Diffun2, Fredholm Operators

Camilla Frantzen

June 8, 2012
H_{1} and H_{2} denote Hilbert spaces in the following.
Definition 1. A Fredholm operator is an operator $T \in B\left(H_{1}, H_{2}\right)$ such that $\operatorname{ker} T$ and coker $T:=H_{2} / \mathrm{im} T$ are finite dimensional. The dimension of the cokernel is called the codimension, and it is denoted codim T.

Fredholm operators can also be studied on Banach spaces as well as on more general spaces, but here we will concentrate on Hilbert spaces.

Lemma 2. If $T \in B\left(H_{1}, H_{2}\right)$ is a Fredholm operator, then $\operatorname{im} T$ is closed.
Proof. Let \tilde{T} denote the restriction of T to $(\operatorname{ker} T)^{\perp}$. \tilde{T} is clearly bounded, and it is not hard to see that it is a Fredholm operator. Since T is a Fredholm operator, we can assume that $\operatorname{codim} T=n$. Let $S: \mathbb{C}^{n} \rightarrow H_{2}$ be a linear mapping onto the complement of $\operatorname{im} T$ in H_{2}, and define $T_{1}:(\operatorname{ker} T)^{\perp} \oplus \mathbb{C}^{n} \rightarrow H_{2}$ by $T_{1}(x, y)=\tilde{T} x+S y$. T_{1} is bijective and continuous. By the closed graph theorem, the inverse of T_{1} is bounded and hence continuous. Hence $\operatorname{im} T=T_{1}\left((\operatorname{ker} T)^{\perp} \oplus\{0\}\right)$ is closed.

Definition 3. Let $T \in B\left(H_{1}, H_{2}\right)$ be a Fredholm operator. Then we define its index by

$$
\operatorname{index} T=\operatorname{dim} \operatorname{ker} T-\operatorname{dim} \operatorname{coker} T=\operatorname{dim} \operatorname{ker} T-\operatorname{codim} T
$$

Theorem 4. Let $T \in B\left(H_{1}, H_{2}\right)$ be bijective, and let $K \in B\left(H_{1}, H_{2}\right)$ be compact. Then $T+K$ is a Fredholm operator.

Before proving this theorem, we recall that a compact operator maps any bounded sequence into a sequence which has a convergent subsequence.

Proof. $\operatorname{ker}(T+K)$ is a Hilbert space, and in particular it is a linear space, so for $x \in \operatorname{ker}(T+K)$ we have $T x=-K x$. Let $\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq \operatorname{ker}(T+K)$ be a bounded sequence. Since K is a compact operator, the sequence $\left(K x_{n}\right)_{n \in \mathbb{N}}$ has a convergent subsequence, $\left(K x_{n_{k}}\right)_{k \in \mathbb{N}}$. But $x_{n_{k}} \in \operatorname{ker}(T+K)$ for each $k \in \mathbb{N}$, and thus
$\left(K x_{n_{k}}\right)_{k \in \mathbb{N}}=\left(-T x_{n_{k}}\right)_{k \in \mathbb{N}}$, which tells us that $\left(x_{n_{k}}\right)_{k \in \mathbb{N}}$ is convergent, since T^{-1} is bounded. Hence any bounded sequence in $\operatorname{ker}(T+K)$ has a convergent subsequence, which means that $\operatorname{dim} \operatorname{ker}(T+K)<\infty$, since an infinite dimensional Hilbert space has an infinite orthonormal sequence with no convergent subsequences.

We know that $H_{2}=\overline{\operatorname{im}(T+K)} \oplus \operatorname{ker}\left(T^{*}+K^{*}\right)$, and since T^{*} is invertible and K^{*} is compact, we get by the above that $\operatorname{dim} \operatorname{ker}\left(T^{*}+K^{*}\right)<\infty$. This means that we only have to check that $\operatorname{im}(T+K)$ is closed in order to see that $\operatorname{codim}(T+K)<\infty$. To see this we split H_{1} into the direct sum $H_{1}=\tilde{H}_{1} \oplus \operatorname{ker}(T+K)$, and we consider the restriction of $T+K$ to \tilde{H}_{1}. We want to show that for all $x \in \tilde{H}_{1}$ the inequality

