Exercise sheet 5

Exercise class week 21

Exercise 16:

Let $\varphi_1(x) := c_1 \left(1 + |x|^2\right)^{-\frac{n+1}{2}}$, $\varphi_2(x) := c_2 e^{-\frac{|x|^2}{4}}$ with c_1, c_2 such that $\int \varphi_{1/2} = 1$. As in Exercise 13, write $\varphi_t(x) := t^{-n} \varphi(\frac{x}{t})$. Given $f \in L^p(\mathbb{R}^n)$, let $u_1(t,x) := f * (\varphi_1)_t(x)$ and $u_2(t,x) := f * (\varphi_2)_{\sqrt{t}}(x)$. Then $\partial_t^2 u_1(t,x) + \Delta_x u_1(t,x) = 0$ and $(\partial_t - \Delta) u_2(t,x) = 0$ for t > 0, $x \in \mathbb{R}^n$, and $\lim_{t \to 0^+} u_{1/2}(t,x) = f(x)$ for almost every $x \in \mathbb{R}^n$.

Hint: This is a continuation of Exercise 13 on Sheet 4.

Exercise 17:

Let

$$S^{m} := \left\{ a \in C^{\infty}(\mathbb{R}^{n} \times \mathbb{R}^{n}) : \forall \alpha, \beta \in \mathbb{N}_{0}^{n} \exists C_{\alpha\beta} : \left| \partial_{x}^{\beta} \partial_{\xi}^{\alpha} a(x,\xi) \right| \leq C_{\alpha\beta} \left(1 + |\xi| \right)^{m-|\alpha|} \right\}$$

The operator $L_{\xi} := (1 + |x|^2)^{-1}(1 - \Delta_{\xi})$ satisfies $L_{\xi}^N e^{ix\xi} = e^{ix\xi} \forall N$. a) Check that for $a \in S^m$

$$op(a)f(x) := \int d\xi a(x,\xi)\hat{f}(\xi)e^{ix\xi}$$
$$= \int d\xi L_{\xi}^{N} \left[a(x,\xi)\hat{f}(\xi)\right]e^{ix\xi}$$

defines an operator $op(a) : S(\mathbb{R}^n) \to S(\mathbb{R}^n)$. If *a* is a polynomial in ξ , op(a) is a differential operator.

b) Let $A := \sum_{\alpha} a_{\alpha} \partial^{\alpha}$ be a differential operator on \mathbb{R}^n . Show that $Af(x) = \sum_{\alpha} a_{\alpha}(x)(\partial)^{\alpha} \delta * f)(x)$ and conclude that A is a singular integral operator. What is its kernel? Find an explicit distribution K on $\mathbb{R}^n \times \mathbb{R}^n$ such that $\langle g, Af \rangle = \langle K(x, y), f(x)g(y) \rangle$ for all test functions f, g.

Remark: Operators of the form op(a), $a \in S^m$, are called "pseudodifferential operators". In DifFun 1, only *x*-independent symbols were considered.

Exercise 18:

Let *A* be a singular integral operator on \mathbb{R}^n with kernel $k(x, y) > c |x - y|^{-n}$. Show that *A* does not extend to a bounded operator on $L^2(\mathbb{R}^n)$ and, in particular, is not a Calderon-Zygmund operator.

Hint: Let $Q = (-\frac{1}{4}, \frac{1}{4})^n$, $Q_y = Q + y$, $S_R = \bigcup_{y \in \mathbb{Z}^n, |y| < R} Q_y$ and $f = \mathbb{1}_{S_R}$. Note that both of S_R and $\mathbb{R}^n \setminus S_R$ have a volume of at least $c_n R^n$ and show that $\frac{||Af||_2}{||f||_2}$ is unbounded as R goes to infinity, using that $||Af||_{L^2(\mathbb{R}^n)} \ge ||Af||_{L^2(\mathbb{R}^n \setminus S_R)}$.