Exercise sheet 7

Exercise class week ?

Useful facts

Exercise 22:

a) Let H be a Hilbert space and $[\cdot, \cdot] : H \times H \to \mathbb{C}$ sesquilinear, such that $[h, h] \ge 0 \forall h \in H$. Show the Cauchy-Schwartz inequality $|[f, g]| \le [f, f]^{1/2} [g, g]^{1/2} \ \forall f, g \in H$.

b) Let M be a subset of a Banach space X and $\operatorname{span} M := \{\sum a_i m_i : a_i \in \mathbb{C}, m_i \in M\}$. Show that $\operatorname{span} M$ is dense in X if and only if every continuous linear functional on X, which vanishes on M is 0.

c) Let *A* be a Banach algebra, $\varphi : A \to \mathbb{C}$ linear and multiplicative, i.e. $\varphi(ab) = \varphi(a)\varphi(b)$. Show that φ is continuous and $||\varphi|| \le 1$. If *A* is unital $\Rightarrow ||\varphi|| \in \{0, 1\}$.

d) Let G be a locally compact abelian group (say $G = \mathbb{R}$) and $h \in L^1(G)$. Show that $||\underbrace{h*\cdots*h}_{n \text{ factors}}||_{L^1(G)}^{1/n} \xrightarrow{n \to \infty} ||\hat{h}||_{L^{\infty}(\hat{G})}$.

Hint: In a (complex) Banach algebra $\lim_{n \to \infty} ||a^n||^{1/n} = \sup |\sigma(a)|.$

Exercise 23:

a) Prove that \mathbb{R} is a locally compact abelian group.

b) Prove that if G_1, \ldots, G_n are locally compact abelian groups, so is $G_1 \times \cdots \times G_n$ (with the product topology and componentwise multiplication).

c) Prove that an infinite-dimensional Banach space is not locally compact.

Remark: A vector space with a Hausdorff topology, such that multiplication with scalars and vector addition are continuous is locally compact \Leftrightarrow it is homeomorphic to \mathbb{R}^n for some n.

Exercise 24:

Let *G* be a locally compact abelian group and *m* the Haar measure on *G*. Show: a) If $\emptyset \neq V \subset G$ open $\Rightarrow m(V) > 0$.

b) $E \subset G$ measurable $\Rightarrow m(E) = m(-E)$.

Exercise 25:

Let $\gamma : \mathbb{R} \to \mathbb{C}$ continuous, $\gamma(x+y) = \gamma(x)\gamma(y) \ \forall x, y \in \mathbb{R}$ and γ not identically 0. By continuity $\exists \delta > 0 : \int_{0}^{\delta} \gamma(x) dx = \alpha \neq 0$. Show $\alpha \gamma(x) = \int_{x}^{x+\delta} \gamma(t) dt$. Conclude that γ is definerentiable and $\gamma'(x) = \gamma'(0)\gamma(x)$. Show that the only bounded solutions are $\gamma_y(x) := e^{iyx}$ for some $y \in \mathbb{R}$.

a) Endow the space of all such γ with the compact-open topology (as described in Rudin, 1.2.6). Show that $y \leftrightarrow \gamma_y$ is a homeomorphism.

b) Show that all bounded γ as in a), with \mathbb{R} replaced by \mathbb{R}/\mathbb{Z} are of the form $y_n(x) = e^{2\pi i n x}, n \in \mathbb{Z}$.

Exercise 26:

Let *G* be a locally compact abelian group. $\varphi : G \to \mathbb{C}$ is said to be positive definite, if $\sum_{n,m=1}^{N} c_n \overline{c}_m \varphi(x_n - x_m) \ge 0 \text{ for all } x_1, \dots, x_N \in G \text{ and } c_1, \dots c_N \in \mathbb{C}.$ Let $f \in L^2(G), \ \tilde{f} = \overline{f(-x)}$. Show that $f * \tilde{f}$ is positive definite and $\in C_0(G)$.

Hint: Use Young's inequality to deduce the last assertion.