$$
\begin{equation*}
\|x\| \leq c\|(T+K) x\| \tag{*}
\end{equation*}
$$

holds for some $c>0$. In order to show this inequality, we assume that for all $c>0$ there exists $x \in \tilde{H}_{1}$ such that $\|x\| \geq c\|(T+K) x\|$. Then there exist sequences $\left(c_{n}\right)_{n \in \mathbb{N}} \subseteq(0, \infty),\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq \tilde{H}_{1}$ such that $\left\|x_{n}\right\|=1$ for all $n \in \mathbb{N}, c_{n} \rightarrow \infty$ for $n \rightarrow \infty$, and $1=\left\|x_{n}\right\| \geq c_{n}\left\|(T+k) x_{n}\right\|$ for all $n \in \mathbb{N}$. Hence $\left\|(T+K) x_{n}\right\| \leq \frac{1}{c_{n}} \rightarrow 0$ for $n \rightarrow \infty$. K is compact, and x_{n} has norm 1 for each $n \in \mathbb{N}$, so there exists a subsequence $\left(K x_{n_{k}}\right)_{k \in \mathbb{N}}$ of $\left(K x_{n}\right)_{n \in \mathbb{N}}$ which is convergent; assume $K x_{n_{k}} \rightarrow v \in H_{2}$ for $k \rightarrow \infty$. This means $T x_{n_{k}} \rightarrow-v \in H_{2}$ for $k \rightarrow \infty$. Thus

$$
x_{n_{k}}=T^{-1} T x_{n_{k}} \rightarrow w=-T^{-1} v
$$

for $k \rightarrow \infty$, where $w \in \tilde{H}_{1}$ with $\|w\|=1$, since $\left\|x_{n_{k}}\right\|=1$ for each $k \in \mathbb{N}$. But

$$
(T+K) w=\lim _{k \rightarrow \infty}\left(T x_{n_{k}}+K x_{n_{k}}\right)=\lim _{k \rightarrow \infty} 0=0
$$

contradicting $\tilde{H}_{1} \perp \operatorname{ker}(T+K)$, and the claim follows, which means that we can now conclude that $\operatorname{im}(T+K)$ is closed.

Note that when $T \in B\left(H_{1}, H_{2}\right)$ is a Fredholm operator, then T^{*} will also be a Fredholm operator, for it can be shown that im T^{*} is closed if and only if imT is closed, which we know is the case, and so it follows that

$$
\operatorname{index} T^{*}=\operatorname{dim} \operatorname{ker} T^{*}-\operatorname{dim} \operatorname{ker} T^{* *}=\operatorname{dim} \operatorname{ker} T^{*}-\operatorname{dim} \operatorname{ker} T=-\operatorname{index} T
$$

since $H_{2}=\overline{\operatorname{im} T} \oplus \operatorname{ker} T^{*}$ implies that $\operatorname{codim} T=\operatorname{dim} \operatorname{ker} T^{*}$.
Theorem 5. $T \in B\left(H_{1}, H_{2}\right)$ is Fredholm if and only if there exist $S_{1}, S_{2} \in B\left(H_{2}, H_{1}\right)$ and operators K_{1} and K_{2} which are compact on H_{1} and H_{2} respectively such that $S_{1} T=I+K_{1}$ and $T S_{2}=I+K_{2}$.

Proof. First assume that $T \in B\left(H_{1}, H_{2}\right)$ is a Fredholm operator. T defines a bijective operator $\tilde{T}: \tilde{H}_{1} \rightarrow \tilde{H}_{2}$, where $\tilde{H}_{1}=(\operatorname{ker} T)^{\perp}$ and $\tilde{H}_{2}=\operatorname{im} T=\left(\operatorname{ker} T^{*}\right)^{\perp}$. Define $S_{2} \in B\left(H_{2}, H_{1}\right)$ by $S_{2}=\iota_{\tilde{H}_{1}}(\tilde{T})^{-1} \operatorname{pr}_{\mathrm{im} T}$. Then

$$
T S_{2}=T \iota_{\tilde{H}_{1}}(\tilde{T})^{-1} \operatorname{pr}_{\mathrm{im} T}=\operatorname{pr}_{\mathrm{im} T}=\operatorname{pr}_{\tilde{H}_{2}}=I-\operatorname{pr}_{\operatorname{ker} T^{*}}
$$

Put $K_{2}=-\operatorname{pr}_{\operatorname{ker} T^{*}}$, and one of the equations follows, since K_{2} is a finite rank operator and therefore compact.

