Exercise sheet 5

Exercise class week 21

Exercise 16:

Let $\varphi_{1}(x):=c_{1}\left(1+|x|^{2}\right)^{-\frac{n+1}{2}}, \varphi_{2}(x):=c_{2} e^{-\frac{|x|^{2}}{4}}$ with c_{1}, c_{2} such that $\int \varphi_{1 / 2}=1$. As in Exercise 13, write $\varphi_{t}(x):=t^{-n} \varphi\left(\frac{x}{t}\right)$. Given $f \in L^{p}\left(\mathbb{R}^{n}\right)$, let $u_{1}(t, x):=f *\left(\varphi_{1}\right)_{t}(x)$ and $u_{2}(t, x):=f *\left(\varphi_{2}\right)_{\sqrt{t}}(x)$. Then $\partial_{t}^{2} u_{1}(t, x)+\Delta_{x} u_{1}(t, x)=0$ and $\left(\partial_{t}-\Delta\right) u_{2}(t, x)=0$ for $t>0, x \in \mathbb{R}^{n}$, and $\lim _{t \rightarrow 0^{+}} u_{1 / 2}(t, x)=f(x)$ for almost every $x \in \mathbb{R}^{n}$.
Hint: This is a continuation of Exercise 13 on Sheet 4.

Exercise 17:

Let

$$
S^{m}:=\left\{a \in C^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right): \forall \alpha, \beta \in \mathbb{N}_{0}^{n} \exists C_{\alpha \beta}:\left|\partial_{x}^{\beta} \partial_{\xi}^{\alpha} a(x, \xi)\right| \leq C_{\alpha \beta}(1+|\xi|)^{m-|\alpha|}\right\}
$$

The operator $L_{\xi}:=\left(1+|x|^{2}\right)^{-1}\left(1-\Delta_{\xi}\right)$ satisfies $L_{\xi}^{N} e^{i x \xi}=e^{i x \xi} \forall N$.
a) Check that for $a \in S^{m}$

$$
\begin{aligned}
\operatorname{op}(a) f(x) & :=\int \mathrm{d} \xi a(x, \xi) \hat{f}(\xi) e^{i x \xi} \\
& =\int \mathrm{d} \xi L_{\xi}^{N}[a(x, \xi) \hat{f}(\xi)] e^{i x \xi}
\end{aligned}
$$

defines an operator op(a) : $S\left(\mathbb{R}^{n}\right) \rightarrow S\left(\mathbb{R}^{n}\right)$. If a is a polynomial in ξ,op (a) is a differential operator.
b) Let $A:=\sum_{\alpha} a_{\alpha} \partial^{\alpha}$ be a differential operator on \mathbb{R}^{n}. Show that $A f(x)=\sum_{\alpha} a_{\alpha}(x)\left((\partial)^{\alpha} \delta *\right.$ $f)(x)$ and conclude that A is a singular integral operator. What is its kernel? Find an explicit distribution K on $\mathbb{R}^{n} \times \mathbb{R}^{n}$ such that $\langle g, A f\rangle=\langle K(x, y), f(x) g(y)\rangle$ for all test functions f, g.
Remark: Operators of the form $\operatorname{op}(a), a \in S^{m}$, are called "pseudodifferential operators". In DifFun 1, only x-independent symbols were considered.

Exercise 18:

Let A be a singular integral operator on \mathbb{R}^{n} with kernel $k(x, y)>c|x-y|^{-n}$. Show that A does not extend to a bounded operator on $L^{2}\left(\mathbb{R}^{n}\right)$ and, in particular, is not a CalderonZygmund operator.
Hint: Let $Q=\left(-\frac{1}{4}, \frac{1}{4}\right)^{n}, Q_{y}=Q+y, S_{R}=\underset{y \in \mathbb{Z}^{n},|y|<R}{\bigcup} Q_{y}$ and $f=\mathbb{1}_{S_{R}}$. Note that both of S_{R} and $\mathbb{R}^{n} \backslash S_{R}$ have a volume of at least $c_{n} R^{n}$ and show that $\frac{\|A f\|_{2}}{\|f\|_{2}}$ is unbounded as R goes to infinity, using that $\|A f\|_{L^{2}\left(\mathbb{R}^{n}\right)} \geq\|A f\|_{L^{2}\left(\mathbb{R}^{n} \backslash S_{R}\right)}$.

