Exercise sheet 4

Pointwise a.e. convergence
Exercise class week 20+21

Exercise 13:

Let $\psi:[0, \infty) \rightarrow[0, \infty]$ be non-increasing, measurable and $\Psi: \mathbb{R}^{n} \rightarrow[0, \infty), \Psi(x)=\psi(|x|)$. Furthermore let $\Psi_{t}(x)=t^{-n} \Psi\left(\frac{x}{t}\right)$.
a) Show $\forall f \in L^{p}\left(\mathbb{R}^{n}\right)$ and for almost every $x \in \mathbb{R}^{n}$ that

- $|f * \Psi(x)| \leq\left(\int_{\mathbb{R}^{n}} \Psi\right) \sup _{r>0} \frac{1}{\left|B_{r}(x)\right|} \int_{B_{r}(x)}|f(y)| \mathrm{d} y$
- $\left|f * \Psi_{t}(x)\right| \leq\left(\int_{\mathbb{R}^{n}} \Psi\right) \sup _{r>0} \frac{1}{\left|B_{r}(x)\right|} \int_{B_{r}(x)}|f(y)| \mathrm{d} y \quad \forall t>0$

Hint: You may assume that $\Psi \in L^{1}\left(\mathbb{R}^{n}\right)$. Also, first take $\psi=\sum_{j=1}^{N} a_{j} \mathbb{1}_{\left(0, r_{j}\right)}, a_{j}, r_{j} \in(0, \infty)$. An arbitrary ψ can be approximated by such sums.
b) Let $\varphi \in L^{1}\left(\mathbb{R}^{n}\right), \int \varphi=1,|\varphi(x)| \leq \psi(|x|)$. Assume ψ ist bounded. Show $\forall f \in L^{p}\left(\mathbb{R}^{n}\right)$ and almost every $x \in \mathbb{R}^{n}$:

$$
\sup _{t>0}\left|f * \varphi_{t}(x)\right| \leq C_{\varphi} \sup _{r>0} \frac{1}{\left|B_{r}(x)\right|} \int_{B_{r}(x)}|f(y)| \mathrm{d} y
$$

c) Check that the proof of Lebesgue's differentiation theorem (using b)!) yields $\forall f \in L^{p}\left(\mathbb{R}^{n}\right)$

$$
\lim _{t \rightarrow 0^{+}} f * \varphi_{t}=f(x) \quad \text { for almost every } x \in \mathbb{R}^{n} .
$$

Exercise 14:

Let $f \in L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right)$. A point $x \in \mathbb{R}^{d}$ is called a Lebesgue point of f provided that

$$
\exists c \in \mathbb{C}: \lim _{r \rightarrow 0^{+}} \frac{1}{\left|B_{r}(x)\right|} \int_{B_{r}(x)}|f-c|=0 .
$$

a) Show that almost every $x \in \mathbb{R}^{d}$ is a Lebesgue point of f and that $c=f(x)$ for almost every $x \in \mathbb{R}^{d}$.
b) Fundamental theorem of calculus: Show that $F(x)=\int_{0}^{x} f(y) \mathrm{d} y$ is differentiable at every Lebesgue point of f and that $F^{\prime}=f$ almost everywhere.

Exercise 15: For reading Tao's notes only - conditional expectations

Let (X, \tilde{B}, μ) be a measure space, B a σ-finite σ-subalgebra of \tilde{B}. Denote the orthogonal projection from $L^{2}(X, \tilde{B}, \mu)$ to its closed subspace $L^{2}(X, B, \mu)$ by $E(\cdot, B)$. Show that:
a) $\quad \int_{X} f \overline{E(g, B)} \mathrm{d} \mu=\int_{X} E(f, B) \bar{g} \mathrm{~d} \mu=\int_{X} E(f, B) E(g, B) \mathrm{d} \mu \quad \forall f, g \in L^{2}(X, \tilde{B}, \mu)$
b) $E(\cdot, B)$ is the unique map $L^{2}(X, \tilde{B}, \mu) \rightarrow L^{2}(X, B, \mu)$ sucht that

$$
\int_{X} E(f, B) g \mathrm{~d} \mu=\int_{X} f g \mathrm{~d} \mu \quad \forall f \in L^{2}(X, \tilde{B}, \mu), g \in L^{2}(X, B, \mu) .
$$

c) Deduce that $E(\bar{f}, B)=\overline{E(f, B)}, f \leq g \Rightarrow E(f, B) \leq E(g, B)$, $\forall h \in L^{\infty}(X, B, \mu): E(h f, B)=h E(f, B)$ and $|E(f, B)| \leq E(|f|, B)$.
d) $E(\cdot, B): L^{p}(X, \tilde{B}, \mu) \rightarrow L^{p}(X, B, \mu)$ is continuous $\forall 1 \leq p \leq \infty$ and $\|E(\cdot, B)\|_{p \rightarrow p} \leq 1$.

Hint: Show this for $p=1$ and $p=\infty$.
e) Let $B_{1} \subset B_{2} \subset \ldots$ be an increasing family of B 's and let $\bigvee_{n+1}^{\infty} B_{n}$ the σ-algebra generated by $\bigcup_{n=1}^{\infty} B_{n}$. Show $\forall 1 \leq p \leq \infty$ and $\forall f \in L^{p}(X, \tilde{B}, \mu): E\left(f, B_{n}\right) \xrightarrow{n \rightarrow \infty} E\left(f, \bigvee_{n+1}^{\infty} B_{n}\right)$ in L^{p}.
Hint: See Tao, Chapter 2, Prop. 3.5.
f) Let $X=\mathbb{R}, \tilde{B}=$ Borel σ-algebra, $\mu=$ Lebesgue measure, $B_{n}=\sigma$-algebra generated by $\left\{\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right]\right\}_{k \in \mathbb{Z}}$. Show $\bigvee_{n+1}^{\infty} B_{n}=\tilde{B}$ and $E\left(f, B_{n}\right)(x)=2^{n} \int_{\frac{k}{2^{n}}}^{\frac{k+1}{2^{n}}} f(y) \mathrm{d} y$.