Since T^{*} is a Fredholm operator it follows in the same way that there exist operators S_{3}, K_{3} with the required properties such that $T^{*} S_{3}=I+K_{3}$. Using S_{3}^{*} and K_{3}^{*} as S_{1} and K_{1} respectively yields the other equation:

$$
S_{1} T=S_{3}^{*} T=\left(T^{*} S_{3}\right)^{*}=\left(I+K_{3}\right)^{*}=I+K_{3}^{*}=I+K_{1}
$$

Assume now that there exist operators $S_{1}, S_{2} \in B\left(H_{2}, H_{1}\right)$ and operators K_{1} and K_{2} which are compact on H_{1} and H_{2} respectively such that $S_{1} T=I+K_{1}$ and $T S_{2}=I+K_{2}$. We have the inclusions

$$
\begin{array}{r}
\operatorname{ker} T \subseteq \operatorname{ker} S_{1} T=\operatorname{ker}\left(I+K_{1}\right) \\
\quad \operatorname{im} T \supseteq \operatorname{im} T S_{2}=\operatorname{im}\left(I+K_{2}\right)
\end{array}
$$

By Theorem 4, $I+K_{1}$ and $I+K_{2}$ are Fredholm operators, and by the first inclusion above we conclude that $\operatorname{dim} \operatorname{ker} T \leq \operatorname{dim} \operatorname{ker}\left(I+K_{1}\right)<\infty$. By the second inclusion we conclude that $\operatorname{codim} T \leq \operatorname{codim}\left(I+K_{2}\right)<\infty$. Hence T is a Fredholm operator.

Next we will look at some properties of Fredholm operators, but first we need a definition and a lemma:

Definition 6. Let V_{0}, \ldots, V_{n} be vector spaces, and let $T_{j}: V_{j} \rightarrow V_{j+1}, 0 \leq j \leq n-1$, be linear mappings. Then the sequence

$$
V_{0} \xrightarrow{T_{0}} V_{1} \xrightarrow{T_{1}} V_{2} \xrightarrow{T_{2}} \cdots \xrightarrow{T_{n-2}} V_{n-1} \xrightarrow{T_{n-1}} V_{n}
$$

is called exact if $\operatorname{im} T_{j}=\operatorname{ker} T_{j+1}, j=0, \ldots, n-2$.
Lemma 7. Let

$$
V_{0}=0 \xrightarrow{T_{0}} V_{1} \xrightarrow{T_{1}} V_{2} \xrightarrow{T_{2}} \cdots \xrightarrow{T_{n-1}} V_{n-1} \xrightarrow{T_{n-1}} 0=V_{n}
$$

be an exact sequence with $\operatorname{dim} V_{j}<\infty$ for all $j=0, \ldots, n$. Then

$$
\sum_{j=0}^{n-1}(-1)^{j} \operatorname{dim} V_{j}=0
$$

Proof. For each j, we decompose $V_{j}=N_{j} \oplus Y_{j}$, where $N_{j}=\operatorname{ker} T_{j}$, and Y_{j} is some complement of N_{j}. The exactness of the sequence implies that $T_{j}: Y_{j} \rightarrow N_{j+1}$ is an isomorphism for each j. Hence $\operatorname{dim} V_{j}=\operatorname{dim} N_{j+1}$, which means that for $j \in\{0, \ldots, n-1\}$,

$$
\operatorname{dim} V_{j}=\operatorname{dim} N_{j}+\operatorname{dim} Y_{j}=\operatorname{dim} N_{j}+\operatorname{dim} N_{j+1}
$$

We also have that $\operatorname{dim} N_{0}=0$, and $\operatorname{dim} V_{n-1}=\operatorname{dim} N_{n-1}$. An easy calculation yields

$$
\sum_{j=0}^{n-1}(-1)^{j} \operatorname{dim} V_{j}=0
$$

Theorem 8 (Multiplicative property of the index). If we are given two Fredholm operators $T_{1} \in B\left(H_{1}, H_{2}\right)$ and $T_{2} \in B\left(H_{2}, H_{3}\right)$, then $T_{2} T_{1} \in B\left(H_{1}, H_{3}\right)$ is also a Fredholm operator, and it satisfies index $T_{2} T_{1}=\operatorname{index} T_{1}+\operatorname{index} T_{2}$.

