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H1 and H2 denote Hilbert spaces in the following.

Definition 1. A Fredholm operator is an operator T ∈ B(H1, H2) such that kerT
and cokerT := H2/imT are finite dimensional. The dimension of the cokernel is
called the codimension, and it is denoted codimT .

Fredholm operators can also be studied on Banach spaces as well as on more
general spaces, but here we will concentrate on Hilbert spaces.

Lemma 2. If T ∈ B(H1, H2) is a Fredholm operator, then imT is closed.

Proof. Let T̃ denote the restriction of T to (kerT )⊥. T̃ is clearly bounded, and it
is not hard to see that it is a Fredholm operator. Since T is a Fredholm operator,
we can assume that codimT = n. Let S : Cn → H2 be a linear mapping onto the
complement of imT in H2, and define T1 : (kerT )⊥⊕Cn → H2 by T1(x, y) = T̃ x+Sy.
T1 is bijective and continuous. By the closed graph theorem, the inverse of T1 is
bounded and hence continuous. Hence imT = T1

(
(kerT )⊥ ⊕ {0}

)
is closed.

Definition 3. Let T ∈ B(H1, H2) be a Fredholm operator. Then we define its index
by

indexT = dim kerT − dim cokerT = dim kerT − codimT

Theorem 4. Let T ∈ B(H1, H2) be bijective, and let K ∈ B(H1, H2) be compact.
Then T +K is a Fredholm operator.

Before proving this theorem, we recall that a compact operator maps any bounded
sequence into a sequence which has a convergent subsequence.

Proof. ker(T + K) is a Hilbert space, and in particular it is a linear space, so for
x ∈ ker(T + K) we have Tx = −Kx. Let (xn)n∈N ⊆ ker(T + K) be a bounded
sequence. Since K is a compact operator, the sequence (Kxn)n∈N has a conver-
gent subsequence, (Kxnk

)k∈N. But xnk
∈ ker(T + K) for each k ∈ N, and thus
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(Kxnk
)k∈N = (−Txnk

)k∈N, which tells us that (xnk
)k∈N is convergent, since T−1 is

bounded. Hence any bounded sequence in ker(T+K) has a convergent subsequence,
which means that dim ker(T +K) <∞, since an infinite dimensional Hilbert space
has an infinite orthonormal sequence with no convergent subsequences.

We know that H2 = im(T +K)⊕ker(T ∗+K∗), and since T ∗ is invertible and K∗

is compact, we get by the above that dim ker(T ∗ + K∗) < ∞. This means that we
only have to check that im(T +K) is closed in order to see that codim(T +K) <∞.
To see this we split H1 into the direct sum H1 = H̃1⊕ ker(T +K), and we consider
the restriction of T +K to H̃1. We want to show that for all x ∈ H̃1 the inequality

‖x‖ ≤ c‖(T +K)x‖ (∗)

holds for some c > 0. In order to show this inequality, we assume that for all c > 0
there exists x ∈ H̃1 such that ‖x‖ ≥ c‖(T + K)x‖. Then there exist sequences
(cn)n∈N ⊆ (0,∞), (xn)n∈N ⊆ H̃1 such that ‖xn‖ = 1 for all n ∈ N, cn → ∞ for
n→∞, and 1 = ‖xn‖ ≥ cn‖(T +k)xn‖ for all n ∈ N. Hence ‖(T +K)xn‖ ≤ 1

cn
→ 0

for n → ∞. K is compact, and xn has norm 1 for each n ∈ N, so there exists a
subsequence (Kxnk

)k∈N of (Kxn)n∈N which is convergent; assume Kxnk
→ v ∈ H2

for k →∞. This means Txnk
→ −v ∈ H2 for k →∞. Thus

xnk
= T−1Txnk

→ w = −T−1v

for k →∞, where w ∈ H̃1 with ‖w‖ = 1, since ‖xnk
‖ = 1 for each k ∈ N. But

(T +K)w = lim
k→∞

(Txnk
+Kxnk

) = lim
k→∞

0 = 0

contradicting H̃1 ⊥ ker(T + K), and the claim follows, which means that we can
now conclude that im(T +K) is closed.

