xy|) (3)

for all λ ∈ S, so that we can de�ne a function F : S → C by

F (λ) =

∫
R

∫
R
f(x)f̂(y)e2πixyλ dxdy.
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Continuity of F follows easily by (3) and Lebesgue's Dominated Convergence Theorem.
Likewise, a combination of Morera's Theorem and Fubini's Theorem (which (3) allows us
to use) shows easily that F is holomorphic in S. Furthermore, since f̂ ∈ L1, we may apply
the Fourier Inversion Formula to obtain

F (t) =

∫
R
f(x)f(tx) dx, (4)

for t ∈ R.
Now, suppose only that f ∈ L2 and de�ne F : R× → C by (4). Here, R× := R \ {0}.

We want to show that F is continuous. Suppose ε > 0 and t 6= 0. We have

|F (t+ h)− F (t)| ≤
∫
R
|f(x)||f(tx+ hx)− f(tx)| dx

≤ ‖f‖2

(∫
R
|f(tx+ hx)− f(tx)|2 dx

)1/2

= ‖f‖2|t|−1

(∫
R
|f(x+ (h/t)x)− f(x)|2 dx

)1/2

.

If g ∈ Cc with support contained in a ball of radius M , then g is uniformly continuous, so
there is a δ′ > 0 such that(∫

R
|g(x+ (h/t)x)− g(x)|2 dx

)1/2

≤ ε(2(M + 1))1/2

whenever |h| < δ := min{1, δ′}|t|/M . Since Cc is dense in L2, we can pick g ∈ Cc such
that ‖f − g‖2 ≤ ε, and therefore

|F (t+ h)− F (t)| ≤ ε‖f‖2|t|−1(2 + (2(M + 1))1/2),

whenever |h| < δ. This is what we wanted. If we put D = {z ∈ C |z| < 1} and denote the
area element on C by dA, then we will show the following result by Hedenmalm [2012],
which shows a succesful weakening of the hypothesis (2):

Theorem 4.0.1. Suppose f ∈ L2 and de�ne F : R× → C by (4). If F has a holomorphic
extension to a neighborhood of D \ {i,−i} (which we continue to denote by F ), and this
extension satis�es ∫

D
|F (λ)|2|1 + λ2| dA(λ) <∞,

then there is a constant c ≥ 0 such that F (λ) = c(1 + λ2)−1/2. If infD |F (λ)|2|1 + λ2| = 0,
then ‖f‖2

2 = F (1) = 0, and therefore f(x) = 0 almost everywhere.

We note that if f satis�es (2), then F is bounded in D, by the above discussion.
Therefore, the weighted square area-integral in the theorem is �nite, and we also have
infD |F (λ)|2|1+λ2| = 0 (by letting λ tend to i). Beurling's uncertainty principle is therefore
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a special case of the above theorem. Before giving the proof of the theorem, we give a
characterization of removable singularities in terms of a square area-integrability condition.
For z0 ∈ C and ε > 0, Let D(z0, ε) = {z ∈ C |z − z0| < ε} denote the disc of radius ε at z0

and let D′(z0, ε) = {z ∈ C 0 < |z − z0| < ε} denote the punctured disc of radius ε at z0.

Lemma 4.0.2. If Φ ∈ O(D′(z0, ε)) satis�es∫
D(z0,ε/2)

|Φ|2 dA <∞,

then Φ ∈ O(D(z0, ε)).

Thus, if Φ is square area-integrable in some neighborhood of z0, then Φ extends holo-
morphically across z0. Conversely, if Φ is holomorphic in some neighborhood of z0, then
Φ is bounded in some neighborhood of z0, and is therefore square area-integrable in some
neighborhood of z0.

Proof of Lemma 4.0.2. Recall that if Φ is holomorphic in a punctured disc D′(z0, ε), then
Φ has a Laurent expansion

Φ(z) =
∞∑

n=−∞

an(z − z0)n

which converges in D′(z0, ε) and converges absolutely in the ring

R(z0, r, R) = {z ∈ C 0 < r/2 ≤ |z − z0| ≤ R}

for any 0 < r < R < ε. From absolute convergence, Fubini's Theorem gives us∫ 1

0

|Φ(z0 + re2πiθ)|2 dθ =

∫ 1

0

(∑
n

∑
m

anamr
n+me2πi(n−m)θ

)
dθ

=
∑
n

∑
m

anamr
n+m

∫ 1

0

e2πi(n−m)θ dθ =
∞∑

n=−∞

|an|2r2n,

which we identify as Parseval's Formula for a trigonometric system. Suppose that we know
that Φ is square area-integrable in a disc of radius ε/2 around z0, i.e.∫ ε/2

0

∫ 1

0

|Φ(z0 + re2πiθ)|2 dθrdr <∞.

