Exercise sheet 6

Exercise class week $22+23$

Calculus of pseudodifferential
 operators

Recall that

$$
S^{m}:=\left\{a \in C^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right): \forall \alpha, \beta \in \mathbb{N}_{0}^{n} \exists C_{\alpha \beta}:\left|\partial_{x}^{\beta} \partial_{\xi}^{\alpha} a(x, \xi)\right| \leq C_{\alpha \beta}(1+|\xi|)^{m-|\alpha|}\right\} .
$$

Furthermore set $S^{-\infty}:=\bigcap_{m \in \mathbb{R}} S^{m}$ and $S^{\infty}:=\bigcup_{m \in \mathbb{R}} S^{m}$.

Exercise 19:

a) (Borel's Lemma) Let $\left(a_{j}\right)_{j \in \mathbb{N}_{0}} \subseteq \mathbb{C},\left(\varepsilon_{j}\right)_{j \in \mathbb{N}_{0}} \subseteq(0, \infty), \varepsilon_{j} \searrow 0$ sufficiently fast and $\eta \in C_{c}^{\infty}(\mathbb{R}), \eta(x)=1$ for $|x| \leq 1$ and $\eta(x)=0$ for $|x| \geq 2$.
Show that $f(x):=\sum_{j=0}^{\infty} \frac{a_{j}}{j!} x^{j} \eta\left(\frac{x}{\varepsilon_{j}}\right)$ is smooth and $\left(\partial_{x}^{j} f\right)(0)=a_{j} \forall j$.
Hint: For any $x \neq 0, f(x)$ is defined by a finite sum.
b) (asymptotic summation) Let $a_{j} \in S^{m_{j}}, m_{j} \searrow-\infty, \varepsilon_{j}$ as above and $\varphi \in C^{\infty}\left(\mathbb{R}^{d}\right)$, $\varphi(x)=1$ for $|x| \geq 2, \varphi(x)=0$ for $|x| \leq 1$.
Show that

$$
\begin{align*}
& \sum_{j=0}^{\infty} a_{j}(x, \xi) \varphi\left(\varepsilon_{j} \xi\right)=: a(x, \xi) \in S^{m_{0}} \text { and } \\
& a-\sum_{j=0}^{k} a_{j} \in S^{m_{k+1}} \quad \forall k \in \mathbb{N}_{0} . \tag{*}
\end{align*}
$$

Notation: We write $a \sim \sum_{j=0}^{\infty} a_{j}$ if $(*)$ holds. Observe that $a \sim 0$ if and only if $a \in S^{-\infty}$. Using b), we define an associative product \# : $S^{\infty} / S^{-\infty} \times S^{\infty} / S^{-\infty} \rightarrow S^{\infty} / S^{-\infty}$ via

$$
\left(a+S^{-\infty}\right) \#\left(b+S^{-\infty}\right) \sim \sum_{|\alpha| \geq 0} \frac{i^{\alpha}}{\alpha!} D_{\xi}^{\alpha} a(x, \xi) D_{x}^{\alpha} b(x, \xi) .
$$

Exercise 20:

a) Let $a \in S^{m}, b \in S^{\tilde{m}}, m, \tilde{m} \in \mathbb{R} \cup\{-\infty\}$. Show that $a+b \in S^{\max \{m, \tilde{m}\}}, \partial_{x}^{\alpha} \partial_{\xi}^{\beta} a \in S^{m-|\beta|}$, $a b \in S^{m+\tilde{m}}$. Conclude that if $R_{i} \in S^{-\infty}$:
$\left(a+R_{1}+S^{-\infty}\right) \#\left(b+R_{2}+S^{-\infty}\right)=\left(a+S^{-\infty}\right) \#\left(b+S^{-\infty}\right) \in S^{m+\tilde{m}} / S^{-\infty}$ is independent of R_{i}. The \#-product is thus well-defined and we write $a \# b:=\left(a+S^{-\infty}\right) \#\left(b+S^{-\infty}\right)$. If $|a(x, \xi)| \geq C\langle\xi\rangle^{m}$, show that $a^{-1} \in S^{-m}$ and $r:=a \# a^{-1}-1, \tilde{r}:=a^{-1} \# a-1 \in S^{-1} / S^{-\infty}$.
b) (Neumann series) Let $b \in S^{-1}, b^{\# n}=\underbrace{b \# \ldots \# b}_{n \text { factors }}$. Show that