Proof. To see that $T_{2} T_{1}$ is a Fredholm operator, one can show that $\operatorname{dim} \operatorname{ker} T_{2} T_{1} \leq$ $\operatorname{dim} \operatorname{ker} T_{1}+\operatorname{dim} \operatorname{ker} T_{2}<\infty$ as well as $\operatorname{codim} T_{2} T_{1} \leq \operatorname{codim} T_{1}+\operatorname{codim} T_{2}<\infty$. Hence $T_{2} T_{1}$ is a Fredholm operator. To obtain the formula for the index, consider the exact sequence

$$
0 \rightarrow \operatorname{ker} T_{1} \xrightarrow{\iota} \operatorname{ker} T_{2} T_{1} \xrightarrow{T_{1}} \operatorname{ker} T_{2} \xrightarrow{q} H_{2} / \operatorname{im} T_{1} \xrightarrow{T_{2}} H_{3} / \operatorname{im} T_{2} T_{1} \xrightarrow{E} H_{3} / \mathrm{im} T_{2} \rightarrow 0
$$

where $\iota: \operatorname{ker} T_{1} \hookrightarrow \operatorname{ker} T_{2} T_{1}$ denotes the inclusion, $q: H_{2} \supseteq \operatorname{ker} T_{2} \rightarrow H_{2} / \operatorname{im} T_{1}$ is the quotient map, and E maps equivalence classes modulo $\mathrm{im}_{2} T_{1}$ into equivalence classes modulo $\operatorname{im} T_{2}$. Lemma 7 yields
$0=-\operatorname{dim} \operatorname{ker} T_{1}+\operatorname{dim} \operatorname{ker} T_{2} T_{1}-\operatorname{dim} \operatorname{ker} T_{2}+\operatorname{dim} H_{2} / \operatorname{im} T_{1}-\operatorname{dim} H_{3}\left(\operatorname{im} T_{2} T_{1}\right)+\operatorname{dim} H_{3} / \operatorname{im} T_{2}$ $=-\operatorname{index} T_{1}-\operatorname{index} T_{2}+\operatorname{index} T_{2} T_{3}$

Theorem 9 (Invariance of Fredholm property and index under small pertubations). Let $T \in B\left(H_{1}, H_{2}\right)$ be a Fredholm operator. Then there exists a constant $c>0$ such that for all operators $S \in B\left(H_{1}, H_{2}\right)$ with norm $<c, T+S$ is a Fredholm operator which satisfies index $(T+S)=$ index T.

Proof. Let R be such that $R T=I-\operatorname{pr}_{\operatorname{ker} T}$. Then

$$
R(T+S)=R T+R S=I-\operatorname{pr}_{\operatorname{ker} T}+R S
$$

For $\|S\|<\|R\|^{-1}$ we have that $\|R S\|<1$. Hence $I+R S$ is invertible. In the same way, $T+S$ has a right Fredholm inverse, so by Theorem 5 we conclude that $T+S$ is a Fredholm operator.

When F is a finite rank operator on a Hilbert space H, index $(I+F)=0$, for define $L:=\operatorname{im} F+(\operatorname{ker} F)^{\perp}$ with $\operatorname{dim} L<\infty$. Then $L \oplus L^{\perp}=H$, and we see that $(I+F) L \subseteq L+F L \subseteq L$ and $\left.(I+F)\right|_{L^{\perp}}=I_{L^{\perp}}$, so L and L^{\perp} are invariant under $I+F$, and we have that

$$
\operatorname{index}(I+F)=\operatorname{index}\left(\left.(I+F)\right|_{L}\right)+\underbrace{\operatorname{index}\left(\left.(I+F)\right|_{L^{\perp}}\right)}_{=0}
$$

Since $\operatorname{dim} L<\infty$, linear algebra yields index $\left(\left.(I+F)\right|_{L}\right)=0$, since for any matrix $A, \operatorname{dim} L=\operatorname{dim} \operatorname{ker} A+\operatorname{dim} \operatorname{im} A$.