Note that when T ∈ B(H1, H2) is a Fredholm operator, then T ∗ will also be a
Fredholm operator, for it can be shown that imT ∗ is closed if and only if imT is
closed, which we know is the case, and so it follows that

indexT ∗ = dim kerT ∗ − dim kerT ∗∗ = dim kerT ∗ − dim kerT = −indexT

since H2 = imT ⊕ kerT ∗ implies that codimT = dim kerT ∗.

Theorem 5. T ∈ B(H1, H2) is Fredholm if and only if there exist S1, S2 ∈ B(H2, H1)
and operators K1 and K2 which are compact on H1 and H2 respectively such that
S1T = I +K1 and TS2 = I +K2.
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Proof. First assume that T ∈ B(H1, H2) is a Fredholm operator. T defines a bi-
jective operator T̃ : H̃1 → H̃2, where H̃1 = (kerT )⊥ and H̃2 = imT = (kerT ∗)⊥.
Define S2 ∈ B(H2, H1) by S2 = ιH̃1

(T̃ )−1primT . Then

TS2 = TιH̃1
(T̃ )−1primT = primT = prH̃2

= I − prkerT ∗

Put K2 = −prkerT ∗ , and one of the equations follows, since K2 is a finite rank
operator and therefore compact.

Since T ∗ is a Fredholm operator it follows in the same way that there exist
operators S3, K3 with the required properties such that T ∗S3 = I + K3. Using S∗3
and K∗3 as S1 and K1 respectively yields the other equation:

S1T = S∗3T = (T ∗S3)
∗ = (I +K3)

∗ = I +K∗3 = I +K1

Assume now that there exist operators S1, S2 ∈ B(H2, H1) and operators K1

and K2 which are compact on H1 and H2 respectively such that S1T = I +K1 and
TS2 = I +K2. We have the inclusions

kerT ⊆ kerS1T = ker(I +K1)

imT ⊇ imTS2 = im(I +K2)

By Theorem 4, I+K1 and I+K2 are Fredholm operators, and by the first inclusion
above we conclude that dim kerT ≤ dim ker(I +K1) <∞. By the second inclusion
we conclude that codimT ≤ codim(I +K2) <∞. Hence T is a Fredholm operator.

Next we will look at some properties of Fredholm operators, but first we need a
definition and a lemma:

Definition 6. Let V0, ..., Vn be vector spaces, and let Tj : Vj → Vj+1, 0 ≤ j ≤ n−1,
be linear mappings. Then the sequence

V0
T0−−−→ V1

T1−−−→ V2
T2−−−→ · · · Tn−2−−−→ Vn−1

Tn−1−−−→ Vn

is called exact if imTj = kerTj+1, j = 0, ..., n− 2.

Lemma 7. Let

V0 = 0
T0−−−→ V1

T1−−−→ V2
T2−−−→ · · · Tn−1−−−→ Vn−1

Tn−1−−−→ 0 = Vn

be an exact sequence with dimVj <∞ for all j = 0, ..., n. Then

n−1∑
j=0

(−1)j dimVj = 0
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Proof. For each j, we decompose Vj = Nj ⊕ Yj, where Nj = kerTj, and Yj is some
complement of Nj. The exactness of the sequence implies that Tj : Yj → Nj+1

is an isomorphism for each j. Hence dimVj = dimNj+1, which means that for
j ∈ {0, ..., n− 1},

dimVj = dimNj + dimYj = dimNj + dimNj+1

We also have that dimN0 = 0, and dimVn−1 = dimNn−1. An easy calculation yields

n−1∑
j=0

(−1)j dimVj = 0

Theorem 8 (Multiplicative property of the index). If we are given two Fredholm
operators T1 ∈ B(H1, H2) and T2 ∈ B(H2, H3), then T2T1 ∈ B(H1, H3) is also a
Fredholm operator, and it satisfies indexT2T1 = indexT1 + indexT2.