Applying Parseval's Formula, we obtain∫ ε/2

0

|an|2r2n+1 dr ≤
∫ ε/2

0

(
∞∑

n=−∞

|an|2r2n

)
rdr =

∫
D(z0,ε/2)

|Φ|2 dA <∞.

Consequently, we must have an = 0 for all n ≤ −1, i.e. z0 is a removable singularity and
Φ is actually holomorphic in the entire disc D(z0, ε).
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With this lemma at hand, we are ready for the proof of Theorem 4.0.1. Let us put

L = {it ∈ C t ∈ R : |t| ≥ 1}

Proof of Theorem 4.0.1. We note that λ 7→
√

1 + λ2 is holomorphic in C \ L. We can
therefore de�ne a holomorphic function Φ in an open set containing D \ {i,−i} by Φ(λ) =
F (λ)

√
1 + λ2. A change of variables gives, for all t ∈ R×,

F (t) =

∫
R
f(x)f(tx) dx = |t|−1

∫
R
f(x/t)f(x) dx = |t|−1F (1/t).

In terms of Φ, this translates to

Φ(t) = F (t)
√

1 + t2 = F (1/t)
√

1 + 1/t2 = Φ(1/t) = Φ(1/t), (5)

for all t ∈ R×. This motivates the following: Let V ⊃ D \ {i,−i} be the open set which
F extends holomorphically to. We can assume that V is connected (by considering only
the connected component containing D \ {i,−i}). Put V0 = V \ {0}. Then the inversion
mapping ι ∈ O(C \ {0} de�ned by ι : λ 7→ λ−1 maps V0 biholomophically to a connected
neighborhood ι(V0) ⊃ De \ {i,−i}, where De = C \ D is the open exterrior disc. De�ne
Ψ ∈ O(ι(V0)) by

Ψ(λ) = Φ(ι(λ)).

Consider the open set V ∩ ι(V0), and let V1 be the connected component of V ∩ ι(V0)
containing 1, which is open since C is locally connected. Also, V1 contains the 'right half'
of the unit circle,

V1 ⊃
{
x+ iy x, y ∈ R, x2 + y2 = 1, x > 0

}
,

since this is a connected subset which is in V ∩ ι(V0). Lastly, V1 contains an interval from
the real line, and by (5) we have Φ(t) = Φ(t) = Ψ(t) there. But then Φ(λ) = Ψ(λ) in all
of V1, since V1 is connected. The same argument works for −1. Extend Φ to C \ {i,−i}
by putting

Φ(λ) =


Φ(λ) if λ ∈ D,
Φ(λ) = Ψ(λ) if λ ∈ V1 ∪ V−1,

Ψ(λ) = Φ(ι(λ)) if λ ∈ De.

Then we have Φ ∈ O(C \ {i,−i}. We wish to apply the lemma above to show that Φ
extends to an entire function. The integrability assumption of the theorem gives us∫

D
|Φ|2 dA <∞.

However, we can use (5) and a change of variables to obtain an integrability condition in
De as well: ∫

De

|Φ(λ)|2|λ|−4 dA(λ) =

∫ 1

0

∫ ∞
1

∣∣∣∣Φ( 1

re−2πiθ

)∣∣∣∣2 r−3drdθ

=

∫ 1

0

∫ 1

0

|Φ(re2πiθ)|2 rdrdθ =

∫
D
|Φ|2 dA.
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If we let 2D denote that disc of radius 2 around 0, we thus have∫
(2D)\D

|Φ(λ)|2 dA(λ) ≤ 16

∫
De

|Φ(λ)|2|λ|−4 dA(λ) <∞,

so that Φ square area-integrable in some open set around both i and −i. Therefore Φ
extends to an entire function. But Φ is bounded in the compact set 2D, and by de�nition
therefore also bounded in the open exterrior disc (this is obvious from how we extended
Φ; see above). Therefore Φ is bounded, and thus constant. Thus, we have

F (λ) = c(1 + λ2)−1/2,

with c = Φ(1) =
√

2‖f‖2
2 ≥ 0.
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