Theorem 8 tells us that index $\left(I-\operatorname{pr}_{\operatorname{ker} T}\right)=\operatorname{index} R T=\operatorname{index} R+\operatorname{index} T$ from which we obtain the formula for the index:

$$
\begin{aligned}
\operatorname{index} T & =-\operatorname{index} R+\underbrace{\operatorname{index}\left(I-\operatorname{pr}_{\operatorname{ker} T}\right)}_{=0} \\
& =-\operatorname{index}\left((I+R S)^{-1} R\right)+\underbrace{\operatorname{index}\left(I-(I-R S)^{-1} \operatorname{pr}_{\operatorname{ker} T}\right)}_{=0} \\
& =\operatorname{index}(T+S)
\end{aligned}
$$

Where we used that $-\operatorname{pr}_{\operatorname{ker} T}$ as well as $-(I-R S)^{-1} \operatorname{pr}_{\operatorname{ker} T}$ are a finite rank operators.

Theorem 10 (Invariance of Fredholm property and index under compact pertubations). Let $T \in B\left(H_{1}, H_{2}\right)$ be a Fredholm operator. Then for any compact operator $S \in B\left(H_{1}, H_{2}\right), T+S$ is a Fredholm operator, and index $(T+S)=$ index T holds.

Proof. Let $T \in B\left(H_{1}, H_{2}\right)$ be a Fredholm operator, and let $S \in B\left(H_{1}, H_{2}\right)$ be a compact operator. Then by Theorem 5 there exist $S_{1}, S_{2} \in B\left(H_{2}, H_{1}\right)$ and operators K_{1} and K_{2} which are compact on H_{1} and H_{2} respectively such that $S_{1} T=I+K_{1}$ and $T S_{2}=I+K_{2}$. We see that

$$
\begin{aligned}
& S_{1}(T+S)=S_{1} T+S_{1} S=I+K_{1}+S_{1} S=I+K_{1}^{\prime} \\
& (T+S) S_{2}=T S_{2}+S S_{2}=I+K_{2}+S S_{2}=I+K_{2}^{\prime}
\end{aligned}
$$

where K_{1}^{\prime} and K_{2}^{\prime} are compact operators. By Theorem 5 we conclude that $T+S$ is a Fredholm operator.
$I+K_{1}$ has index 0 according to the proof of Theorem 9 , so by Theorem 8,

$$
0=\operatorname{index}\left(I+K_{1}\right)=\operatorname{index}\left(S_{1} T\right)=\operatorname{index} S_{1}+\operatorname{index} T
$$

This tells us that index $S_{1}=-$ index T. Since K_{1}^{\prime} is also a finite rank operator, $\operatorname{index}\left(I+K_{1}^{\prime}\right)=0$ so that

$$
0=\operatorname{index}\left(S_{1}(T+S)\right)=\operatorname{index} S_{1}+\operatorname{index}(T+S)=-\operatorname{index} T+\operatorname{index}(T+S)
$$

Hence index $(T+S)=\operatorname{index} T$.
The Fredholm property can also be attached to unbounded operators. Let $T: D(T) \rightarrow H_{2}$ be a closed operator with domain $D(T) \subseteq H_{1}$. Then T will be bounded as an operator on $D(T)$, which is a Hilbert space when equipped with the graph norm $\|u\|_{\text {graph }}=\left(\|u\|_{H_{1}}^{2}+\|T u\|_{H_{2}}^{2}\right)^{\frac{1}{2}}$. In this case, T is said to be a Fredholm operator when its kernel and cokernel are finite dimensional, and one defines the index in the exact same way as before. It can be shown that the image of T is still closed in H_{2}, and that Theorems 8-10 still hold when $D(T)$ is equipped with the graph norm.