$$
\left(1+b+b^{\# 2}+\cdots+b^{\# N}\right) \#(1-b) \sim 1-b^{\#(N+1)}
$$

and hence that

$$
\left(1+\sum_{j=1}^{\infty} b^{\# j}\right) \#(1-b) \sim 1
$$

c) Continuing a), let $s \sim \sum_{j=1}^{\infty} r^{\# j}, \tilde{s} \sim \sum_{j=1}^{\infty} \tilde{r} \# j, b=a^{-1} \#(1+s), \tilde{b}=(1+\tilde{s}) \# a^{-1}$. Show that $\tilde{b} \# a \sim a \# b \sim 1$ and therefore $\tilde{b} \sim \tilde{b} \# a \# b \sim b$, or $a \# b-1 \sim b \# a-1 \sim 0$.

Interpretation: Given $a \in S^{m}$ elliptic $\left(|a| \geq C\langle\xi\rangle^{m}\right)$, we have found an inverse $b \in S^{-m}$ of a up to a negligible remainder $\in S^{-\infty}$.

Exercise 21:

a) Let $a \in S^{m}$. Recall

$$
\begin{aligned}
\mathrm{op}(a) f(x) & :=\int \mathrm{d} \xi a(x, \xi) \hat{f}(\xi) e^{i x \xi} \\
& =\int \mathrm{d} \xi L_{\xi}^{N}[a(x, \xi) \hat{f}(\xi)] e^{i x \xi}
\end{aligned}
$$

for $L_{\xi}:=\left(1+|x|^{2}\right)^{-1}\left(1-\Delta_{\xi}\right)$ and $N \in \mathbb{N}$ from Exercise 17.
Write $\operatorname{op}(a) f(x)=(k(x, \cdot) * f)(x)$, i.e. $k(x, \cdot)=\mathcal{F}_{\xi \rightarrow \cdot a}(x, \xi)$ is a distribution $\in S^{\prime}\left(\mathbb{R}^{n}\right)$ for all $x \in \mathbb{R}^{n}$. Show that $\left.k(x, \cdot)\right|_{\mathbb{R}^{n} \backslash\{0\}} \in L_{\text {loc }}^{\infty}\left(\mathbb{R}^{n} \backslash B_{\varepsilon}(0)\right)$ for all $\varepsilon>0$ and all $x \in \mathbb{R}^{n}$. Furthermore $|k(x, z)| \leq C_{N}|z|^{-N}$ for $|z| \geq 1, N \in \mathbb{N}$ uniformly for all $x \in \mathbb{R}^{n}$.
Hint: Use that $\partial_{\xi}^{\alpha} a(x, \xi) \in L_{\xi}^{1}\left(\mathbb{R}^{n}\right)$ for all $\alpha \geq m+n+1$ and $\left|\mathcal{F}_{\xi \rightarrow z}^{-1} \partial_{\xi}^{\alpha} a(x, \xi)\right|=\left|z^{\alpha} k(x, z)\right|$.
b) Define the adjoint of $a(x, D)$ with respect to the L^{2}-scalar product: $\forall f, g \in S\left(\mathbb{R}^{d}\right)$: $\left\langle a(x, D)^{*} f, g\right\rangle_{L^{2}}:=\langle f, a(x, D) g\rangle_{L^{2}}$. Integrate by parts as in Exercise 17 to show, that $a(x, D)^{*}: S \rightarrow S$ and conclude that $a(x, D)$ extends by duality, $\forall f \in S, \forall g \in S^{\prime}$: $\langle f, a(x, D) g\rangle:=\left\langle a(x, D)^{*} f, g\right\rangle$, to an operator on S^{\prime}.
c) Let $a \in S^{-\infty}$. Show that $a(x, D), a(x, D)^{*}: \mathcal{E}^{\prime} \rightarrow S$ and therefore by duality, also $a(x, D), a(x, D)^{*}: S^{\prime} \rightarrow C^{\infty}$.
Hint: Integrate by parts yet again.

