Exercise sheet 2

Exercise class week 18

Applications of Paley-Wiener and Interpolation

Exercise 5:

Let $P(D)=\sum_{|a| \leq m} a_{\alpha} D^{\alpha}, a_{\alpha} \in \mathbb{C}$, wlog $a_{(m, 0, \ldots, 0) \neq 0}$.
Show that the equation $P(D) u=f \in \mathcal{E}^{\prime}\left(\mathbb{R}^{n}\right)$ has a solution $u \in \mathcal{E}^{\prime}\left(\mathbb{R}^{n}\right)$ if and only if

$$
\frac{\hat{f}(\xi)}{P(\xi)} \in \mathcal{O}\left(\mathbb{C}^{n}\right)
$$

Hint: Show and use the following fact with $h(z):=\frac{\hat{f}\left(\xi_{1}+z, \xi_{2}, \ldots, \xi_{n}\right)}{P\left(\xi_{1}+z, \xi_{2}, \ldots, \xi_{n}\right)}$:

$$
\begin{aligned}
& \text { If } h(z) \in \mathcal{O}(\mathbb{C}), p(z)=p_{m} z^{m}+\cdots+p_{1} z+p_{0} \\
& \Longrightarrow\left|p_{m} h(0)\right| \leq \max _{|z|=1}|h(z) p(z)| .
\end{aligned}
$$

Exercise 6: "Schur's test"

Let (X, μ) and (Y, ν) be σ-finite measure spaces, $k: X \times Y \rightarrow \mathbb{C}$ measurable. Consider the integral operator

$$
K f(y):=\int_{X} k(x, y) f(x) \mathrm{d} \mu(x)
$$

between suitable L^{p}-spaces, and let $1 \leq p_{1}, q_{0} \leq \infty, p_{0}=1, q_{1}=\infty, \frac{1}{p_{i}}+\frac{1}{p_{i}^{\prime}}=1$.
a) If $\|k(x, y)\|_{L^{q_{0}}(Y)} \leq B_{0}$ for all elements $x \in X \Rightarrow\|K\|_{L^{1}(X) \rightarrow L^{q_{0}}(Y)} \leq B_{0}$
b) If $\|k(x, y)\|_{L^{p_{1}^{\prime}}(X)} \leq B_{1}$ for all elements $y \in Y \Rightarrow\|K\|_{L^{p_{1}(X) \rightarrow L^{\infty}(Y)}} \leq B_{1}$
c) Conclude that $K: L^{p_{\theta}}(X) \longrightarrow L^{q_{\theta}}(Y)$ is bounded and $\|K\|_{L^{p_{\theta}}(X) \rightarrow L^{q_{\theta}}(Y)} \leq B_{0}^{1-\theta} B_{1}^{\theta}$ for $\frac{1}{p_{\theta}}=1-\theta+\frac{\theta}{p_{1}}$ and $q_{\theta}=\frac{q_{0}}{1-\theta}, 0 \leq \theta \leq 1$.
Hint: In a) and b) use Hölder's inequality and in c) the Riesz-Thorin theorem
Remark: According to c) $q_{0}=p_{1}^{\prime}=1 \Rightarrow K: L^{p}(X) \rightarrow L^{p}(Y)$ bounded for all p.

Exercise 7: Young's inequality

Let $1 \leq p, q, r \leq \infty$ such that $\frac{1}{p}+\frac{1}{q}=1+\frac{1}{r}, f \in L^{p}\left(\mathbb{R}^{n}\right), g \in L^{q}\left(\mathbb{R}^{n}\right)$.
Apply Schur's test to $k(x, y) \stackrel{p}{=} g\left(y^{q}-x\right)$ to conclude

$$
\|f * g\|_{r} \leq\|f\|_{p}\|g\|_{q}
$$

Remark: The argument applies to convolutions on any group with a biinvariant measure (and not just \mathbb{R}^{n}).

Exercise 8:

Let (X, μ) be a measure space, $f: X \rightarrow \mathbb{C}$ measurable. Define the distribution function $\lambda_{f}:[0, \infty) \rightarrow[0, \infty]$ by

$$
\lambda_{f}(t):=\mu(\{x \in X:|f(x)| \geq t\})
$$

For $S \subset X$ let $\mathbb{1}_{S}(x)=\left\{\begin{array}{l}1 \text { for } x \in S \\ 0 \text { for } x \notin S\end{array}\right.$.
a) Check that

$$
\begin{aligned}
& |f(x)|^{p}=p \int_{0}^{\infty} \mathbb{1}_{\left\{|f| \geq t t^{p}\right.} \frac{\mathrm{d} t}{t} \text { and } \\
& \|f\|_{p}^{p}=p \int_{0}^{\infty} \lambda_{f}(t) t^{p} \frac{\mathrm{~d} t}{t} \quad 1 \leq p<\infty \\
& \|f\|_{\infty}=\inf \left\{t \geq 0: \lambda_{f}(t)=0\right\}
\end{aligned}
$$

b) Show Chebychev's inequality $\lambda_{f}(t) \leq t^{-p}\|f\|_{p}^{p}$.
c) Show that for $1 \leq p \leq \infty \exists \underline{c}_{p}, \bar{c}_{p}$:

$$
\underline{c}_{p}\|f\|_{p} \leq\left(\sum_{n \in \mathbb{Z}} \lambda_{f}\left(2^{n}\right) 2^{n p}\right)^{\frac{1}{p}}=\left\|\left(2^{n} \lambda_{f}\left(2^{n}\right)^{\frac{1}{p}}\right)_{n \in \mathbb{Z}}\right\|_{l^{p}(\mathbb{Z})} \leq \bar{c}_{p}\|f\|_{p}
$$

d) Let $L^{p, \infty}(X):=\left\{f: X \rightarrow \mathbb{C}\right.$ measurable: $\left.\|f\|_{p, \infty}:=\sup _{t>0} t \lambda_{f}(t)^{\frac{1}{p}}<\infty\right\}$. Use b) to show $L^{p}(X) \subseteq L^{p, \infty}(X)$. If $X=\mathbb{R}^{n}$ with the Lebesgue measure, show that $f(x)=|x|^{-\frac{n}{p}}$ belongs to $L^{p, \infty}\left(\mathbb{R}^{n}\right) \backslash L^{p}\left(\mathbb{R}^{n}\right), 1 \leq p<\infty$.