Proof. To see that T2T1 is a Fredholm operator, one can show that dim kerT2T1 ≤
dim kerT1+dim kerT2 <∞ as well as codimT2T1 ≤ codimT1+codimT2 <∞. Hence
T2T1 is a Fredholm operator. To obtain the formula for the index, consider the exact
sequence

0→ kerT1
ι−→ kerT2T1

T1−→ kerT2
q−→ H2/imT1

T2−→ H3/imT2T1
E−→ H3/imT2 → 0

where ι : kerT1 ↪→ kerT2T1 denotes the inclusion, q : H2 ⊇ kerT2 → H2/imT1 is
the quotient map, and E maps equivalence classes modulo imT2T1 into equivalence
classes modulo imT2. Lemma 7 yields

0 = − dim kerT1 + dim kerT2T1 − dim kerT2 + dimH2/imT1 − dimH3(imT2T1) + dimH3/imT2

= −indexT1 − indexT2 + indexT2T3

Theorem 9 (Invariance of Fredholm property and index under small pertubations).
Let T ∈ B(H1, H2) be a Fredholm operator. Then there exists a constant c > 0 such
that for all operators S ∈ B(H1, H2) with norm < c, T + S is a Fredholm operator
which satisfies index(T + S) = indexT .

Proof. Let R be such that RT = I − prkerT . Then

R(T + S) = RT +RS = I − prkerT +RS
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For ‖S‖ < ‖R‖−1 we have that ‖RS‖ < 1. Hence I +RS is invertible. In the same
way, T + S has a right Fredholm inverse, so by Theorem 5 we conclude that T + S
is a Fredholm operator.

When F is a finite rank operator on a Hilbert space H, index(I + F ) = 0, for
define L := imF + (kerF )⊥ with dimL < ∞. Then L ⊕ L⊥ = H, and we see that
(I + F )L ⊆ L + FL ⊆ L and (I + F )|L⊥ = IL⊥ , so L and L⊥ are invariant under
I + F , and we have that

index(I + F ) = index((I + F )|L) + index((I + F )|L⊥)︸ ︷︷ ︸
=0

Since dimL < ∞, linear algebra yields index((I + F )|L) = 0, since for any matrix
A, dimL = dim kerA+ dim imA.

Theorem 8 tells us that index(I − prkerT ) = indexRT = indexR + indexT from
which we obtain the formula for the index:

indexT = −indexR + index(I − prkerT )︸ ︷︷ ︸
=0

= −index((I +RS)−1R) + index(I − (I −RS)−1prkerT )︸ ︷︷ ︸
=0

= index(T + S)

Where we used that −prkerT as well as −(I−RS)−1prkerT are a finite rank operators.

Theorem 10 (Invariance of Fredholm property and index under compact pertuba-
tions). Let T ∈ B(H1, H2) be a Fredholm operator. Then for any compact operator
S ∈ B(H1, H2), T + S is a Fredholm operator, and index(T + S) = indexT holds.

Proof. Let T ∈ B(H1, H2) be a Fredholm operator, and let S ∈ B(H1, H2) be a
compact operator. Then by Theorem 5 there exist S1, S2 ∈ B(H2, H1) and operators
K1 and K2 which are compact on H1 and H2 respectively such that S1T = I + K1

and TS2 = I +K2. We see that

S1(T + S) = S1T + S1S = I +K1 + S1S = I +K ′1
(T + S)S2 = TS2 + SS2 = I +K2 + SS2 = I +K ′2

where K ′1 and K ′2 are compact operators. By Theorem 5 we conclude that T + S is
a Fredholm operator.

I +K1 has index 0 according to the proof of Theorem 9, so by Theorem 8,

0 = index(I +K1) = index(S1T ) = indexS1 + indexT
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This tells us that indexS1 = −indexT . Since K ′1 is also a finite rank operator,
index(I +K ′1) = 0 so that

0 = index(S1(T + S)) = indexS1 + index(T + S) = −indexT + index(T + S)

Hence index(T + S) = indexT .

The Fredholm property can also be attached to unbounded operators. Let
T : D(T )→ H2 be a closed operator with domain D(T ) ⊆ H1. Then T will be
bounded as an operator on D(T ), which is a Hilbert space when equipped with the

graph norm ‖u‖graph = (‖u‖2H1
+ ‖Tu‖2H2

)
1
2 . In this case, T is said to be a Fredholm

operator when its kernel and cokernel are finite dimensional, and one defines the
index in the exact same way as before. It can be shown that the image of T is still
closed in H2, and that Theorems 8-10 still hold when D(T ) is equipped with the
graph norm.

6


