Exercise sheet 4

Pointwise a.e. convergence

Exercise class week 20+21

Exercise 13:

Let $\psi : [0, \infty) \to [0, \infty]$ be non-increasing, measurable and $\Psi : \mathbb{R}^n \to [0, \infty)$, $\Psi(x) = \psi(|x|)$. Furthermore let $\Psi_t(x) = t^{-n} \Psi\left(\frac{x}{t}\right)$.

a) Show $\forall f \in L^p(\mathbb{R}^n)$ and for almost every $x \in \mathbb{R}^n$ that

•
$$|f * \Psi(x)| \le \left(\int_{\mathbb{R}^n} \Psi\right) \sup_{r>0} \frac{1}{|B_r(x)|} \int_{B_r(x)} |f(y)| \,\mathrm{d}y$$

•
$$|f * \Psi_t(x)| \le \left(\int_{\mathbb{R}^n} \Psi\right) \sup_{r>0} \frac{1}{|B_r(x)|} \int_{B_r(x)} |f(y)| \,\mathrm{d}y \quad \forall t > 0$$

Hint: You may assume that $\Psi \in L^1(\mathbb{R}^n)$. Also, first take $\psi = \sum_{j=1}^N a_j \mathbb{1}_{(0,r_j)}, a_j, r_j \in (0,\infty)$. An arbitrary ψ can be approximated by such sums.

b) Let $\varphi \in L^1(\mathbb{R}^n)$, $\int \varphi = 1$, $|\varphi(x)| \leq \psi(|x|)$. Assume ψ ist bounded. Show $\forall f \in L^p(\mathbb{R}^n)$ and almost every $x \in \mathbb{R}^n$:

$$\sup_{t>0} |f * \varphi_t(x)| \le C_{\varphi} \sup_{r>0} \frac{1}{|B_r(x)|} \int_{B_r(x)} |f(y)| \, \mathrm{d}y$$

c) Check that the proof of Lebesgue's differentiation theorem (using b)!) yields $\forall f \in L^p(\mathbb{R}^n)$

$$\lim_{t\to 0^+} f \ast \varphi_t = f(x) \quad \text{for almost every } x\in \mathbb{R}^n.$$

Exercise 14:

Let $f \in L^1_{loc}(\mathbb{R}^d)$. A point $x \in \mathbb{R}^d$ is called a Lebesgue point of f provided that

$$\exists c \in \mathbb{C} : \lim_{r \to 0^+} \frac{1}{|B_r(x)|} \int_{B_r(x)} |f - c| = 0$$

a) Show that almost every $x \in \mathbb{R}^d$ is a Lebesgue point of f and that c = f(x) for almost every $x \in \mathbb{R}^d$.

b) Fundamental theorem of calculus: Show that $F(x) = \int_{0}^{x} f(y) dy$ is differentiable at every Lebesgue point of f and that F' = f almost everywhere.

Exercise 15: For reading Tao's notes only - conditional expectations

Let (X, \tilde{B}, μ) be a measure space, B a σ -finite σ -subalgebra of \tilde{B} . Denote the orthogonal projection from $L^2(X, \tilde{B}, \mu)$ to its closed subspace $L^2(X, B, \mu)$ by $E(\cdot, B)$. Show that: a) $\int_X f\overline{E(g, B)} \, d\mu = \int_X E(f, B)\overline{g} \, d\mu = \int_X E(f, B)E(g, B) \, d\mu \quad \forall f, g \in L^2(X, \tilde{B}, \mu)$

b) $E(\cdot,B)$ is the unique map $L^2\left(X,\tilde{B},\mu\right) \to L^2\left(X,B,\mu\right)$ such tthat

$$\int_{X} E(f,B)g \,\mathrm{d}\mu = \int_{X} fg \,\mathrm{d}\mu \quad \forall f \in L^2\left(X,\tilde{B},\mu\right), \ g \in L^2\left(X,B,\mu\right).$$

c) Deduce that $E(\overline{f}, B) = \overline{E(f, B)}, f \leq g \Rightarrow E(f, B) \leq E(g, B), \forall h \in L^{\infty}(X, B, \mu) : E(hf, B) = hE(f, B) \text{ and } |E(f, B)| \leq E(|f|, B).$

d) $E(\cdot, B) : L^p(X, \tilde{B}, \mu) \to L^p(X, B, \mu)$ is continuous $\forall 1 \le p \le \infty$ and $||E(\cdot, B)||_{p \to p} \le 1$. *Hint: Show this for* p = 1 *and* $p = \infty$.

e) Let $B_1 \subset B_2 \subset ...$ be an increasing family of B's and let $\bigvee_{n+1}^{\infty} B_n$ the σ -algebra generated by $\bigcup_{n=1}^{\infty} B_n$. Show $\forall 1 \leq p \leq \infty$ and $\forall f \in L^p(X, \tilde{B}, \mu)$: $E(f, B_n) \xrightarrow{n \to \infty} E\left(f, \bigvee_{n+1}^{\infty} B_n\right)$ in L^p .

Hint: See Tao, Chapter 2, Prop. 3.5.

f) Let $X = \mathbb{R}$, $\tilde{B} =$ Borel σ -algebra, $\mu =$ Lebesgue measure, $B_n = \sigma$ -algebra generated by

 $\left\{\left[\frac{k}{2^n},\frac{k+1}{2^n}\right]\right\}_{k\in\mathbb{Z}}. \text{ Show } \bigvee_{n+1}^{\infty} B_n = \tilde{B} \text{ and } E(f,B_n)(x) = 2^n \int_{\frac{k}{2^n}}^{\frac{k+1}{2^n}} f(y) \,\mathrm{d}y.$